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Abstract: Wavefront sensors and more general phase retrieval methods have recently attracted
a lot of attention in a host of application domains, ranging from astronomy to scientific imaging
and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor,
which provides high spatio-temporal resolution using a simple masked sensor under white light
illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better
than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new
applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
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1. Introduction

Wavefront sensing and phase retrieval are two closely related tasks that find applications in a
wide range of fields. The classical Shack-Hartmann Wavefront Sensor [1] is commonly used in
astronomy and ophthalmology. As a first-order method that tracks the 2D motion of focus spots
generated by a lenslet array, the Shack-Hartmann sensor o�ers high frame rates, but su�ers from
low spatial resolution, corresponding to the number of sub-apertures rather than the number of
pixels in the image sensor. While the spatial resolution can be improved by reducing the number
of pixels per sub-aperture, e.g. to 2 × 2 pixels per lenslet as in the Altair adaptive optics system
for Gemini [2], this comes at the cost of reduced range, such that large distortions can not be
measured. Similar tradeo�s exist for other designs, including the pyramid wavefront sensor [3]
and its variant [4], and the Hartmann wavefront sensor [5].

Better accuracy and higher spatial resolution can be achieved with Curvature Wavefront
Sensors [6], and closely related phase retrieval methods developed recently in microscopy [7, 8].
These methods are based on inverting the Transport of Intensity Equation (TIE) [9], which
requires phase diversity, i.e. multiple image measurements along the optical axis. TIE has been
extensively investigated [10], and proves to be e�ective and accurate approach for wavefront
sensing. However, the requirement for phase diversity makes it di�cult to design snapshot-
capable systems that can image fast-moving dynamic phenomena.

In this paper, we propose a novel first-order wavefront sensor named Coded Wavefront Sensor.
By placing a binary mask in close proximity of a camera sensor, one can numerically decode
the wavefront from the apparent motion of the di�raction patterns. Our work is closely related
to the sampling field sensor [11] and the quadri-wave lateral shearing interferometer wavefront
sensor [12], but o�ers full sensor resolution under both coherent and incoherent illumination.
Compared to the classical Shack-Hartmann wavefront sensor, the Coded Wavefront Sensor o�ers
much higher pixel utilization and full sensor resolution reconstruction, overcoming the trade-o�

between spatial resolution and range. Specifically, the Coded Wavefront Sensor o�ers the ability
to measure large distortions with high spatial resolution. Compared to TIE-based methods, the
Coded Wavefront Sensor does not require phase diversity, works with both monochromatic
and polychromatic illumination, is simple to build, and o�ers much faster reconstruction than
video-rates. It is therefore highly suitable for imaging dynamic deformations of the wavefront.

2. Principle

A schematic of Coded Wavefront Sensor is shown in Fig. 1. A uniform random binary mask is
placed closely (for instance, distance z ≈ 1:5 mm) in front of a bare image sensor. For calibration,
the Coded Wavefront Sensor is illuminated by a planar wavefront, and the corresponding
di�raction pattern of the mask on the image sensor is recorded. During measurement, distortions
of the wavefront result in localized di�raction pattern displacements (small arrows in Fig. 1(b)),
which can be tracked and used to measure the wavefront at the full resolution of the image sensor.

To model the principle of the Coded Wavefront Sensor, we denote the scalar field at the
mask plane and the sensor plane as u0(r) and uz (r) respectively, where r = (x ; y) denotes a
coordinate point on the 2D plane. The original scalar field u0(r) is the product of the mask transfer
function p0(r) and the scalar optical field exp[j�(r)], where �(r) is the distorted wavefront under
investigation.
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Fig. 1. Schematic of the Coded Wavefront Sensor. (a) A simple calibration is performed
by capturing the di�raction pattern of a planar wavefront, namely the reference image. (b)
By just recording the di�raction pattern of a distorted wavefront (i.e. the measurement
image) and compare it to the reference image captured in (a), the distorted wavefront can be
reconstructed. Small arrows indicate local distortion directions.

For mask functions p0(r) with small feature sizes, the e�ect of di�raction must be considered,
whereas for low frequency wavefront �(r), one may simply employ ray optics. Under proper
approximation conditions, in the Appendix we show:

uz (r) ≈ exp[j�(r)]pz (r − (z=k)∇�(r)) ; (1)

where k = 2�=� is the wave number for wavelength �, and pz (r) is the di�raction field of p0(r)
under collimated illumination.

Denoting the calibration (reference) image and the measurement image as I0(r) and I (r),
given I0(r) = |pz (r) |2, the measurement image I (r) is shifted relative to I0(r) by a point-wise
apparent motion proportional to the wavefront slope ∇�(r):

I (r) = I0 (r − (z=k)∇�(r)) : (2)

Eq. (2) highlights the underlying principle of our Coded Wavefront Sensor: the distorted wave-
front results in apparent motion of the di�raction pattern, assuming no scintillation. Note that
the apparent motion is irrelevant to the wave number k if we consider the distorted wavefront
�(r) = ko(r) with optical path o(r), which means the Coded Wavefront Sensor allows for
broadband illumination.

However, Eq. (2) is nonlinear. To retrieve �(r) from I0(r) and I (r), one may iteratively solve a
linearized version of Eq. (2). At each step, the linearized version of Eq. (2) leads to the following
formula, which is the basis for the so-called optical flow methods in computer vision [13]:

z
k
∇�(r) · ∇I0(r) + I (r) − I0(r) = 0; (3)

where · denotes inner product. Note that the linearization is iteratively updated during the opti-
mization, so that our model overall remains non-linear. A few numbers of iterative linearization
su�ces.

Compared to TIE that requires axial phase diversity, our model needs no z-direction displace-
ments, because the distorted wavefront results in local transverse motion of the di�raction pattern.
Our model Eq. (2) is nonlinear, involving first-order terms of the wavefront, whereas TIE is a
linear model that employs second-order terms. Finally, in terms of optical path, Eq. (2) permits
white light illumination, whereas TIE only allows for coherent or partially coherent illumination.
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2.1. Sensor performance

The wavefront slope is determined by the following relationship:

∇� = a
2�ds

�z
; (4)

where ds is the sensor pixel size, and a is the amount of apparent motion measured in numbers
of pixels. For a given tracking algorithm to solve Eq. (2), a limits itself to a certain range, e.g.
a ∈ [amin amax]. The sensitivity (or, the accuracy) of the sensor depends on amin, whereas the
dynamic range depends on amax.

Denoting the local wavefront radius as R, one of the approximation made in deriving Eq. (1)
requires (see Appendix):

z
k
∇2�(r) =

z
R
≈ 0; (5)

which indicates R � z. For a given distance z, Eq. (5) can be used to estimate the maximum
curvature 1=R that can be measured by our sensor.

2.2. Numerical solver

While the purpose of the Coded Wavefront Sensor is to estimate �(r) from I0(r) and I (r),
standard optical flow methods seek to reconstruct the per-pixel apparent motion vectors between
the reference image and measurement image, i.e. the gradient of the phase function. Instead of
using standard optical flow algorithms like Horn-Schunck [13], we therefore devise our own
reconstruction model that directly solves for the phase function itself and regularizes the apparent
motion to be curl free.

Define the unknown wavefront as �, the image gradient field as (gx ; gy ) = ∇I0(r), and a
“time” derivative gt = I (r)− I0(r), at each linearisation, the reconstruction problem is formulated
as:

minimize
�

‖GM∇� + gt ‖
2
2 + � ‖∇�‖22 ; (6)

where G = [diag(gx ) diag(gy )] is a concatenated diagonal matrix with the image derivatives on
the diagonal, and M is a binary diagonal matrix that selects only the M visible pixels from the N
wavefront samples that a�ect the measurement, for direction x and y respectively.

Like existing optical flow methods, Eq. (6) contains both a “photoconsistency” term (first
term) that describes the apparent motion of the pattern in the image plane, and a smoothness
regularization term (second term), which is controlled with an additional parameter � > 0. With
a smoothness regularizer added directly to the phase function, Alternating Direction Method of
Multipliers (ADMM) [15] is used to solve this optimization problem, where each updating step
involves either element-wise operations or fast Fourier transforms (FFT), and hence is naturally
parallelizable.

3. Implementation

3.1. Hardware

Our prototype Coded Wavefront Sensor (see Fig. 4) exploits a uniformly random binary mask
pattern, and a GS3-U3-14S5M-C PointGrey monochromatic 2=300 CCD sensor with a pixel
pitch of 6:45 µm. The mask is placed on top of the bare sensor, with a spacing of approximately
1:5 mm. The binary mask is fabricated using photolithography in a chrome layer deposited on a
400 Fused Silica wafer, with a pixel pitch of 12:9 µm.
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3.2. Software

Our GPU version is implemented in CUDA, and the CuFFT library is used for all the involved
FFT operations, which are the most time-consuming parts. To make the best utilization of CuFFT,
the unknown width and height are set to be the powers of small primes, e.g. two or three.

4. Results

In this section the results are presented, including the synthetic ones in simulation, the experimen-
tal validation using a Spatial Light Modulator (SLM), and the realistic wavefront visualization of
heat flow and defocusing.

All numerical experiments are run with a fixed regularization parameter. Both the CPU and
GPU version of our algorithm are run on a workstation that has 125:8 GB RAM, exploits Intel
Xeon E5-2697V3 @2:60 GHz×16 as CPU, and GeForce GTX TITAN X (Pascal) as GPU, with
a Ubuntu 14.04 Linux as operating system.

4.1. Simulation

We have conducted two simulations to investigate the sensitivity and accuracy of the Coded
Wavefront Sensor. In the simulations, the illumination is monochromatic (as of � = 550 nm).
The overall aperture size equals 6:6 mm × 6:6 mm with sensor and mask pixel pitch be 6:45 µm
and 12:9 µm respectively. The scalar field of interest is sampled with 1:29 µm. Gaussian noise
is added and the image signal-to-noise-ratio (SNR) equals 40 dB. The wave propagation is
simulated using the angular spectrum method [16] with filtering [17] to suppress high frequency
artifacts.

The first numerical experiment evaluates the dynamic range of our sensor. A planar wave (i.e.
the reference), and sixteen di�erent scales of spherical waves are simulated at the mask plane,
respectively, for five di�erent distances z. The reference image, and sixteen measurement images
are consequently recorded at the sensor plane. Figure 2 shows the wavefront reconstruction
error (in terms of root mean square, RMS) our sensor can attain, providing the fixed curvature
wavefronts that progressively violate Eq. (2). With the increase of wavefront range, the decrease
of accuracy can be partially explained by the approximations made to derive Eq. (1).

Figure 3 shows the second numerical experiment, where we evaluate the performance of
our sensor by sensing typical atmospheric turbulence. The same turbulence is evaluated at
di�erent scales. The synthetic atmospheric turbulence respects the Kolmogorov’s theory, and is
implemented using the sub-harmonic method [18]. The outer scale and inner scale of the base
turbulence are set to be 4 m and 1 mm respectively. The mask-to-sensor distance z = 1:5 mm.
The result indicates the possibility to apply our sensor for atmospheric turbulence measurement.

4.2. Quantitative experimental demonstration

We also evaluated the accuracy of Coded Wavefront Sensor by using it to measure known
wavefronts. The experimental setup is shown in Fig. 4. The di�erent target wavefronts are
generated using a reflective LCoS-based SLM, the PLUTO SLM by HOLOEYE, whose pixel
pitch is 8:0 µm, and the maximum phase retardation of 2�. We use phase wrapping to simulate
larger phase retardations. This introduces higher di�raction orders in the synthesized waveforms,
which are detected by the Coded Wavefront Sensor and show up as noisy structures in Fig. 5.
This limits the experiments to small and medium distortions. We used di�erent scales of cubic
wavefronts, spherical wavefronts, customized wavefronts, and Zernike single-mode wavefronts
as ground-truth targets.

A distant, white point light source is used as collimated illumination. A polarizer is placed
in the optical path to produce linearly polarized illumination, which is required for the SLM
to operate as a pure phase modulator. Behind the beamsplitter, a Kepler telescope structure is
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Fig. 2. Accuracy experiments. Top left shows the reconstruction error in RMS for di�erent
wavefront range (Peak-to-Valley) for di�erent z. Specifically, results of three wavefront
range spherical waves are shown when z = 1 mm. To visualize the di�erence between the
measurement and the reference, the logarithm of their substraction are shown as inset.
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Fig. 3. Synthetic atmospheric turbulence. Most left shows the reconstruction RMS versus
the turbulence RMS. Specifically, one scale of the turbulence is shown on the right.

imposed to ensure the SLM and our wavefront sensor are in conjugate planes, so the distorted
wavefront measured by Coded Wavefront Sensor is the one produced by the SLM. In our setup,
the Kepler telescope is composed of two lenses, with focus length f1 = 100 mm and f2 = 75 mm
respectively. The sensor exposure time is set to be 5 ms at both the calibration step and the
measurement step.

Selected experimental results for several di�erent megapixel (1024 × 1024) wavefront shapes
are visualized in Fig. 5 as synthetic interferograms (one interference ring equals � = 632:8 nm).
The typical mean absolute phase error is below 50 nm, and is slightly larger than the ones in
the simulation. We believe that the quantization and phase wrapping in the SLM that we use to
generate the distortion are introducing extra errors. The ground truth wavefront is not really the
actual wavefront distortion for that reason, and the isocontours in the recovered wavefront can be
clearly seen. The RMS for all the experimental wavefronts are listed in Table 1, where for most
wavefronts the reconstruction error is below 0.1 wavelengths.

We achieve a reconstruction speed of up to 50 frames per second, i.e. 50 million individual
phase measurements per second. It is possible to increase the frame rate by sacrificing spatial
resolution. Further improvements in speed should be possible through numerical strategies such
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Fig. 4. Experimental setup for accuracy validation. Under collimated incoherent illumination
from a white light source, the SLM generates a known distorted wavefront, which is then
captured by our Coded Wavefront Sensor in the conjugate plane.

as “warm starting”, i.e. initializing the solution for one frame with the solution from the previous
frame.

For reference, the GPU timing performance for di�erent wavefront resolutions is in Table 2. All
the timing experiments were run repeatedly for 1000 times, and the average is chosen as the final
timing statistics. Our CUDA GPU version greatly improves the timing performance, compared to
the CPU version that is implemented in MATLAB. For example, the average computing time for
N = 1024 × 1024 is 2:00 s in the CPU version, over which our GPU implementation achieves
∼ 102 times speedup. For one megapixel wavefront resolution, we have achieved wavefront
reconstruction speed as 51 Hz, which is much beyond real-time performance.

Table 1. Reconstruction error for all experimental wavefronts, where � = 632:8 nm.
Label Range (in �) RMS (in �) Label Range (in �) RMS (in �)

Cubic #1 0.35 0.05 Spherical #1 0.43 0.03
Cubic #2 0.69 0.03 Spherical #2 0.86 0.06
Cubic #3 1.19 0.04 Spherical #3 1.28 0.07
Cubic #4 1.90 0.06 Spherical #4 1.71 0.05
Cubic #5 2.83 0.05 Spherical #5 2.14 0.05
Cubic #6 4.03 0.08 Spherical #6 2.57 0.07
Cubic #7 5.53 0.13 Spherical #7 2.99 0.09

Zernike m2 #1 1.52 0.09 Spherical #8 3.42 0.12
Zernike m2 #2 3.04 0.08 Spherical #9 3.85 0.11
Zernike m2 #3 6.07 0.08 Zernike m5 #1 1.15 0.04
Zernike m3 #1 1.52 0.05 Zernike m5 #2 2.32 0.07
Zernike m3 #2 3.04 0.07 Zernike m5 #3 4.64 0.08
Zernike m3 #3 6.07 0.11 Zernike m6 #1 0.58 0.04
Zernike m4 #1 1.16 0.05 Zernike m6 #2 1.16 0.03
Zernike m4 #2 2.32 0.07 Zernike m6 #3 2.32 0.08
Zernike m4 #3 4.64 0.15 Customized #1 2.19 0.09
Customized #2 4.38 0.06 Customized #3 6.56 0.17
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Fig. 5. Selected experimental results. The ground truth wavefronts, our reconstructed wave-
fronts, and the wavefront errors are shown. The wavefronts are shown in interference fringes
where one fringe maps to wavefront di�erence of � = 632:8 nm. Scale bar is 1 mm.

Table 2. Timing performance of our GPU implementation for solving Eq. (3).
Unknown size Performance
1024 × 1024 19:5 ms / 51:2 frames/s
1024 × 768 15:2 ms / 65:6 frames/s
640 × 480 11:0 ms / 91:2 frames/s
512 × 512 5:8 ms / 173:3 frames/s
256 × 256 3:0 ms / 339:0 frames/s
128 × 128 2:2 ms / 460:8 frames/s

4.3. Realistic wavefront imaging

We also visualized two realistic wavefronts, the ones created by heat flow and defocusing, using
the Coded Wavefront Sensor. The heat flow is generated using a lighter, and defocus is achieved
by manually moving a convex lens back and forth. To increase the field-of-view for better
visualization, we employed a telescope system for wavefront magnification, with a ratio of two.
All the measurement images were captured and the wavefronts were reconstructed on GPU in
real-time. Please see Visualization 1 for the experimental setup, the whole captured data and
the reconstructed wavefronts. Here, two frames are chosen to be shown in Fig. 6, with their
reconstructed wavefronts in interference fringes respectively.

5. Discussion

The Coded Wavefront Sensor is related to a number of other imaging systems and designs. Just
like the Shack-Hartmann sensor can be interpreted as a combination of a lenslet-based light
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Fig. 6. Wavefront visualization of the heat flow and the defocusing. The setup diagrams are
simplified versions of the real situations. See Visualization 1 for full experimental details.
Scale bar is 2 mm.

field camera [19] and 2D spot tracking software, our sensor can be seen as a combination of
a mask-based light field camera [20, 21] with a more sophisticated dense 2D motion tracking
method. The Coded Wavefront Sensor also bears similarity to Background Oriented Schlieren
(BOS) imaging [22], but with the patterned “background” moved into the camera for a compact
form factor.

The design of the Coded Wavefront Senors allows it to be used as a drop-in replacement for
any optical system currently using a Shack-Hartmann sensor, with an immediate gain in spatial
resolution. In addition, we believe it can also be incorporated into optical systems configured
for phase retrieval problems, including in microscopy. Since there is no need for phase diversity
and coherent illumination, such an adaptation should in fact be easier than many existing phase
retrieval setups. We will explore these applications in future works.

Several other extensions in both applications and usage are also conceivable in the future. The
calibration or reference image does not always need to correspond to plane wave illumination,
but could be a pre-distorted wavefront. For example when characterizing freeform lenses, a
known ground-truth lens can be used to form the reference image, and the Coded Wavefront
Sensor can then be used to characterize the di�erence between the reference lens and another
lens.

For the accuracy of the Coded Wavefront Sensors it is necessary that the mask produces a
locally distinctive di�raction pattern on the image sensor. To facilitate this process, the mask
could be custom-designed (instead of random) to produce a specific di�raction pattern such
as wavelet noise [23]. It should also be possible to use grayscale masks or even random phase
gratings as an alternative to the binary masks employed in this work.

6. Conclusion

In conclusion, we introduce the Coded Wavefront Sensor, a novel sensor design that is physically
implemented by a single binary masked sensor to encode the incoming wavefront, and is
numerically implemented by an e�cient optimization decoding algorithm, such that wavefront
reconstruction with high spatio-temporal resolution is achieved within sub-wavelength accuracy.
The theoretical principle behind Coded Wavefront Sensors o�ers a new approach to the wavefront
sensing problem, namely the direct 2D tracking of di�raction patterns.
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Appendix

Our mathematical model is based on modifications and simplification of the Green’s function
model by Teague [9] (Appendix A.3). Consider a general scalar field u0(r) (where r = (x ; y)
denotes a coordinate point on a 2D plane of interest) with wave number k, on the mask plane:

u0(r) = f0(r)p0(r); (7)

where f0(r) = exp[j�(r)] is the scalar field corresponding to the wavefront �(r) that we want to
measure, and p0(r) is the transfer function of the mask. We assume:

• The mask p0(r) is of high frequency (in our case, it is uniformly random binary), whose
Fourier transform P0(�) (where � is the Fourier dual of r) is broadband.

• The wavefront �(r) is of low-frequency, and is second-order di�erentiable, and hence the
distorted scalar field f0(r) is smooth enough such that its spectrum is bandlimited, and
decays su�ciently close to zero in high frequency regions.

We now consider the wave propagation problem for small distance z. For a general mask
p0(r), the Fresnel approximation may not be valid, and the more general Huygens-Fresnel based
principle must be applied. Using the compact form of the Rayleigh-Sommerfeld di�raction
formula, and expand it in the Fourier domain, the di�ractive scalar field uz (r) is:

uz (r) = exp

2
666664jkz

 
1 +
∇2

k2

!1=23777775 u0(r)

=

Z
exp(j2�r · �) exp

�
jkz

�
1 − �2‖�‖22

�1=2
�
×

Z
P0(�0)F0(� − �0) d�0 d�

≈ exp(−jkz)
Z

exp(j2�r · �0) exp
�
jkz

�
1 − �2‖�0‖22

�1=2
�
×

Z
exp(j2�(r − �z�0) · �00) exp

�
jkz

�
1 − �2‖�00‖22

�1=2
�

F0(�00) d�00P0(�0) d�0

= exp(−jkz)
Z

exp(j2�r · �0) exp
�
jkz

�
1 − �2‖�0‖22

�1=2
�
×

P0(�0) exp

2
666664jkz

 
1 +
∇2

k2

!1=23777775 f0(r − �z�0) d�0 ; (8)

where the third equality of Eq. (8) results from the introduction of variable �00 = � − �0. And
the approximation step comes from:

�
1 − �2‖�‖22

�1=2
≈

�
1 − �2‖�0‖22

�1=2
+

�
1 − �2‖�00‖22

�1=2
− �2 �0 · �00 − 1; (9)

which holds for smooth wavefront F0(�00) with �2‖�00‖22 � 1. The last term in Eq. (8) is the
di�raction of f0(r − �z�0), for which the nth di�raction order [(z=k)∇2�(r)]n = (z=R)n ≈ 0
when local radius R � z. Also, a Taylor expansion of �(r − �z�0) up to second-order suggests:

�(r − �z�0) ≈ �(r) − �z�0 · ∇�(r) +
1
2
�z�0 ·

�
�z∇2�(r)

�
�0

= �(r) − �z�0 · ∇�(r) + ��z
z
R
‖�0‖22 : (10)

The linear approximation is reasonable when the second-order term approximates zero. It implies
a lower bound d�m for the mask pixel pitch dm , by the Nyquist Theorem that ‖�0‖22 ≤ 1=(4d2

m ):

dm � d�m =

r
��

R
·

z
2
: (11)
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In our prototype, dm = 12:9 µm and d�m ≈ 1 µm for R = 1 m. Given R � z and the valid linear
approximation of �(r), we approximate the last term in Eq. (8) as:

exp

2
666664jkz

 
1 +
∇2

k2

!1=23777775 f0(r − �z�0) ≈ exp(jkz) exp
�
j�(r)

�
exp

�
−j�z�0 · ∇�(r)

�
: (12)

Substituting Eq. (12) into Eq. (8), it yields:

uz (r) ≈ exp[j�(r)]pz (r − (z=k)∇�(r)); (13)

where pz (r − (z=k)∇�(r)) is the di�ractive scalar field of p0(r) at the sensor plane.
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