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ABSTRACT. In this article we study the principle of energy conservation for the Euler-Korteweg
system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the
Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum
Hydrodynamics.

1. INTRODUCTION

It is known since the works of Scheffer [30] and Shnirelmann [31] that weak solutions of the in-
compressible Euler equations exhibit behaviour very different to that of classical solutions. These
"wild solutions", as they are called since the seminal works of DeLellis and Székelyhidi [12, 13],
are often highly unphysical - for instance there is a lack of uniqueness and the principle of conser-
vation of energy can be violated.

Dissipative solutions of incompressible Euler have been extensively studied in relation to the
seminal Onsager conjecture [29]. It states that there is a threshold regularity, namely 1

3 -Hölder
continuity, above which kinetic energy must be conserved, and below which anomalous dissipa-
tion might occur. This conjecture has been recently fully resolved, with non-conservative solutions
of class C ([0,T ];C

1
3−(T3)) constructed by Isett [25]. See also [5] and [26] for further develop-

ments on the subject.
The positive direction of Onsager’s conjecture has been settled already in the 1990’s by Con-

stantin et al. [11] (after a partial result of Eyink [19]). The method of mollification and estima-
tion of commutator errors was employed to prove that, if a weak solution of the incompressible
Euler system belongs to u ∈ L3([0,T ],Bα,∞

3 (T3))∩C ([0,T ],L2(T3)) with α > 1
3 , then the en-

ergy ‖u‖L2(T3) is conserved in time. The method of proof as well as the observation that Besov
spaces provide a suitable environment for this kind of problem were later used by several au-
thors in the context of other systems of fluid dynamics: like inhomogeneous incompressible Euler
and compressible Euler [20], incompressible and compressible Navier-Stokes (resp. [17], [28]
and [16], [33]), incompressible magnetohydrodynamics [27], [6], and general systems of first or-
der conservation laws [24]. Onsager’s conjecture was recently studied for incompressible Euler
equations in bounded domains, cf. [3]. An overview of these results can be found in [14].

In the present paper we adapt the strategy of Constantin et al. [11] and Feireisl et al. [20] to ob-
tain an Onsager-type sufficient condition on the regularity of weak solutions to the Euler-Korteweg
equations so that they conserve the total energy. We consider the isothermal Euler-Korteweg sys-
tem in the from

∂t(ρu)+div(ρu⊗u) =−ρ∇

(
h′(ρ)+

κ ′(ρ)

2
|∇ρ|2−div(κ(ρ)∇ρ)

)
,

∂tρ +div(ρu) = 0,
(1.1)

in the domain (0,T )×Td for some fixed time T > 0, where Td is the d-dimensional torus. Here
ρ ≥ 0 is the scalar density of a fluid, u is its velocity, h = h(ρ) is the energy density and κ =

1
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κ(ρ)> 0 is the coefficient of capillarity. We place the assumption on the functions h and κ:

h,κ ∈ C 3(T ) (1.2)

where, depending on the actual form of h and κ , the set T can be chosen to be [0,∞) or (0,∞).
For instance when κ(ρ) = 1

ρ
, as for the QHD system below, then T = (0,∞) and we have to be

away from vacuum.
While the analysis of the above system dates back to the 19th century, when the mathematical

theory of phase interfaces and capillary effects was introduced, it still attracts much attention. A
modern derivation of the system can be found in [18]. Concerning smooth solutions: in [7] and [8]
local-in-time well-posedness and stability of special solutions are analysed, respectively. A rela-
tive energy identity is developed in [23], exploiting the variational structure of the system, and is
used to show that solutions of (1.1) converge to smooth solutions of the compressible Euler system
(before shock formation) in the vanishing capillarity limit κ → 0, see [22].

The situation with weak solutions is much less understood. Most results concern the Quan-
tum Hydrodynamics system, obtained from (1.1) when κ(ρ) =

ε2
0

4ρ
, with ε0 denoting the Planck

constant. This takes the form
∂tρ +div(ρu) = 0,

∂t(ρu)+div(ρu⊗u)+∇p(ρ) =
ε2

0
2

ρ∇

(
∆
√

ρ
√

ρ

)
.

(1.3)

The interesting connection between QHD and the Schroedinger equation is used in [21] to provide
conservative weak solutions for the special case of zero pressure, p(ρ) = 0. Existence of weak
solutions for a (relatively limited) class of pressure functions is provided in [1] and [2]. The
existence of wild solutions is possible for (1.1), as pointed out in the recent work Donatelli et
al. [15], where the method of "convex integration" is adapted to show non-uniqueness in the class
of dissipative global weak solutions.

The possibility of both conservative and dissipative solutions raises the issue of studying the
Onsager conjecture for the Euler-Korteweg system (1.1). We use Besov spaces Bα,∞

p (Ω), with
1≤ p < ∞, 0 < α < 1 (see section 2.1 for the definition) and prove the following theorem:

Theorem 1.1. Suppose that (1.2) holds. Let (ρ,u) be a solution of (1.1) in the sense of distribu-
tions. Assume

u ∈ (Bα,∞
3 ∩L∞)((0,T )×Td), ρ,∇ρ,∆ρ ∈ (Bβ ,∞

3 ∩L∞)((0,T )×Td), (1.4)

where 1 > α ≥ β > 0 such that min(2α +β ,α +2β )> 1.
Then the energy is locally conserved, i.e.∫ T

0

∫
Td

(
1
2

ρ|u|2 +h(ρ)+
1
2

κ(ρ)|∇ρ|2
)

∂tϕ dxdt

+
∫ T

0

∫
Td

(
ρu
(

1
2
|u|2 +h′(ρ)+

1
2

κ
′(ρ)|∇ρ|2−div(κ(ρ)∇ρ)

)
+κ(ρ)∇ρ div(ρu)

)
·∇ϕ dxdt = 0

holds for every ϕ ∈ C 1
c ((0,T )×Td).

Remark 1.2. (1) Notice that if α ≥ β , then 3α ≥ α +2β > 1 and so we must have α > 1
3 .

(2) If in addition we assume the following conditions on u and ρ

lim
|ξ |,τ→0

1
τ

∫ T

0

1
|ξ |

∫
Td
|u(t + τ,x+ξ )−u(t,x)|3dxdt = 0,
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lim
|ξ |,τ→0

1
τ

∫ T

0

1
|ξ |

∫
Td
|ρ(t + τ,x+ξ )−ρ(t,x)|3dxdt = 0,

then, as pointed out by Shvydkoy [32], see also Duchon and Robert [17], one can allow
for the case α = β = 1

3 . For details see e.g. Proposition 3 in [17].

The short proof of the main theorem is presented in the following section: it is preceded by
an outline of Besov spaces and their basic relevant properties, some preliminary material on the
structure of the Euler-Korteweg system, followed by he main part of the proof in section 2.3.

2. PROOF OF THE MAIN THEOREM

2.1. Besov Spaces. Let Ω = (0,T )×Td . The Besov space Bα,∞
p (Ω), with 1≤ p < ∞, 0 < α < 1,

is the space of functions w ∈ Lp for which the norm

‖w‖Bα,∞
p (Ω) := ‖w‖Lp(Ω)+ sup

r>0

{
r−α sup

|ξ |≤r
‖w(·+ξ )−w‖Lp(Ω∩(Ω−ξ ))

}
(2.1)

is finite, cf. [4]. In fact, we can replace the semi-norm in (2.1) with the following one

sup
ξ∈Ω

{
|ξ |−α‖w(·+ξ )−w‖Lp(Ω∩(Ω−ξ ))

}
. (2.2)

Indeed, if ξ ∗ and r∗ realize the suprema in (2.1) with |ξ ∗| < r∗, then taking |ξ ∗| < r < r∗ would
contradict the supremality of r∗. Therefore neccesarily |ξ ∗|= r∗, thus producing (2.2). We choose
to think of the Besov norm in terms of (2.2), as it is more convienient for our purposes.

We observe that if α ≥ β , then there is an inclusion Bα,∞
p (Ω)⊂ Bβ ,∞

p (Ω).

Let η ∈C∞
c (Rd+1) be a standard mollification kernel and we denote

η
ε(x) =

1
εd+1 η

( x
ε

)
, wε = η

ε ∗w and f ε(w) = f (w)∗η
ε .

Note that the function wε is well-defined on Ωε = {x ∈ Ω : dist(x,∂Ω) > ε}. The following
inequalities will be extensively used in the proof of the main theorem.

Lemma 2.1. For any function u ∈ Bα,∞
p (Ω) we have

‖u(·+ξ )−u(·)‖Lp(Ω∩(Ω−ξ )) ≤ |ξ |α‖u‖Bα,∞
p (Ω) (2.3)

‖uε −u‖Lp(Ω) ≤ ε
α‖u‖Bα,∞

p (Ω) (2.4)

‖∇uε‖Lp(Ω) ≤Cε
α−1‖u‖Bα,∞

p (Ω) (2.5)

Proof. Inequality (2.3) follows directly from the definition of the norm in the space Bα,∞
p (Ω). To

show (2.4) we write

|uε(x)−u(x)| ≤
∫

suppηε

η
ε(y)|u(x− y)−u(x)| dy≤

(∫
suppηε

η
ε(y)|u(x− y)−u(x)|p dy

) 1
p

.

Therefore, by virtue of Fubini and (2.3)∫
Ω

|uε(x)−u(x)|p dx≤
∫

suppηε

η
ε(y)

∫
Ω

|u(x− y)−u(x)|p dx dy

≤
∫

suppηε

η
ε(y)|y|pα‖u‖p

Bα,∞
p (Ω)

dy≤ ε
pα‖u‖p

Bα,∞
p (Ω)

.

For the last of the claimed inequalities we consider the convolution ∇uε = ∇ηε ∗ u as a bounded
linear operator T : Lp(Ω)→ Lp(Ω). Then

‖Tu‖Lp ≤Cε
−1‖u‖Lp .
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On the other hand, writing ∇uε = ηε ∗∇u, we can think of T as mapping W 1,p(Ω) into Lp(Ω). It
then has unit norm.

Therefore, as the Besov space Bα,∞
p is an interpolation space of exponent α for Lp and W 1,p

(cf. [4, Corollary 4.13]), T is bounded as an operator Bα,∞
p (Ω)→ Lp(Ω) with

‖Tu‖Lp ≤Cε
−(1−α)‖u‖Bα,∞

p
.

�

Lemma 2.2. Let v ∈ Bα,∞
p (Ω,Rm). Suppose f : Rm→ R is a C1 function with ∂ f

∂vi
∈ L∞ for each

i = 1, . . . ,m. Then

‖∇ f (vε)‖Lp ≤Cε
α−1‖v‖Bα,∞

p

Proof. Since ∇ f (vε) =
m
∑

i=1

∂ f
∂vi

(vε)∇vε
i , we have

‖∇ f (vε)‖Lp ≤
m

∑
i=1
‖ ∂ f

∂vi
(vε)‖L∞‖∇vε

i ‖Lp ≤ max
1≤i≤m

‖ ∂ f
∂vi
‖L∞

m

∑
i=1
‖∇vε

i ‖Lp ≤Cε
α−1

m

∑
i=1
‖vi‖Bα,∞

p

where the last inequality follows from Lemma 2.1. �

2.2. Preliminaries. System (1.1) can be written in conservative form

∂t(ρu)+div(ρu⊗u) = divS,
∂tρ +div(ρu) = 0,

(2.6)

where S is the Korteweg stress tensor

S=

(
−p(ρ)− ρκ ′(ρ)+κ(ρ)

2
|∇ρ|2 +div(ρκ(ρ)∇ρ)

)
I−κ(ρ)∇ρ⊗∇ρ

with I denoting the d-dimensional identity matrix and the local pressure defined as

p(ρ) = ρh′(ρ)−h(ρ).

It is routine to show that a strong solution (ρ,u) of the above system will satisfy the following
local balance of total (kinetic and internal) energy

∂t

(
1
2

ρ|u|2 +h(ρ)+
1
2

κ(ρ)|∇ρ|2
)

+div
(

ρu
(

1
2
|u|2 +h′(ρ)+

1
2

κ
′(ρ)|∇ρ|2−div(κ(ρ)∇ρ)

)
+κ(ρ)∇ρ div(ρu)

)
= 0.

(2.7)

Theorem 1.1 gives sufficient conditions for regularity of weak solutions so that they obey the
above energy equality in the sense of distributions. To prove the theorem we employ the strategy
of [11], which was used in many works in the subject, including [20] and [24], where variants of
the following lemma are an important ingredient.

Lemma 2.3. Let 1≤ q < ∞ and suppose v ∈ L2q((0,T )×Td ;Rk) and f ∈ C 2(Rk,RN). If

sup
i, j
‖ ∂ 2 f

∂vi∂v j
‖L∞ < ∞,

then there exists a constant C > 0 such that

‖ f (vε)− f ε(v)‖Lq ≤C

(
‖vε − v‖2

L2q + sup
(s,y)∈suppηε

‖v(·, ·)− v(·− s, ·− y)‖2
L2q

)
. (2.8)
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Proof. We observe that by Taylor’s theorem we have

| f (vε(t,x))− f (v(t,x)))−D f (v(t,x))(vε(t,x)− v(t,x))| ≤C|vε(t,x)− v(t,x)|2 (2.9)

where the constant C does not depend on the choice of x and t. Similarly

| f (v(s,y))− f (v(t,x))−D f (v(t,x))(v(s,y)− v(t,x))| ≤C|v(s,y)− v(t,x)|2. (2.10)

Mollification of the last inequality with respect to (s,y) yields, by virtue of Jensen’s inequality

| f ε(v(t,x))− f (v(t,x)−D f (v(t,x))(vε(t,x)− v(t,x))| ≤C|v(·, ·)− v(t,x)|2 ∗(s,y) η
ε .

(2.11)

Combining (2.9) and (2.11) and using the triangle inequality we deduce the estimate

| f (vε(t,x))− f ε(v(t,x))| ≤C
(
|vε(t,x)− v(t,x)|2 + |v(·, ·)− v(t,x)|2 ∗(s,y) η

ε
)
. (2.12)

Finally, we observe that∫
(0,T )×Td

∣∣|v(·, ·)− v(t,x)|2 ∗(s,y) η
ε
∣∣q dxdt

≤
∫

suppηε

η
ε(s,y)

∫
(0,T )×Td

|v(t− s,x− y)− v(t,x)|2q dxdt dyds

≤ sup
(s,y)∈suppηε

‖v(·, ·)− v(·− s, ·− y)‖2q
L2q .

�

2.3. Energy equality. We begin the proof of the theorem by mollifying the momentum equation
in both space and time with kernel and notation as in section 2.1 to obtain

∂t(ρu)ε +div(ρu⊗u)ε =−∇pε(ρ)+divSε(ρ,∇ρ,∆ρ), (2.13)

where we define

S(ρ,q,r) =
(

1
2
(ρκ

′(ρ)+κ(ρ))|q|2 +ρκ(ρ)r
)
I−κ(ρ)q⊗q, (2.14)

and Sε(ρ,∇ρ,∆ρ) = S(ρ,∇ρ,∆ρ)∗ηε . We note that

S(ρ,∇ρ,∆ρ) =

(
−1

2
(ρκ

′(ρ)+κ(ρ))|∇ρ|2 +div(ρκ(ρ)∇ρ)

)
I−κ(ρ)∇ρ⊗∇ρ,

cf. the definition of S.
Equation (2.13) can be rewritten in terms of appropriate commutators to give

∂t(ρ
εuε)+div((ρu)ε ⊗uε)+∇p(ρε)−div(S(ρε ,∇ρ

ε ,∆ρ
ε))

= ∂t(ρ
εuε − (ρu)ε)+div((ρu)ε ⊗uε − (ρu⊗u)ε)+∇(p(ρε)− pε(ρ))

−div(S(ρε ,∇ρ
ε ,∆ρ

ε)−Sε(ρ,∇ρ,∆ρ)).

(2.15)

We observe the following identities

div((ρu)ε ⊗uε) = uε div(ρu)ε +((ρu)ε ·∇)uε

and

−ρ
ε

∇

(
1
2

κ
′(ρε)|∇ρ

ε |2−div(κ(ρε)∇ρ
ε)

)
= divS(ρε ,∇ρ

ε ,∆ρ
ε).
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Thus the left-hand side of equation (2.15) can be written as

(∂tρ
ε)uε +ρ

ε
∂tuε +uε div(ρu)ε +((ρu)ε ·∇)uε

+ρ
ε

∇

(
h′(ρε)− 1

2
κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

)
.

Hence, upon multiplying with uε , equation (2.15) becomes

ρ
ε
∂t

(
1
2
|uε |2

)
+((ρu)ε ·∇)

1
2
|uε |2 +ρ

εuε
∇

(
h′(ρε)− 1

2
κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

)
= rε

1 + rε
2 + rε

3 + rε
4 ,

(2.16)

where

rε
1 = ∂t(ρ

εuε − (ρu)ε) ·uε ,

rε
2 = div((ρu)ε ⊗uε − (ρu⊗u)ε) ·uε ,

rε
3 = ∇(p(ρε)− pε(ρ)) ·uε ,

rε
4 =−div(S(ρε ,∇ρ

ε ,∆ρ
ε)−Sε(ρ,∇ρ,∆ρ)) ·uε ,

and we have used the mollified continuity equation

∂tρ
ε +div(ρu)ε = 0. (2.17)

Using (2.17) we can write the first two terms of (2.16) as

ρ
ε
∂t

(
1
2
|uε |2

)
+((ρu)ε ·∇)

1
2
|uε |2 +(∂tρ

ε +div(ρu)ε)
1
2
|uε |2

= ∂t

(
1
2

ρ
ε |uε |2

)
+div

(
(ρu)ε 1

2
|uε |2

)
.

(2.18)

Combining equations (2.16) and (2.18) we obtain

∂t

(
1
2

ρ
ε |uε |2

)
+div

(
(ρu)ε 1

2
|uε |2

)
+ρ

εuε
∇

(
h′(ρε)− 1

2
κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

)
= rε

1 + rε
2 + rε

3 + rε
4 .

(2.19)

We now rewrite the mollified continuity equation (2.17) in the form

∂tρ
ε +div(ρεuε) = div(ρεuε − (ρu)ε).

After multiplying this equation with

h′(ρε)− 1
2

κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

and rearranging, we obtain

∂t

(
h(ρε)+

1
2

κ(ρε)|∇ρ
ε |2
)
−div(κ(ρε)∇ρ

ε
∂tρ

ε)

+div(ρεuε)

(
h′(ρε)− 1

2
κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

)
= rε

5 + rε
6 + rε

7 ,

(2.20)
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where
rε

5 = div(ρεuε − (ρu)ε) h′(ρε),

rε
6 =−div(ρεuε − (ρu)ε)

1
2

κ
′(ρε)|∇ρ

ε |2,

rε
7 =−div(ρεuε − (ρu)ε)κ(ρε)∆ρ

ε .

Combining equations (2.19) and (2.20) we obtain

∂t

(
1
2

ρ
ε |uε |2 +h(ρε)+

1
2

κ(ρε)|∇ρ
ε |2
)
+div

(
(ρu)ε 1

2
|uε |2

)
+div

(
ρ

εuε

(
h′(ρε)− 1

2
κ
′(ρε)|∇ρ

ε |2−κ(ρε)∆ρ
ε

)
+κ(ρε)∇ρ

ε div(ρεuε)

)
= rε

1 + rε
2 + rε

3 + rε
4 + rε

5 + rε
6 + rε

7 .

(2.21)

It follows that to prove the theorem it is sufficient to show that each commutator error term con-
verges to zero in the distributional sense on (0,T )×Td as ε → 0.

2.4. Commutator Estimates. Let ϕ ∈ C 1
c ((0,T )×Td) and take ε > 0 small enough so that

suppϕ ⊂ (ε,T − ε)×Td . We will show that for each 1≤ i≤ 7 we have

Rε
i :=

∫ T

0

∫
Td

rε
i ϕ dxdt ε→0+−−−→ 0.

The terms Rε
1 and Rε

2 are dealt with in the same way as in [20]. We recall these estimates for the
reader’s convenience. For Rε

1 we observe that

ρ
εuε − (ρu)ε = (ρε −ρ)(uε −u)

−
∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρ(t− τ,x−ξ )−ρ(t,x))(u(t− τ,x−ξ )−u(t,x))dξ dτ.

(2.22)

The first part of Rε
1 therefore can be estimated by virtue of an integration by parts, Hölder inequality

and estimates (2.4) and (2.5) as∣∣∣∣∫ T

0

∫
Td

ϕ∂t ((ρ
ε −ρ)(uε −u)) ·uε dxdt

∣∣∣∣
≤
∫ T

0

∫
Td
|(ρε −ρ)(uε −u)|(|∂tϕ uε |+ |ϕ∂tuε |) dxdt

≤ ‖ϕ‖C 1‖ρε −ρ‖L3‖uε −u‖L3‖uε‖L3 +‖ϕ‖C 0‖ρε −ρ‖L3‖uε −u‖L3‖∂tuε‖L3

≤Cε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

+Cε
β

ε
α

ε
α−1‖ρ‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

.

Note that since we assume Besov regularity of u also in time, in the above we can estimate the
L3-norm of ∂tuε according to (2.5).
For the second part of Rε

1 according to (2.22), we estimate (using integration by parts, Fubini, (2.3)
and (2.5))∣∣∣∣∫ T

0

∫
Td

ϕ∂t

∫
ε

−ε

∫
Td

η
ε(τ,ξ )(ρ(t− τ,x−ξ )−ρ(t,x))(u(t− τ,x−ξ )−u(t,x))dξ dτ ·uεdxdt

∣∣∣∣
≤C‖ϕ‖C 1ε

β
ε

α‖ρ‖
Bβ ,∞

3
‖u‖2

Bα,∞
3

+C‖ϕ‖C 0ε
β

ε
α

ε
α−1‖ρ‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

.

A similar estimation can be carried out for Rε
2. We write

(ρu)ε ⊗uε − (ρu⊗u)ε = ((ρu)ε −ρu)⊗ (uε −u)

−
∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρu(t− τ,x−ξ )−ρu(t,x))⊗ (u(t− τ,x−ξ )−u(t,x))dξ dτ.
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To use the above decomposition to estimate Rε
2 we require that the product ρu belongs to the

space Bβ ,∞
3 ((0,T )×Td). To provide this regularity we needed to assume not only that ρ and u are

in appropriate Besov spaces, but also belong to L∞. Indeed, observe that since α ≥ β , we have
u ∈ Bβ ,∞

3 and

‖(ρu)(·+ξ )−ρu‖L3

|ξ |β
≤ ‖ρ(u(·+ξ )−u)‖L3

|ξ |β
+
‖(ρ(·+ξ )−ρ)u(·+ξ )‖L3

|ξ |β

≤ ‖ρ‖L∞‖u‖
Bβ ,∞

3
+‖u‖L∞‖ρ‖

Bβ ,∞
3

Thus the first part of Rε
2 can be estimated as

∣∣∣∣∫ T

0

∫
Td

div(((ρu)ε −ρu)⊗ (uε −u)) ·ϕuε dxdt
∣∣∣∣

≤ ‖ϕ‖C1‖(ρu)ε −ρu‖L3‖uε −u‖L3‖uε‖L3 +‖ϕ‖C0‖(ρu)ε −ρu‖L3‖uε −u‖L3‖∇uε‖L3

≤Cε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

+Cε
β

ε
α

ε
α−1‖ρu‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

.

Likewise, for the second part of Rε
2 we get

∣∣∣∣∫ T

0

∫
Td

div
{∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρu(t− τ,x−ξ )−ρu(t,x))⊗ (u(t− τ,x−ξ )−u(t,x))dξ dτ

}
·ϕuεdxdt

∣∣∣∣
≤C‖ϕ‖C 0ε

β
ε

α
ε

α−1‖ρu‖
Bβ ,∞

3
‖u‖2

Bα,∞
3

+C‖ϕ‖C 1ε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖2

Bα,∞
3

.

These estimates show that Rε
1 and Rε

2 vanish as ε → 0.
To estimate terms Rε

3 and Rε
4 we integrate by parts and apply Lemma 2.3 to get the following

|Rε
3| ≤ ‖ϕ‖C 1

∫ T

0

∫
Td
|p(ρε)− pε(ρ)||uε | dxdt +‖ϕ‖C 0

∫ T

0

∫
Td
|p(ρε)− pε(ρ)||∇uε | dxdt

≤C‖p(ρε)− pε(ρ)‖L3/2(‖uε‖L3 +‖∇uε‖L3)

≤C

(
‖ρε −ρ‖2

L3 + sup
y∈suppηε

‖ρ(·)−ρ(·− y)‖2
L3

)(
1+ ε

α−1)‖u‖Bα,∞
3

≤C

(
ε

2β‖ρ‖2
Bβ ,∞

3
+ sup
|y|≤ε

|y|2β‖ρ‖2
Bβ ,∞

3

)(
1+ ε

α−1)‖u‖Bα,∞
3

≤C(ε2β + ε
2β+α−1)‖u‖Bα,∞

3
‖ρ‖2

Bβ ,∞
3

and similarly

|Rε
4| ≤C‖S(ρε ,∇ρ

ε ,∆ρ
ε)−Sε(ρ,∇ρ,∆ρ)‖L3/2(‖uε‖L3 +‖∇uε‖L3)

≤C(ε2β + ε
2β+α−1)‖u‖Bα,∞

3
(‖ρ‖2

Bβ ,∞
3

+‖∇ρ‖2
Bβ ,∞

3
+‖∆ρ‖2

Bβ ,∞
3

).

It now remains to estimate the last three commutator errors Rε
5, Rε

6 and Rε
7. To this end we employ

Lemma 2.2 with function f being h′(ρ), κ ′(ρ)|∇ρ|2, and κ(ρ)∆ρ , respectively. We observe that
by assumptions (1.2) and (1.4) these functions belong to L∞. Using again equality (2.22) we can
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estimate as follows.

|Rε
5| ≤

∫ T

0

∫
Td
|(ρε −ρ)(uε −u)|(|h′(ρε)∇ϕ|+ |ϕ∇h′(ρε)|) dxdt

≤ ‖ϕ‖C 1‖ρε −ρ‖L3‖uε −u‖L3‖h′(ρε)‖L3 +‖ϕ‖C 0‖ρε −ρ‖L3‖uε −u‖L3‖∇h′(ρε)‖L3

≤Cε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖Bα,∞

3
+Cε

β
ε

α
ε

β−1‖ρ‖2
Bβ ,∞

3
‖u‖Bα,∞

3
,

|Rε
6| ≤C(‖κ ′(ρε)|∇ρ

ε |2‖L3 +‖∇(κ ′(ρε)|∇ρ
ε |2)‖L3)‖ρε −ρ‖L3‖uε −u‖L3

≤Cε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖Bα,∞

3
+Cε

β
ε

α
ε

β−1‖ρ‖2
Bβ ,∞

3
‖u‖Bα,∞

3
,

and

|Rε
7| ≤C(‖κ(ρε)∆ρ

ε‖L3 +‖∇(κ(ρε)∆ρ
ε)‖L3)‖ρε −ρ‖L3‖uε −u‖L3

≤Cε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖Bα,∞

3
+Cε

β
ε

α
ε

β−1‖ρ‖2
Bβ ,∞

3
‖u‖Bα,∞

3
.

For brevity the above calculations include only the first term coming from (2.22), with the second
term easily seen to produce estimates of the same order.
Thus the proof of the theorem is complete.
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[20] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Regularity and Energy Conservation for

the Compressible Euler Equations. Arch. Ration. Mech. Anal., 223(3):1–21, 2017.
[21] I. Gasser, P. Markowich. Quantum Hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal.,

14: 97-116, 1997
[22] J. Giesselmann, A. Tzavaras. Stability properties of the Euler-Korteweg system with nonmonotone pressures.

Applicable Analysis 96(9):1528–1546, 2017
[23] J. Giesselman, C. Lattanzio, A. Tzavaras. Relative energy for the korteweg theory and related hamiltonian flows

in gas dynamics. Arch. Ration. Mech. Anal., 223(3):1427–1484, 2017.
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Tomasz Dębiec: INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS, UNIVERSITY OF WARSAW, BA-
NACHA 2, 02-097 WARSAW, POLAND

E-mail address: t.debiec@mimuw.edu.pl

Piotr Gwiazda: INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, ŚNIADECKICH 8, 00-656
WARSAW, POLAND

E-mail address: pgwiazda@mimuw.edu.pl
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