Supplementary Information

Giant photoresponse in quantized SrRuO$_3$ monolayer at oxide interfaces

Heng-Jui Liu,† Jing-Ching Wang,‡ Deok-Yong Cho,§ Kang-Ting Ho,|| Jheng-Cyuan Lin,¥ Bo-Chao Huang,¥ Yue-Wen Fang,£¤ Yuan-Min Zhu,§# Qian Zhan,¶ Lin Xie,∆$, Xiao-Qing Pan,§◊ Ya-Ping Chiu,‡,¥,┴ Chun-Gang Duan,£ Jr-Hau He,|| Ying-Hao Chu¥,○,*

†Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
‡Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
§IPIT & Department of Physics, Chonbuk National University, Jeonju 54896, Republic of Korea.
||Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
¥Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
£Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China.
¤Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan.
§Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
#National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
¶National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
$Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
◊Department of Physics and Astronomy, University of California-Irvine, CA 92697, USA
┴Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
○Department of Materials Science and Engineering, National Chiao Tung University
Hsinchu 30010, Taiwan.

KEYWORDS: SrRuO$_3$ monolayer, Complex oxide heterostructures, Photoresponse, Optoelectronics, interface engineering

Corresponding Author

*E-mail: yhc@nctu.edu.tw (Y.H.C.). Phone: +886-972-781-386

Author contributions

H.J.L. and J.C.W. contributed equally.

Number of pages: 4
Number of figures: 2
Supplementary Figures. S1-S2

Figure S1. The fitting results of Ru $4d - O\,2p$ and Ti $3d - O\,2p$ hybridizations for both the (a) SRO monolayer and (b) bulk SRO thin film heterostructures across the XAS spectra of O K edge. The nearly the same peak positions of these hybridizations suggest no oxygen deficiency occurring at the RuO$_2$ plane in the SRO monolayer and the neighboring TiO$_2$ planes inside the substrate.
Figure S2. The I-V curves for (a) STO/SRO/STO, (b) LAO/SRO/STO, (c) LAO/100 u.c. SRO/STO, (d) LAO/STO (2DEG). Both (a) and (b) are constructed by the semiconducting SRO monolayer, which can show a large increment of current under ultraviolet light illumination with the power density of 0.5 mW/cm2. Both (c) and (d) are the control group that are highly conductive at interface between capping layer and STO substrate, which have no obvious photocurrent under the same illumination environment. Such the comparison indicates that a large photoresponse can be indeed originated by the SRO monolayer inserted at the interface of the oxide heterostructures.