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The rise of the internet coupled with technological innovains such as smartphones
have generated massive volumes of geo-referenced datdig data) on human mobility.
This has allowed the number of studies of human mobility to adly overtake those of
animal movement. Today, telemetry studies of animals are s approaching big data
status. Here, we review recent advances in studies of human obility and identify the
opportunities they present for advancing our understandig of animal movement. We
describe key analytical techniques, potential bottleneck and a roadmap for progress
toward a synthesis of movement patterns of wild animals.
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INTRODUCTION

The movements of wild animals have always fascinated humamgah migrations have been
important milestones for human society, from the arrival @prture of migratory birds signaling
changes in seasons, to hunter-gatherers following the mewéraf herds across steppes and
savannahs and shermen following salmon runs and the progrésh stocks between feeding and
breeding grounds. Animal migrations have also been an natlggart of the development of human
culture, as evidenced by pictures drawn thousands of yearsragave walls. Today, the study of the
ecology of non-human animal (hereafter, animal) movemera iwell-established eld of science
(Nathan, 200Bencompassing a coherent research community with dedicatesdication outlets
(e.g., Movement Ecology, http://link.springer.com/jourd@462 and Animal Biotelemetry https://
link.springer.com/journal/40317) and symposia largely idatkd to animal movement (https://
www.bio-logging.net/Symposium/).

Despite our long-standing interest, description of the moesinpatterns of some animals,
particularly birds, and aquatic species such as marine masarad shes have presented many
challenges, largely because these animals live in enveotsmhere humans cannot easily follow
their path. Today, these issues are being overcome throughdévelopment of sophisticated
telemetry technologies that allow researchers to remdtalgte and track animals. Over the last
30 years, such telemetry studies have generated insigbtshi@ otherwise invisible lives of the
animals that occupy the skies, the forests and the open ocegllbeyond our sight.

Given the e ort that has been expended on describing the movematterns of animals for
nearly two centuriesHigure 1), it is somewhat ironic that humans have become the subjéct o
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FIGURE 1 | Timeline of Technological Advances in Animal Movement anduthan Mobility. The timeline shows the technological advares from animal movement and
human mobility research since 1900 to present. Pop-up satéite archival tags (PSATs) are data loggers with a means taatmsmit the collected data via satellite
developed for gill-breathing animals that spend little timat the surface. The International Cooperation for Animal Rearch Using Space Initiative (ICARUS) is a new
animal tracking antenna on the International Space Statiorhat would allow smaller tags to send data back through the loworbit satellite. The dollar bill represents the
rst published paper on human mobility, which tracked record of dollar bills across the United States as a proxy for humamovement Brockmann et al., 2006).

GPS D global positioning system. Reprinted from Trends in Ecologand Evolution (see€Vieekan et al., 2017, with permission from Elsevier.

tracking studies only very recentlig(ockmann et al., 2006; Eagle have characterized the movement patterns of humans at global
and Pentland, 2006; Gonzalez et al., J0®gure 1). Human  scales for the rst time (e.gBrockmann et al., 2006; Gonzalez
tracking studies have been enabled by the growth of themeter et al., 2008

coupled with technological innovations such as smartphomeisa ~ The rapid uptake of telemetry for the study of wild animals
wearables (e.g., smart watches and tness trackers) tha¢ hameans thatbig dataapproaches to understand movement can
generated immense and readily accessible geo-refereratad dnow be extended beyond human subjects. Collaborative refsea
on human mobility and data on human activities such as heartnitiatives such as the Tagging of Paci ¢ Pelagics (TOPP) @nwgr
rate monitoring, sports, and sleep trackinge( Arriba-Pérez  (http://www.gtopp.org/), and online repositories such as the
et al., 201p These large datasets, amounting in volume to “bigdcean Tracking Network (OTN) (http://oceantrackingnetwor
data,” are now being analyzed to describe patterns of humaerg/), Movebank (Vikelski and Kays, 20)0ZoaTrack Dwyer
movement Gimini et al., 2012, 20),3eatures (e.g., sleep, stressget al., 201pand Birdlife International (http://www.birdlife.org/)
and activities) e Arriba-Pérez et al., 20)Léand interactions (seeCampbell etal., 201fér a full list of repositories), collectively
(Simini et al., 2012, 2013; Meekan et al., J0fith a degree of document the movements of tens to hundreds of thousands of
detail, immediacy and precision that was never before podsible wild animals across diverse taxa spanning all continents and
any animal specie$/eekan et al., 20)7Moreover, such studies biomes Hussey et al., 2015; Kays et al., 208bich datasets now
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o er the opportunity to transfer big data analytical approachesexternally or internally on animals. Signals from the tags are
developed in the eld of human mobility to animal movement detected and recorded at receiver stations that are now dprea
ecology. As has been pointed out for the eld of ecology inn networks through parts of the world's oceans (see http:/
general Hampton et al., 2013 big dataanalyses have the ability oceantrackingnetwork.orgfCooke et al., 2011; Hoenner et al.,
to promote signi cant advances in our understanding of anima 2019.
movement ecology, including insights challenging the t&rof Telemetry was rst used in the marine environment, due to
current theoretical frameworks, by searching for and dibsng  the fact that the ocean is a boundary to human observation of
universal patterns, collective behaviors and emergent ptegger marine animals Boyd et al., 2004 For example the rst time-
in both terrestrial and marine ecosystems. depth recorders were attached to Weddell seatsyman, 196p
Here, we show how developments in human mobility researcland innovations continue to come from the marine biologydel
underpinned bybig data analysis Blondel et al.,, 20)5can such as the multi-sensor “daily diary” tag\/(ison et al., 2008
be used to catalyze progress and derive new insights into tlend other technological developments such as the CTD-SRDL
global movement patterns of animals. A key requirement fotag which samples oceanographic variables experienced byltagge
this task will be the creation of global, open access dataliEse animals at the same time as monitoring their movementsdak,
animal tracking. These will not only improve our understangi  2009.
of the movement ecology of animals, but also provide the In contrast to the long history of animal movement, one of
opportunity to engage researchers from the broader scienti ¢he rst studies of individual human mobility occurred agdsas
community, including physicists, mathematicians, computer2006, and tracked the movement patterns of 100 MIT students
and visualization scientists and those interested in complelased on the locations of the cell towers from which their n@bi
systems. phone calls were made=fgle and Pentland, 2006The rst
continent-wide study of human mobility was published in the
same yearErockmann et al., 20Q6nd used a crowd-sourcing

TECHNOLOGY AS A DRIVER FOR THE approach, with individuals voluntarily reporting the locatiarf
DEVELOPMENT OF TRACKING ANIMALS marked $1 bills across the United States (see wheresgearje.co
AND HUMANS However, the appearance of smartphones (portable technologies

with geolocation capability) is the milestone that allowed
The emergence of the modern study of animal movement caresearchers to study human mobility at truly global scale$ an
be traced to the development of ring banding in the 1900'sn unprecedented detail. Integrated GPS tracking in smartggso
(Bairlein, 200) and radio-transmitter telemetry in the 1950's together with data provided by geolocated internet posts wh te
(LeMunyan et al., 1999 Figure 1). At the rst iteration of the  or photographs via twitter and the Flickr photo sharing platfgrm
latter technique, radio signals emitted by transmitterpldged  public transportation cards and credit cards are now providing
on animals were detected by receivers carried by researcher direct and high-resolution data on human locations, trajetes,
mounted on platforms so that tagged animals could be locatedpinions, and interactions, allowing researchers to dgvelod
by triangulation of the signals from multiple receivers. @king  validate models of human mobility across di erent spatial ssal
programs were thus limited by the range of the receivers (25¢e.g., city to country,Simini et al., 2012 The importance
35km; line of sight). The launch of the ARGOS (Advanceddf social interactions to human individuals has created our
Research and Global observation satellite) satellite n&tivor willingness to carry our own tags (e.g., smartphones), pay for
the late 1970s overcame this problem, as receivers were ptacedhe associated costs, and document our activity throughasoc
earth-orbiting satellites and by the 1980's, animals weaeked networks, underpinning the rapid data expansion on human
with satellite transmitters for the rst time§chweinsburg and mobility. The numbers of internet-connected electronic deg
Lee, 198p(Figure 1). In subsequent years, satellite telemetry hasurrently in use, such as smartphones and tablets, are estimat
progressed rapidly with miniaturization of electronics, imped to be in the range of 8-10 billion, i.e., more than the entire
battery capacity and the integration of the Global Positi@gni human population of the planetdisco, 201) Thus, despite the
System (GPS), allowing position estimates with much lowarer relatively short history of research on human mobility cormgra
(Dujon et al., 201)¥and faster acquisition of satellite data. Todayto animal movement, studies of human mobility have recently
these satellite tags have been attached to a range of terestbegun to match or outstrip the number of publications in thdde
and marine animals and have catalyzed discovelys6ey et al., of animal movement todayHigure 2). They also allow, for the
2015; Kays et al., 20LAlthough understanding where animals rst time, tracking the majority of the individuals of a sitegvery
go has been the main focus of telemetry studies, advanced tagpundant species—humans.
now incorporate sensors that report information on behavior, Since human dispersal was able to be tracked at the level of
physiological status (Sé&zown et al., 201)3and environmental individuals Brockmann et al., 2006; Eagle and Pentland, 2006
conditions experienced by an animal during its movement® (Seit has been found that our trajectories are similar to thoge o
Biuw et al., 200)7 At the same time, telemetry techniques haveanimals such as albatrossé&&s(vanathan et al., 1996monkeys
also been developed to track aquatic organisms such as gh thRamos-Fernandez et al., 200dnd a range of marine predators
do not return to the surface to breathe. Because radio signa(Sims et al., 2008All of these studies showed that trajectories
are rapidly attenuated by water, part of this technology hasre approximated by a Levy ight—a random walk for which
focused on the use of sonar-emitting tags that are deploythdrei step size follows a power-law distributiog D x X) with the
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FIGURE 3 | Number of ARGOS satellite transmitters deployed. Time ses of
FIGURE 2 | Comparison of output from animal movement and human mobilit the number of ARGOS satellite transmitters deployed from 2B to 2014 (data
research. Annual publication output in wild animal movemerstudies (black), provided by CLS ARGOS).

and human mobility research (white). Data from ISI Web of Kndedge
accessed June 1, 2015 using—"animal tracking’OR “animal movement” OR
“animal telemetry,” and—"human tracking” OR “human mobily,” as search
terms from 1945 to 2014. Search results from human mobilityesearch were

vetted for studies related to the biomechanics of human moltity and these are now also approaChir@g datastatus Figure 3) Given that
were deleted. routine satellite tracking has a 30-year history and thatsthe
totals do not include non-Argos linked devices [e.g., radia
acoustic telemetry (the main technology for teleost shes)d
biologging devices], we conservatively estimate that thexes h
exponenk < 2. While the existence of Levy ights in animal and heen more than one million deployments of satellite-linkads
human movement data remains controversiglefynolds, 2008; on animals since the beginning of this eld of research aneist
Edwards, 2011; Petrovskii et al., 2011; Gautestad and Myster deployments have global coverag@ys et al., 20)5However,
2013; Pyke, 20)%ur main point is simply that, as dispersing only a small fraction of these data reside in online database
agents, both humans or animals, travel only short distancegnd even less reside in databases that are publically deessi
most of the time, but occasionally travel very long distance For example in a review of the literature from 2000 to 2012 in
Other similarities include the collective movement of pedass  aystralasia alone, animal telemetry devices (includindyales)
showing synchronizationHelbing and Molnar, 1995; Vicsek \ere deployed on 12,656 animals and only 9% of these had their

etal., 199psimilarto ocks of birds Cavagna etal., 20),herds  gata stored in a discoverable and accessible marempbell
of ungulates and schools of sfr¢nerand Tu, 1998; Vicsek and et 5., 200y,

Zafeiris, 201p. Given that we are now attaining situations where

descriptions of both human and animal movements are dath-ric

and we have recognized the potential similarities betweeirth HOW CAN MOVEMENT ECOLOGY

form and underlying motivationsNleekan et al., 20)7itisan BENEFIT FROM BIG DATA?

appropriate time to examine, test and apply techniques used to

analyse large-scale (e.g., regional to global scale) ddtarnan A major challenge for animal movement ecology is the cost of

mobility to animal movement. tracking devices. Depending on the number of sensors tted
In the last decade alone, more than 700,000 ARGOS-linkett the satellite-linked tag, most cost somewhere in the range

satellite transmitters have been deployed on animfaigure 3.  of USD $1,000-$10,000, with satellite communication time an

These devices are the main platform currently in use by animaldditional impost. High instrument costs generally resultomw

movement ecologists (at least in marine systems for mammalsumbers of tagged animals, with sample sizes further reduced

birds, and reptilesHussey et al., 20)@and also transmits the by tag loss and the failure of some tags to report position data

data to calculate GPS xes for tags that are equipped with GP@lays et al., 2007 Combined with the logistics involved in

technology. Although this represents only a tiny fractiontlé  capturing target organisms, it is perhaps not surprising that

number of internet-connected electronic devices that amedito many researchers are reluctant to share data. However, bne o

track humans (i.e., currently greater than the number of lama  the consequences of low sample sizes is that tracking dataset

onthe planet), the outputs of satellite tag deployments on @tém generally feature a large amount of variation in movements
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among species, individuals, sexes, sites, and seasons$) white parent obtains resources to nourish them. However, we lac
further complicates the identi cation of general patterneding  similar predictive models for animals, potentially for two main
of datasets among studies through the formation of synthesireasons: rstly, most studies have yet to shift from a focus on
groups and open access repositories could provide a measmgle trajectories or those of a small set of animals (withesom
for researchers to escape the constraint of small sample sizastable exceptions such &lock et al., 2011; Raymond et al.,
and move analyses from local to larger spatial and temporaél015; Sequeira et al., in prede research that examines the
scales and from the speci c to the generic in their applicationcollective movement patterns of a species or entire populations
to the eld. Progress in the study of human mobility showsSecondly, the key resource(s) that drives animal movement
that this would generate four key opportunities for utilizing patterns are largely hidden from the human observére{z
big dataapproaches which we outline below; (1) identi cation and Saltz, 2008 Food is often considered the main driver, but
of emergent properties in animal movement, (2) analysis ofesources can also include refuges or mates for reproduction
networks of animal movement and behavior, (3) developmenissues that are also relevant to human movement. Assuming
of machine learning algorithms to understand and chardeeer that food is indeed the main resource driving animal moveitnen
patterns from “big” animal movement data and (4) advancedarge data sets could allow formulation of a radiation moded
visualization techniques for complex datasets of movemafet. mentioned above, the human population density of a location
do not attempt to review all the methodological developmentss taken as a proxy of the quality of resources, so for animals
in each of the human mobility and animal movement elds, butthis could be existing proxies of prey density like Chloroplayll-
instead focus on these four specic areas that we believe cdor example. Step selection functionSoftin et al., 200pand
provide valuable new insight into animal movement. resource selection functionsl@nly et al., 200yYmay also be of
relevance here for identifying key resources. These fonstiave
. . . previously been used with telemetry data as the ingaithjck
Identi cation of Emergent Patterns in et al., 200B and are useful in animal ecology because they
Animal Movement provide insight into the mechanisms behind animal distritmuti
The simultaneous analysis of multiple human trajectorie§Cagnacci et al., 20} by contrasting resources/habitat used
has revealed emergent patterns of human organization atgainstthose available. Then as for humans, the radiatioteino
multiple scales, ranging from communities to societies impproach with “big” animal data will be capable of predicting
both decentralized and centralized (complex, strati ed)nfiet ~ uxes of animals in places where there are no observations,
Initially, patterns of human mobility were explained using ainformation that would be extremely useful for conservation
gravity model Gtou er, 1940; Zipf, 1946where the ux of management.
people between two locations was considered proportional to Sensors for assessing behavior and for documenting the
the importance of the source (starting point) and destinationinternal and external states of animals now also provide a means
in terms of population size, gross domestic product, etc., anébr identifying and quantifying the context and drivers afimal
decayed with the distance between locations. This concept henovement (see review [Brown et al., 2013 For example, the
since been superseded by more elaborate radiation modelshwhi‘daily diary” tag (https://wildlifecomputers.com/our-tafglaily-
describe the ows of people between dierent locations, butdiary/) has a tri-axial accelerometer, providing high resiol
in addition to the importance of source and destination, alsadata (32 sec') on movement on three axes (pitch, roll, and
consider the importance of the pathway used to travel betweelmeading). Where previous work has matched behaviors to
the locations. One of the advantages of this latter approachccelerometer signals, such information allows movemierie
is that it contains no adjustable parameters. Instead, itsdoerelated to speci ¢ behaviors since foraging, sleeping, mgni
make the basic assumption that people move in order to accestc. produce characteristic patterns of acceleration {§e&sen
resources. In the case of humans, the most obvious “resbisrce et al., 201)) Indeed, progress in inferring patterns of human
employment Gimini et al., 2012, 20).3Population size has been movements from accelerometer data have advanced to the
used as a measure of the “quality” of resources since aré¢las wextent that they can be used to infer specic gestures (
larger populations (e.g., cities) tend to o er greater opporties et al., 200pP and gait patterns allowing individual recognition
for employment. A bene t of such models is that they can predictMantyjarvi et al., 2006 Similarly, the CTD-SRDL tag records
commuting and transport patterns, even in areas where suclocation and diving pro les of marine vertebrates. As theraai
data are not routinely collected, as they rely only on poputatio dives, the tag samples the water column for conductivity,
densities Eimini et al., 201R temperature, and depth. Animals carrying these tags e egtivel
Animals, like humans move at both small and large scales (i.doecome autonomous environmental samplétsgta et al., 2003
they have daily and seasonal movements). For example, maggthering large data sets on both the physical and biological
animals have large separation between their breeding gmundonditions they are experiencing-€édak, 2004and their own
and foraging grounds and the migration between the two iphysiological state along their movement trajectori@si(v et al.,
commonly conducted on an annual basis. Movement within the2007. These types of tags and the contextual data sets that they
breeding and foraging ground contains smaller daily movetse generate provide the benchmark for studies of animal movemen
akin to human commuting patterns, such as movement over onand their use will become more widespread in the future as
to a few days of parents tending young; so called central placechnology improves and costs decline. Technological adgance
foraging, where the young are left at the breeding groundevhi will likely include an improvement in the amount of data thatca
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be recorded (and potentially transmitted) and miniaituriicen, has been examined by applying algorithms of topological
with the latter allowing for a range of smaller animals to®@ community detection to country-wide telephone call netwsrk
the targets for tagging. For example, the ICARUS initiativdSobolevsky et al., 20)l&nd patterns in the circulation of bank
(http://icarusinitiative.org/) is working to mount a new @anal notes (Thiemann et al., 2000 These studies typically report
tracking antenna on the International Space Station that Mlou poor matches between administrative boundaries and actual
allow smaller tags (currently 5g) to send data back through t geographic boundaries calculated from human mobility data.
low-orbit satellite, allowing the tagging of very smalldsrand humans, the economic and social implications of poorly de ned
even large insects. borders and sizes of administrative regions are obvioussBch
community detection algorithms also have clear applicability to
. ) animal tracking data, particularly in the case of highly mepi
Analysis of Networks of Animal Movement migratory species, because their range is likely to encompass
and Behavior dierent political jurisdictions, management regimes and
On a daily basis, the city is one of the most important scalepotential threats [Dallimer and Strange, 20).50ne of the most
for the organization of human movement. Geolocalized dat@ommon aims of the analysis of tracking data of animals is the
from phones shows that most travel occurs between the homidenti cation of biologically important areas such as thossed
and the workplace, with the pathways channeling the ux offor breeding and foraging and migratory corridors, as thasesas
people between these locations being a key feature of a ciye often the focus for species conservation and management.
(Louail et al., 2016 Analyses of commuting patterns have shownCommon approaches to this task are home range analysis (e.qg.,
that, rather than unicentric, cities are polycentric withveeal kernel density\Worton, 1989 and spatially explicit time-in-area
coexisting centers(oosterman and Musterd, 2001; Roth et al.,analysesHemson et al., 2005 However, both have di culty
2019, information that is highly relevant for urban planning. identifying areas that are critical but infrequently ocoegj
Given that many animals also commute, for example fromsuch as migratory corridors. While more advanced methods
breeding and/or refuges to foraging sites, the use of a aimil exist in animal movement ecology to deal with these limdas
analytical approach including residency analysis coupled witeuch as Brownian Horne et al., 200y and biased bridges
origin-destination matrices L(ouail et al., 2016would allow (Benhamou, 201)Ithese methods are undertaken on individual
for the spatial properties of these animal commuting owstrajectories and scaling up to population level inferenceunezs
to be revealed in a novel manner. Such an approach to the representative sample of individual tracks and secondary
analysis of habitat use by animal populations would complemerdnalyses (e.g., overlaying home ranges in GIS software, use
existing methods such as switching state-space models teait inof random e ects for parameters). Community detection
behavioral state (i.e., migrating vs. foraging)ifsen et al., 20),3 algorithms used to represent patterns of human space use may be
to allow comparisons of the commuting ows of a species fromideal for this task, as they are not subject to the same liioita
a range of breeding sites. These comparisons could identind importantly, they can also determine how sub-populations
sub-populations at risk where the distance or time of commagtin might be connected at larger spatial scalBsdriguez et al.,
was increasing over time, perhaps as a result of environmentad17. Again, the power of these algorithms relies on the use
change. The state-space models mentioned above are a comnainmassive data that examines the movements of hundreds of
and very useful approach for analyzing animal tracking datat. N individuals across ecosystems (eRpdriguez et al., 20),7an
only do they infer behavioral state, they estimate the patarse approach that is still relatively uncommon in animal studiésa
of their distributions and importantly, they also provide wider scale, such analyses would aid the development of e ective
uncertainty information around the location estimates agte conservation and management across socio-political barder
can be subject to severe erroidafterson et al., 20)8unlike  In human societies, community detection algorithms hawal
human tracking data. In addition, they intrinsically acaddfor  provided insight into processes such as the spread of emergent
the inherent autocorrelation present in animal movementalat infectious diseasesC(lizza et al., 2006 A combination of
Despite this not being a common feature of network modelshuman mobility (air travel and daily commuting patterns)
they are being developed in order that they account for memorgnd demographic data has enabled the development of models
and thus deal also with autocorrelation indirectlyglnikov et al., of the worldwide spread of epidemic diseasésil¢an et al.,
2016. Although there have been some advances in technique®09 that have been ground-truthed with empirical data from
to allow population level inference from state space and othesurveillance and virologic sourcegfzoni et al., 2012 Similarly,
hierarchical modelsHooten et al., 2016; Jonsen, 2D1iltey are community detection algorithms could provide informationrfo
not widely used for this purpose, potentially because of theithe management of disease outbreaks in animals, particutarly f
additional complexity and computational burderl¢oten et al., migratory species (e.giussell et al., 20D5Indeed, there may
2017. However advances in software such as STARCC be overlap between both human and animal data in situations
Template Model Builder (TMB), and Integrated Nested Laplacevhere animal migrations can enhance the global spread of
Approximation (INLA) could assist here as could use of CloudpathogensAltizer et al., 201), for example, zoonotic pathogens
computing using platforms like Amazon Web Services anduch as the Ebola virus in batsgfoy et al., 2009
others. In addition to diseases, the propagation of ideas, opinions
At a larger spatial scale (100s of km), the extent to whickand innovations can also be followed within societies using
human activity patterns correspond to administrative bourida  data now available via social media. For example, geolocated
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messages posted on twitter (tweets) have allowed resesaitcher The methods mentioned above are supervised machine
measure the overall happiness and moods of peogliéc(iell  learning techniques where the focus of the analysis is on
et al., 201B and to characterize the worldwide patterns in prediction, based on known properties learned from the tragnin
linguistic geography Nlocanu et al., 2003 The availability data. Machine learning can also be un-supervised, where
of such datasets has opened up enormous potential for thihe focus is on nding some structure in the input or the
near real-time study of human behavior and societal trendsliscovery of hidden patterns in the data. Hidden Markov madel
at very large spatial scales (1,000's of krivlodanu et al., are examples of one class of unsupervised machine learning
2019. Developments in tagging technology may soon also enabdgorithm commonly used to predict or classify future stategt
behavioral analyses of animals, including cultural traission —animal and human (e.gAshbrook and Starner, 20p&acking
among individuals. For example, understanding the e ects oflata. For example, in the case of animals, such states include
social interactions of animals on movement ecology has beepatial location and a behavioral mode such as migrating or
highlighted as a key research questiétags et al., 20)6Data  foraging Patterson et al., 200.8An approach of potential use for
from proximity tags recording the proximity and duration of animal movement is where kernel density estimation was used
encounters between tagged animals and captured via downloal estimate the probability that an individual will be at a giv
to networks of radio (seRutz et al., 201)2or acoustic Holland  location at a speci ¢ time in the future, by using both spatial
et al.,, 2009; Lidgard et al., 2Q1receivers, can be used to and temporal information via multiple kernel functions derive
map network topologies. Such maps will allow the depictiorfrom smartphone data§o et al., 201p Although machine
of social interactions among animals and show how culturalearning approaches are already used in animal movement
information di uses and diversi es in societies of wild anifsa studies, they are usually limited by the familiar problem of
(Rutz et al., 2012 At present, limitations of the technology low sample size. Pooling of data among studies may provide
restrict the use of these tags to animals that live in smalugs the information required to apply these data-hungry technigiue
(10s of individuals) and move over limited ranges (10s of km)to investigate patterns at population and community scales.
but miniaturization of the technology and declining costeam  Advances will be required to deal with the datasets Geevn
that this approach will become increasingly popular and coulc:t al., 201Bprovided by acceleration and magnetometer sensors
eventually lead to the application of the technology to entirenow coupled with GPS in animal-borne tags, which provide an
local populations [{rause et al., 20)3In turn, this will allow opportunity to retrieve valuable insights on the links betwee
an understanding of social structure at the level of populaionanimal condition, behavior, and movement and the envirommne
(Krause et al., 20)3Depending on how we de ne an encounter, (Goto et al., 201)7 This process has already commenced in
or association between individuals, a network approach cbeld studies of human mobility where machine-learning algorithm
applied to these data to identify associations among and withiapplied to data from mobile devices customizes their services
communities and species, such as predator-prey relationship®. the needs and circumstances of each individual and across
This goal is considered a critical next step in animal movetme many individuals to yield individualized assessments ofiition
ecology Hussey et al., 2015; Kays et al., 2015 (Jordan and Mitchell, 2035 A related approach to machine
learning, known as the “inverse problem” approach calculates
the causal factors from a set of observations. For example, tim
Development of Machine Learning series bq;:g[a k:ecolgded by Zigh re(sjolutiondci;]PS Iﬁggers.aﬂache
. to seabirds has been used to understand how the environment
Algorlthms_ to Understand a?d_ " ) impacts movement by simultaneously estimating navigational
Characterize Patterns from “Big” Animal decision making (the animal heading) and the in uence of
Movement Data external factors (ocean winds) on their ight patterrisgto et al.,
A bene t of “big datd approaches is the increased opportunity 2017. These approaches applied to big data sets would allow for
to apply machine learning algorithms to learn from data inan understanding of navigational decision making acrossigea
order to formulate predictions or classify subjects of anialys of species and a range of environmental factors such as wind,
Such methods have already been used widely in the stuayrrents and other oceanographic drivers.
of animal movement, particularly where the goal has been to
categorize a set of data inputs into groups. Some examples . L .
include categorizing the di erent behaviors in diving prose Advanced Visualization Techniques for
of aquatic animals from time-depth recorder$dhreer and Complex Datasets of Movement
Testa, 1995; Schreer et al., 2001; Thums et al.,)Z0@Bfrom  Visualization of human mobility data is a major challenge
accelerometry data\atanabe et al., 2005; Sakamoto et albecause it requires access to appropriate computational tools f
2009; Nielsen et al.,, 2010; Nathan et al., 20Comparable displaying the large amounts of location and sensor data and
applications exist in studies of human behavior categorizédgs associated attributes of the physical and biological enviremnt.
data from accelerometers in wearable devices and smartghon€his problem is particularly acute in the study of community
(Casale et al., 2011; Kwapisz et al., J0Hdwever, the power of networks of human mobility Giannotti et al.,, 201l For
machine learning approaches increases sharply with the volunexample, advanced analytical approaches are yielding a number
of available data, which has grown to be orders-of-magmtudof supporting tools to visualize and analyze massive datasets
greater for human subjects than for any other animal species. human trajectories in order to classify places as home, work or
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locations of social activitieg\(drienko et al., 201%and identify ~ open-access data repositories as a resource for the research
hotspots of other activitiesShen et al., 20)5A number of these community, as is now the case in many elds of biology such
advanced tools are now freely available and could be used &s geneticsMount, 2004, must be a critical priority for all
further our understanding of animal movement patterns. Forgrant agencies, government institutions and commercisities
example, software such as the Wireless Rope has been develofted invest in this type of research. Some progress is how being
to allow the real-time and dynamic visualization of devicesnade on this issue with journals that are the primary outlets
connected by Bluetooth links\(colai et al., 2006 In turn, this  of this type of research insisting that data sets on whichltesu
allows examination of interactions among the subjectsyéag  are based also be published online (e.g., Nature), mostheudlri
these devices. Similarly, MAPMOLTY (MAPping MOhbility by e orts to address the current crisis of reproducibility of
loyalTY) is a web-based visualization tool that uses humaresults. Although initiatives such as Movebank may shift the
mobility data and a set of points of interest to compute a numbereld toward an open access model, such a global, one-size-
of quantitative indicators that show the loyalty of humares t ts-all storage facility may be dicult to manage in the long
these points and to depict such relationships on a mépI(ira  term and perhaps regional data repositories such as ZoaTrack
et al., 2011 ImMens also supports interactive visual exploration(Dwyer et al., 205 may be less challenging to implement
of large datasets including geographical informatiani(et al., (Campbell et al., 2007In the latter, data become open access
20193, while GLEAMviz {/an den Broeck et al., 20l ers  after an initial moratorium period. Such an approach has also
an environment to simulate models of spread of disease ibeen successful for the Integrated Marine Observing System
combination with integrated mobility patterns of humans.eusf  (IMOS) Animal Tracking Database (http://imos.org.au/féais/
the latter program is not just con ned to the study of diseasda animaltracking/). Open access datasets need to be coupléd wit
could be applied to animal movement. All of these visualizatio appropriate, standardized metadata providing the important
tools (see also: http://www.creativeblog.com/desigristolata- contextual information on the tracking date&Cémpbell et al.,
visualization-712402) developed to visualize and analyseahu 2016. For example, details of the season, sex and maturity
movement data o er ecologists a means to make sense efatus of the animal tracked and details of the type of tag and
increasingly large and complex datasets provided both by thies program (e.g., duty cycles, etc.) should be included. Also
sensors contained in modern tracking devices and the grgwinimportant is the need to include details on the data processing
datasets that have tagged multiple individuals and speciesscr and provide access to the raw datasets. Such constraints &re no
a range of life history stages. trivial and databases will need careful consideration of how t
standardize the collection of such data in order to provide th

context needed to facilitate big data analyses, withoutlikisag
CHALLENGES OF THE BIG DATA onerous to data owners&ampbell et al. (201)rovides details
APPROACH TO ANIMAL TRACKING of the data reporting standards that should be implemented

for data collected by animal borne telemetry devices. Hanev
Although there has been signi cant progress on the synthesisuch challenges are not unique to ecology and standardized,
of some of the larger animal tracking data sets (e.g., TOPRachine readable meta-data software (e.g., Morpho) miglgtass
Block et al., 2011; Sequeira et al., in pyefor the most part, here Hampton et al., 2013 Hampton et al. (2013provide an
these data do not reside in repositories that are open to thimformative list of action items for ecologists to ensureeith
general scientic community, even after publication. A lackdata endure for future big data analyses aRd aelli et al.
of easy access complicates and hinders any attempt to seafed14)provide lessons to be learnt from previous attempts to
for general patterns in animal movement and document largeanalyse and organize big data for ecology. Open access degabas
scale movement patterns. This major impediment to researcbombined with the availability of supercomputing resources
is well-recognized Gampbell et al., 2007; Rutz and Hays,through cloud computing services such as Amazon Web services
2009; Hays, 2014; Hussey et al., 2015; Kays et al.) a8t and others will make big data analyses more accessible tgex lar
some attempts have been made to rectify it, notably througlbommunity of researchers.
initiatives such as Movebank/(kelski and Kays, 20)0(see The amount of accessible digital data and the ease by which
Campbell et al., 201for a full list of repositories), however it can be collected on nearly any aspect of human activity
they do not provide open access to data. In addition, thesbas shifted research from a theory and hypothesis-led basis to
data facilities are almost invariably focused on one grofip cone that is data-driven. These approaches are not necessarily
animals (in the case of Movebank, birds) and thus represerihcompatible Emalheiser, 200and need not represent a threat
only a small fraction of existing data. The opportunity to seeko the study of animal movement ecology. Big data can be
and explore general patterns and underlying principles in atimaused to formulate new hypotheses that could not be tested
movement is consequently limited to the taxa contained inn the past due to lack of data or conceptual constraints
the database. Clearly, open access to tracking data repsessenimposed by dominant paradigms. Importantly, big data analyses
major bottleneck to the advance of animal movement ecologgould uncover patterns and relationships in the data leading t
and to the realization of the full value of the investment indiscoveries of behaviors previously unknown or perhaps even
time and money that many thousands of individual researshercontemplated, a situation likely where many of the animal
and institutions have made in collecting these data over theubjects that we study have sensory systems so divergent from
last decades. Development of a culture to deposit the data imur own and are thus likely to perceive the environment in
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a manner very dierent to our experience (e.g., echolocatingstimation of new metrics that describe movement patterns.
animals). These developments will catalyze progress by enabling the
search for common or analogous mechanisms that describe
the ways in which animals move and use their environments,
ROADMAP as well as identifying impacts and disruptions to patterns of
animal movement by both natural and anthropogenic threats
We have identied a number of approaches from studies ofand teleconnections in animal movement at global scales.
human mobility that could increase the progress of research oMost importantly, because animals perceive their environments
animal movement. In order to attain the same rates of advancthrough sensory systems that are often very di erent fromg@o
achieved by studies of human mobility, it is imperative thatof humans, the analysis of big data o ers the opportunity to
data that already exists is gathered in central repositaies search for and identify patterns within animal movement data
made freely available to researchers. Data sharing carhim/ad  sets for which we are e ectively “blind,” yet may be critical i
through collaborations of researchers across locatiodsabject  organizing the ecology and behavior of these species.
areas, but also by funders (governments, NGOs etc.) and Research on human mobility initially borrowed analytical
scienti ¢ journals insisting that the data supporting publitms  techniques developed for the study of animal mobility
are uploaded to public-access repositories accompanied Wyiswanathan et al., 1996 This process has now begun to
appropriate meta-data. There has been a ground-swell of suppariove in a full circle, through the application of new techniques
for this initiative across the research community inteegsin  developed for or applied to the analysis and visualizationrgda
animal movement. This will also attract the communitiesttha data sets of human mobility to animal models. In many ways,
have catalyzed the development of human mobility studieshe data now available from the latest generations of antags
notably computer and data scientists and scientists workingre very similar to that recorded by smart devices now being
within the complex-system paradigm, to help propel the eld ofworn by humans. New smartwatches include an accelerometer,
animal movement forward. thermometer, heart rate monitor, altimeter, barometenngass,
Beyond the insights into patterns of movement of animalschronograph, cell phone and GPS navigation, an almost idahtic
that might be gained from a transfer of analytical techniquesange of sensors to those deployed on the “daily diary” tags
between the research communities involved with humarused to reveal animal behaviors such as foraging, restinlg an
mobility and animal movement, an integration of human and migrating. The signi cance of being able to passively obtsta
animal movement will help deliver more e ective conservatio on the habits of millions of users from these new technologies
and management options, as these are critically dependent dras already been recognizedinapisz et al., 20)1Perhaps the
interactions between humans and wildlife. This is necgssamajor di erence between tags that track animals and the smart
because patterns of human mobility have a direct relatigmghi  devices that now track humans is the fact that animals must be
many of the anthropogenic threats faced by animal populationsaught and restrained to have a tag tted, whereas humansg wea
worldwide (Meekan et al., 20)7 For example, road Kills such devices voluntarily and typically pay for the privilege ¢o d
(Clevenger et al., 20pand ship-strike Elvin and Taggart, 2008; so. The convergence between these technologies emphdszes t
Silber et al., 20)50se major risks to the conservation of many possibilities for cross-fertilization and collaboratioativeen the
animals throughout the world, and the infrastructure deptdy research elds of animal movement and human mobility. Given
to support human mobility, including train and road lines and the concerns about the conservation future of large wild aisn
cities and harbors, also fragment animal habitats(Bohemen, the cross-fertilization and collaboration advocated hare not
1999. Indeed, to identify possible human-animal interactionsonly necessary to catalyze scienti c advances, but ulgigat
and to better inform conservation strategies, data on humamn imperative for e ective conservation and survival of many
presence in the environment also needs to be integrated witAnimals, since the principal threats to their existence now are
animal tracking data. Just as data on human mobility weréargely anthropogenic.
a fundamental underpinning of developments such as “smart-
cities” where electronic developments were used to improee ttAUTHOR CONTRIBUTIONS
decision-making process by engaging citizens with demiacrat
activities Paskaleva, 20))9data on animal movement can CD conceived of the idea. MT, AMMS, CD, and VE obtained the
potentially aid the construction of “smart-environmentshere ~ seed funding to bring the group together to draft the manustcr
a better understanding of movement patterns of both humandT led the writing with contributions from all authors.
and wildlife would assist conservation and management pgregnn
both interactively and in the long-term\{eekan et al., 20)7 FUNDING
The opportunity to accelerate progress in animal movement
ecology based on approaches used in human mobility studigsMMS was supported by an ARC Grant DE170100841 and an
will require the development of supporting infrastructure andlIOMRC (UWA, AIMS, CSIRO) fellowship. JF-G and VE were
communities. Once quality-controlled data are availahletigh  supported by Agencia Estatal de Investigacion (AEl, Spain) and
the use of open repositories, analysis code developed on opEondo Europeo de Desarrollo Regional (FEDER) through project
platforms such as RR Core Team, 20)7and web-based SPASIMM (FIS2016-80067-P AEI/FEDER, UE), and by research
visualization and analytical resources can be written fog t funding from KAUST.
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