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HIGHLIGHTS

o New regularization approach: We proposed a new approach for linear discrete ill-posed
problems based on adding an artificial perturbation matrix with a bounded norm to the
model matrix A. The objective of this artificial perturbation is to improve the singularvalue
structure of A. This perturbation affects the fidelity of the model y = Axy + z,and as a
result, the equality relation becomes invalid. We show that using such modification,provides
a solution with better numerical stability.

o New regularization parameter selection method: We develop a new regularization parameter
selection approach that selects the regularizer in a way that minimizes“the mean-squared
error (MSE) between x( and its estimate %, i.e., E||% — x||3 .

o Generality: A key feature of the approach is that it does not.impose any prior assumptions

on xg. The vector xy can be deterministic or stochastic, and“in the later case we do not

2

z

assume any prior statistical knowledge. In additiony knowledge of the noise variance o
is not required. This makes the proposed approach applicable to a large number of linear

discrete ill-posed problems.
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Abstract

Estimating the values of unknown parameters in ill-posed problems_from corrupted measured data
presents formidable challenges in ill-posed problems. In such problemsymmany of the fundamental
estimation methods fail to provide meaningful stabilized solutions. In this” work, we propose a new
regularization approach combined with a new regularization-parameter selection method for linear least-
squares discrete ill-posed problems called constrained perfurbation regularization approach (COPRA).
The proposed COPRA is based on perturbing the singular-value structure of the linear model matrix
to enhance the stability of the problem solutioh. Unlike many regularization methods that seek to
minimize the estimated data error, the proposed appreach is developed to minimize the mean-squared
error of the estimator, which is the objectivenin many estimation scenarios. The performance of the
proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems.
Simulation results show that the"propesed approach outperforms a set of benchmark regularization
methods in most cases. In addition, the’approach enjoys the shortest runtime and offers the highest level

of robustness of all the fested benchmark regularization methods.
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I. INTRODUCTION

We consider the standard problem of recovering an unknown signal x, € R"™ from a vector

y € R™ of noisy, linear observations given by
y = Axg + z, (D

where A € R™*" is a known linear-model matrix, and z € R™*! is a vector of additive white
Gaussian noise (AWGN) with unknown variance o2 that is independent of x,. This problem has
been extensively studied because of its practical and theoretical importance in many fields of
science and engineering, e.g., communication, signal processing, computer vision, control theory,
and economics [1]-[3].

Over the past years, several mathematical tools have been developed” for estimating the un-
known vector xo. The most prominent approach is the ordinary least-squares (OLS) estimator
[4], which finds an estimate Xors of xy by minimizing, the,Euclidean norm of the estimator
residual error, i.e.,

XoLs = arg min ||[yr= Ax|[3. (2)
If A is a full column rank matrix, then (2) has the unique solution
. —1 _
Xos =~(ATA)T ATy =VvE'U"y, (3)

where A = UX VT = S giuzv! is/the singular value decomposition (SVD) of A; u; and
v; are the left and right orthogonal singular vectors, respectively, and the singular values o; are
assumed to satisfy o7 >%g, >+ > 0,,.

Despite being a popular approach, the OLS estimator suffers when it is applied to discrete ill-
posed problems:. A problem is considered well-posed when its solution always exists, is unique,
and depends continuously on the initial data. Ill-posed problems fail to satisfy at least one of
these conditions [5]. The matrix A of an ill-posed problem is ill-conditioned and the computed
OLSsselution in (3) is potentially very sensitive to perturbations in the data such as z [6].

Discrete ill-posed problems arise in a variety of applications in signal processing and computer
vision [7]-[10], computerized tomography [11], astronomy [12], image restoration and deblurring
[13], [14], and edge detection [15]. Interestingly, in all these applications, the data are gathered

by convoluting a noisy signal with a detector [16], [17]. A linear representation of such process



is given by

/Za(s,t)XU(t)dt:yo(S)+Z(S)ZY(3)7 4

b1

where yq (s) is the true signal, and the kernel function a (s,t) represents the response. It is
shown in [18] how a problem with a formulation similar to (4) fails to satisfy the well-posed
conditions introduced above. The discretized version of (4) can be represented by (1)

To solve ill-posed problems, regularization methods, such as truncated SVD'[19]; hybrid
methods [20], the covariance-shaping LS estimator [21], and the weighted 1.S“estimator [22],
are commonly used. These methods are based on leveraging additional knewn information into
the solution of the problem and replacing the ill-posed problem with.a“well-posed one. This
replacement should be done after carefully analyzing the ill-posed problem in terms of its physical
plausibility and mathematical properties.

The most common and widely used approach is the regularized M-estimator that obtains an

estimate X of x by solving the convex problem
x 1= argmin £ (y $:Ax) +7f (x), (5)

where the loss function £ : R™ — R measures, the-fit of Ax to the observation vector y, the
penalty function f : R™ — R establishes the Structure of x, and « provides a balance between
the two functions. Different choices’of £ and f distinguish the different estimation techniques.
The most popular technique is the Tikhenov regularization [23] which is given in its simplified
form by

XRbs 1= arginin ly — Ax][3 + [Ix]3. (6)

The solution to (6) is given by the regularized least-square (RLS) estimator,
ks = (ATA +91,) 7 ATy, (M

where I is an n X n identity matrix. In general, -y is unknown and must be chosen judiciously.

Several methods have been proposed to select the value of the regularization parameter .
Theselinclude the generalized cross validation (GCV) [24], L-curve [25], [26], and quasi-optimal
method [27]. A survey of regularization parameter selection methods is given in [28]. The GCV
method obtains the regularizer v by minimizing the GCV function, which suffers from a very
flat minimum that is challenging to locate numerically. The L-curve method, on the other hand,

is a graphical tool with a very high computational complexity. Finally, the quasi-optimal method



doe

s not take noise level into account. In general, the performance of these methods varies

significantly depending on the nature of the problem.

A. Paper contributions

The contributions of this paper can be summarized as follows:

1y

2)

3)

New regularization approach: We propose a new approach for linear discrete,ill-posed
problems that is based on adding an artificial perturbation matrix with a beunded norm to
the model matrix A. The objective of this artificial perturbation is to impreve the singular-
value structure of A. This perturbation affects the fidelity of th¢ ‘modely = Axy + z;
as a result, the equality relation becomes invalid. We show that using such a modification
provides a solution with better numerical stability.!

New regularization-parameter selection method: We develop-a'new approach for selecting
a regularization parameter that minimizes the mean-squared error (MSE) between x, and
its estimate X, i.e., E ||X — xol[3. 2

Generality: A key feature of the approach is thatuit-does not impose any prior assumptions

on Xq. The vector Xy can be deterministicyor stochastic and, in the later case, we do not

2

assume any prior statistical knowledge. In addition, knowledge of the noise variance o

is not required. This makes thé proposed approach applicable to a large number of linear

discrete ill-posed problems.

B. Paper organization

This paper is organized as follows. In Section II, we present the formulation of the problem

and

derive the solution. In Section III, we derive the artificial perturbation bound that minimizes

the MSE. Further, we derive the characteristic equation of the proposed approach which is used to

obtain the regularization parameter. In Section IV, we study the properties of the characteristic

equation, and in Section V we present the performance of the proposed approach based on

simulation results. Finally, concluding remarks are given in Section VI.

"The work presented in this paper is an extended version of [29].

’Little work on MSE-based estimators is available in the literature; for example, in [30] the authors derived an estimator

for the linear model problem that was based on minimizing the worst-case MSE (as opposed to the actual MSE) while imposing

a constraint on the unknown vector xg.



C. Notations

Matrices are denoted by boldface uppercase letters (e.g., X). Column vectors are represented
by boldface lowercase letters (e.g., x). The notation (-)” denotes the transpose operator, E (-)
denotes the expectation operator, while I, and 0 denote the (n x n) identity matrix and the zero
matrix, respectively. The notation ||-||» indicates the spectral norm for matrices and the Euclidean
norm for vectors. The operator diag (-) returns a vector that contains either the diagonalielements
of a matrix, or a diagonal matrix if it operates on a vector where the diagonal entries of the

matrix are the elements of that vector.

II. PROPOSED REGULARIZATION APPROACH
A. Background

We consider the linear discrete ill-posed problem in (1) without imposing any assumptions on
Xp. As stated above, matrix A is ill-conditioned and may have a very fast singular-value decay
[31]. In Fig. 1, we observe that the singular values of'matrix. A decay very fast, though without

a sharp transition, towards markedly small singular.values.
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Fig. 15Singular-value decay pattern of an ill-posed matrix, A € R59%50,

B. Problem.formulation

Wesstart by considering the OLS solution in (3). Due to the singular-value structure of matrices
in ill-posed problems, and the interaction that they have with the noise, (3) cannot produce a
sensible estimate of x,. Herein, we propose adding an artificial perturbation Ax € R™*" to
A. We will show later that adding A, to A tends to provide a regularized solution in the

form x = (ATA +p(0,%) In)_1 ATy as opposed to the OLS solution X5 = (ATA)_1 ATy.



Therefore, perturbing the model (1) is equivalent to enhancing the singular values of the ill-
posed matrix AT A by adding a regularization matrix given by p (§,x) I,. We assume that this
process, which replaces A with (A + A,), improves the singular-value structure of A and the
estimate of xq. In other words, we assume that using (A + A,) to estimate xo from y can
provide more accurate estimation results than using A. To strike a balance between improving
the singular-value structure and maintaining the fidelity of the basic linear modely we add the
constraint |[Aall; <9, § € RT.

The linear model in (1), modified according to the discussion above, can be,written as
Yy~ (A+Aa)xo+2; [[Aalls <0 ®)

The model in (8) has been considered for signal estimation in-the presence of data errors but
with strict equality (e.g., [30], [32], [33]). These studies assumed that A was not known perfectly
due to some error contamination, but that prior knowledgesabout the real error bound (which
corresponds to § in our case) was available. Howevet, in“our case matrix A is known perfectly,
whereas 0 is unknown.

The question now is what is the best A ‘and the bound on the norm of this perturbation
0. It is clear that these values are importantssince they affect the model fidelity and dictate the
quality of the estimator. This questionuis addressed further ahead in this section. For now, we
start by assuming that 0 is known. We use this assumption to obtain and estimate of x, based
on (8) that is a function of ¢; theén, we address the problem of obtaining the value of ¢.

To obtain an estimate ©f Xy, we consider minimizing the worst-case residual function of the
new perturbed model in (8), which is given by

win W Q(x,84) = [ly = (A+ Ax)x|f. 9
For each choice~of x in (9), there are infinite choices of the perturbation A, that satisfy
[|Aall2 €.6. For example, for x = x;, the residual error as a function of the perturbation is
given by ©Q1(Aa) = Q(x1,Ax). For another choice x = X2, we have (Q3(Aa) = Q(Xa, Aa),
and so on. Each );(AA) has a maximum value @); m.x at a certain choice of A (possibly for
multiple choices of A4). In (9), we choose an estimate x; that corresponds to the smallest (); max

because it explains the data best when a worst-case bounded perturbation is applied.



Theorem 1. The unique minimizer X for (9) when 6 > 0 is given by
x= (ATA+p(6,%)1,) ATy, (10)
where p (6,X) is a regularization parameter related to the perturbation bound o by

R Yy — Af( 2
P(&X):(s%- (11
Proof: By using the Minkowski inequality [34], we find the upper bound of the‘cost.function

Q(x,Ax) in (9) as

ly = (A+Aa)x|l2 < |ly — Ax[[z + [|Aa x> < [ly — Ax||s ATl |x]|2

< |ly — Ax|lz + 9 [[x]2. (12)
However, upon setting A to be the rank-one matrix
(Ax—y) x'
Ap = J, (13)
|y — Ax|lz [[x{l2
we show that the bound in (12) is achievable by
(y — Ax) xT
[y — (A+Ax)x[[2 = |[(y — Ax)+ X0|[
ly — Ax|l2[|x]]2
(y — Ax)
= —AX) + ——||x][20]|2- (14)
Since the two added vectors (y — Ax)sand H(;,:AA;L ||x|[20 in (14) are positively linearly depen-

dent (i.e., pointing in the same direction), we conclude that

(y 5 Ax)

H (y_AX) -+ H}’—AXH2

[xI[2 0ll2 = [ly = Ax]|2 + 8]|x]l> . (15)

W (x)

As a result, (9) can be expressed equivalently by

min  max @ (x,Aa) =min W (x). (16)
X NAalk<s x

It is easy to check that the solution space for W (x) is convex in x, and hence, any local
minimum is algso a global minimum. But at any local minimum, it either holds that the gradient
of Wi(x) is zero, or W (x) is not differentiable. More precisely, W (x) is not differentiable only
when'x = 0 or y — Ax = 0. However, we do not consider the trivial case of x = 0, and

y — Ax = 0 is impossible by definition. Therefore, we can obtain the gradient of W (x) as

AT (Ax—-y) dx 1 ( J |ly — Ax||2 x
VW (x) = + = ATAx + — ATy> .
0= Ty —axlz Tk Ty = Axlb [l

(A7)



Defining p (0,%) as in (11), we solve for VW (x) = 0 to obtain (10). [

Remark 1. It can be said that perturbing A allows us to move from the LS estimator that has zero
residual norm (fits the observations perfectly), to a class of estimators that fit the observations
loosely (have less respect for the observations), which is the basic idea of regularization. On
the other hand, the linear minimum mean-squared error (LMMSE) [4] does not try to fit the

observations model by definition. Instead, it tries to minimize the difference between Xxiand x,.

Remark 2. The regularization parameter p in (11) is a function of the unknown estimate x and
of the perturbation upper bound 6 (we drop the dependence of p on-dyand.X- in the notation
to simplify it). In addition, it is clear from (15) that § controls the weight given to the side-
constraint minimization relative to the residual-norm minimization. We“have assumed that § is
known in order to obtain the min-max optimization solution in\(9)--However, this assumption is
not valid in reality. Thus, is it impossible to obtain p directly from (11) given that both § and

X are unknown.

Now, it is obvious with (10) and (11) in hand, we can eliminate the dependency of p on x.

By substituting (10) into (11) and performing ‘some manipulations, we obtain

02 |y"y — 2" A (AT AFpL) VATy + ||A (ATA + pL,) " ATy|]

— PPy"A (ATAA pL )T y. (18)
In the next subsection, we utilize (18) to obtain the ¢ that corresponds to an optimal choice of

p-

C. Finding the optimal perturbation bound

The optimal p.and ¢ that minimize the MSE are denoted by p, and 4, respectively. To simplify
(18), we substitute the SVD of A and solve for 6%, Next, we take the trace Tr () of the two
sides\considering the evaluation point to be (d,, p,). This results in

52 Tr ((22 +poly) U (yy") U) —Tr (22 (22 + poL,) U (yy") U) . (19)

J/

-~

Dz;()) N(po)

In order to obtain a useful expression, we think of ¢, as a single universal value that is computed

over many realizations of the observation vector y. Based on this perception, yy’ can be replaced
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by its expected value, E(yy”). In other words, we look for &, that is optimal (in the MSE sense)
for all realizations of y. We assume that such a value exists. Then, the parameter J, is clearly of
a deterministic nature. Taking the expected value of both sides of (19) for a fixed 9, is equivalent

to replacing yy? with E(yy”), which can be expressed using (1) as
E (yy") = AR, A" + 071, = USV'R,, VIU" + 51, (20)

where Ry, = E (XOXOT). For a deterministic xy, Ry, = Xoxg (for simplicity,/we use Ry, in

both the deterministic and stochastic cases). Substituting (20) for yy’ in (19). results in
N (po) = Tr (32 (22 + o) “S2VIR, V) + 02T (32 (Shipely) *), QD)
and
D (p) = 62 [Tr ((22 +poly) EQVTRXOV) + 65Tt ((22 + pOIn)*z) ] . 22)

Considering the singular-value structure of the ill-posed problems in the general case, we can
divide the singular values into two groups of significant, or relatively large, and trivial, or nearly
zero, singular values.’ For example, we see in Fig. Ithat the singular values of the ill-posed
model matrix A decay very fast, making it possible to distinguish the significant and trivial
groups. Thus, the matrix ¥ can be divided into two diagonal sub-matrices: 32,,;, which contains
the significant n; diagonal entries; and 2,5, which contains the trivial no, = n — n; diagonal

entries.* Therefore, 3 can be written as

X O
= : (23)
0 EnQ

Similarly, we partition Vyas V = [V,,; V5], where V,,;; € R"*™ and V,5 € R"*"2. Now, we

can rewrite (21) in terms of the partitioned 3 and V as

N (po) = Tr (Eil (Eil + PoInl)_2 Zilvgleon)

+Tr (32, (52, + pole) B2, VR Vi )
T (S (B k) ) + 0T (8 (St k) 7). @0

3This includes the special case when all the singular values are significant, and so all are considered.

*To identify the two singular-value clusters, simple thresholding can be applied, e.g., using a threshold obtained by

multiplying the average of the singular values by a constant ¢, where ¢ € (0, 1).



Given that 32,,; contains the significant singular values and 32,5 contains the nearly zero singular

values, we have ||X,,|| =~ 0. So, we can approximate N (p,) by
N (po) 2 Tr (B2, (S2, + polur) 2, VIR Vi ) + 02Tr (B2, (32, 4 pol) ). 25)

Similarly, D (p,) in (22) can be approximated as
2
D (po) =~ 02 Tr ((Eil + pOInl)_2> i n;(;z +Tr ((Eil + pOInl)_2 EiIVZIRXOVn:l) . (26)

o

By substituting (25) and (26) into (19) and performing manipulations, we obtain

02~ [o2Tr (B2, (B2, 4 pol) 7) + Tr (32, (Z2, + polr) 32,V Rig Vi ) | /

ngO'Z

[agTr ((zil + poInl)—2> Ty ((zil + L) zilVfleOVm> } 27)

The bound 4, given by (27) is a function of the unknown quantities_p,,"0-, and R,,. Estimating
o2 and R,, without any prior knowledge is a very tedious process«The problem is worse when
X is deterministic. In such case, the exact value of x, i$.required to obtain R, = xox . In the
following section, we use the MSE criterion to eliminate the dependence of ¢, on these unknown

quantities, and obtain the final expression of the optimal perturbation bound J,.

III. MINIMIZING THE MSE FORHE SOLUTION OF THE PROPOSED APPROACH

The MSE for an estimate x of x_.is.given'by
MSE = E [Jx —x0|f] = Tr (E ((x — x0)(X — x0)")) . (28)

For the proposed approachy the signal estimation is given by (10). Hence, we substitute (10) for

X in (28) and use the SVD ofA to obtain

MSE (f) = 02Tt (22 (=% + pIn)_Q) 4 T ((22 + L) VTRXOV) . (29)

Theorem 2. [For 02, > 0, an approximate value of the optimal regularizer p, that approximately

minimizés the MSE in (29) is given by

0.2

Po = Tr(R—;)/n (30)

Proof: The global minimizer of the function in (29) (i.e., p,) can be obtained by differen-
tiating (29) with respect to p and setting the result to equal zero, i.e.,

V, MSE (p) = —202Tr (32 (52 4 pl,) ) + 29 Tr (32 (32 4+ pL,) VIR, V) = 0. (31)

-~

S

/




Equation (31) dictates the relationship between the optimal regularization parameter p, and the
parameters of (1). By solving (31), we obtain the optimal regularizer p,. However, with the
lacking of knowledge on Ry,, we cannot obtain a closed-form expression for p, in the general
case. Instead, we seek to obtain a suboptimal regularizer that approximately minimizes (29).
In what follows, we show how through some bounds and approximations, we can obtain this
suboptimal regularizer.

By using the trace inequalities in [35, Eq.(5)], we bound the second term in{(31) by
Amin (Ro) Tt (22 (=2 + pIn)*3> <S=Tr (22 (22 4 41,) " VTRXOV>
< Anas (Roy) Tr (22 (374 1)) (32)

where Api, and A\, are the smallest and the largest singular valuess.respectively. Our main goal
in this paper is to find a solution that is approximately feasible for all’discrete ill-posed problems
and also suboptimal in some sense. In other words, we ‘woulduliKe to find a p, for all (or almost
all) possible A that approximately minimizes the MSE: To achieve this, we consider the average
value of S in (31) based on the inequalities in (32)_ asyour evaluation point:

Tr (Ry,)
—

S~ Tr (S k) ) (33)

Substituting (33) in (31) yields
_ T _
V, MSE (p) ~ —202Tr (2(32 $91,) ) + 2p T Roa) (=2 (=24 o)) =0, G4
n

Note that the same approximation’can be applied from the beginning to the second term in (29)
and the same result iny(34) will be obtained after taking the derivative of the new approximated
MSE function. In, Appendix A, we provide an error analysis for this approximation and show
that, in most/cases, the error bound is sufficiently small to consider the approximation feasible.
In the case where‘the elements of x( are independent and identically distributed (i.i.d.), it can
be shownithat/(34) and (31) are exactly equivalent to each other (see Appendix A). By solving
(34),\we obtain p, as in (30). [ |

Remark 3. The result in (30) shows that there always exists a positive p, for o2 # 0 that
approximately minimizes the MSE. The fact that the regularization parameter p, is generally

dependent on the noise variance has been shown before in different contexts (e.g., [36], [37]).
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For the special case where the entries of x, are i.i.d. with zero mean, we have Ry, = o2 1,.

X0

Since the optimal LMMSE estimator of x; is defined as [4]

)A(LMMSE = (ATA + UgR;OlIn) ! ATy, (35)
substituting Ry, = 0,2{01 makes the value of the parameter multiplying the identity matrix in the
LMMSE expression exactly equivalent to p, in (30), since p, = ﬁ = UTZ In this case,

r(Rxq )/ B

and with the presence of prior information about the distributions of x, and z,the value of p,
can be estimated as in [38] under certain assumptions about the distribution eof As This shows
that (30) is exact when the input is white; while for a general input %, the optimum matrix
regularizer is given in (35). In other words, the result in (30) providés an approximate optimum
scalar regularizer for a general colored input. Note that since g2 anduR¢, are both unknowns,

Po cannot be obtained directly from (30).

We are now ready to eliminate the dependency of ¢, (27) onrthe unknowns o2 and R, using

the result in (30) and the perturbation-bound expression_in (27).

A. Setting the optimal perturbation bound that minimizes the MSE

By applying the same reasoning used to obtain (33) to both the numerator and the denominator

of (27) and performing some manipulations, we obtain

2
Tr (32, (2 )7 (=2 + % 1
I'( nl( n1+p0 1) ( nl+TI'(RxO) 1
2 2

T ([ (%2 J) 0 (32 _M% g _MeM%, |
ot ¥y (0 + ) )+ e 0

We evaluate the.aceuracy of this approximation using simulations in Section V.

~ 52
~ 62

nio2

Now, we use the felationship of o2 and Tr (Ry,) to the suboptimal regularizer, TRy 2 Do

obtained from (30) to impose a constraint on (36) that makes the selected perturbation bound

minimize the MSE and also makes (36) an implicit equation in J, and p, only. By substituting

2 . . . . .
T;&: “5, = “po in (36) and performing manipulations, we obtain
X0

T (32 (B pola) (2324 pol )
52 ~

N Tr <(Eil + pOInl)_2 <nﬂl2i1 + poIm)) + ny ©7

Po



The expression in (37) represents the J, that approximately minimizes the MSE. Now, we have
two equations, (18) (evaluated at g and py) and (37), and two unknowns &y and pg. By substituting
the SVD of A in (18) and solving simultaneously with (37), we reach the characteristic equation

of our proposed constrained perturbation regularization approach (COPRA) as

G (po) = Tr (32 (22 + pol,) “UTyy™U) Tr (22, + pol) (B2, + polln))

Ty = (232 (%% + pol) - UTnyU>
Po

~Tr (324 ply) Uy U Tr (B2, (32, 4 pol) (B304 i) = 0. (38)

where § =

For simplicity, the first two terms in (38) are denoted by G (p,) and the last term in (38) is
denoted by G2 (p,). The COPRA equation (38) is a function of the model matrix A, the received
signal y, and the regularization parameter p,, which is the only, unknown in (38). Solving for
G (po) = 0 should lead to the regularization parameter p, that approximately minimizes the
MSE of the RLS estimator. Our main interest is.to find\a positive root p; > 0 for (38). In the
following section, we study the main properties of this equation and investigate the existence

and uniqueness of its positive root.

IV. ANALYSIS OF THE FUNCTION G (po)

In this section, we analyze the COPRA function G (p,) in (38) in details. We start by examining

some main properties of G'(p,) that are straightforward to prove.
Property 1. G (p,).is eontinuous over the interval (0, +00).

Property 2. G (p,) has n different discontinuities at p, = —o2,¥i € [1,n|. However, these

discontinuities,are of no interest as far as COPRA is considered.
Property 3.lim, o+ G (p,) = +o0.

Property 4. lim, - G (p,) = —o0.

Property 5. lim, , . G (p,) = 0.

Properties 3 and 4 show clearly that G (p,) has a discontinuity at p, = 0.
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Property 6. Both functions G (p,) and G2 (p,) in (38) are completely monotonic in the interval
(0, +00).

Proof: According to [39] and [40], a function F' (p,) is completely monotonic if it satisfies
(=1)" F™ (p,) >0, 0 < p, < 00,¥n €N, (39)

where F(™ (p,) is the n-th derivative of F (p,).
By continuously differentiating G (p,) and G2 (p,), we see that both funcCtions satisfy the

monotonic condition in (39). [ |
Theorem 3. The COPRA function G (p,) in (38) has at most two roots in the interval (0, +00) .

Proof: The proof of Theorem 3 will be conducted in two steps: Firstly, [41], [42] proved
that any completely monotonic function can be approximated by'a sum of exponential functions.

That is, if F'(p,) is a completely monotonic, then it can be approximated by

l

F(po) = > e, (40)

i=1
where [ is the number of the terms in the sum, and /; and k; are two constants. There always
exists a best uniform approximation of F'(p,) and the error in this approximation gets smaller
as we increase the number of thé terms [. However, rather than finding the best number of
the terms or the unknown parameters I; and k;, our main concern here is the relation given by
(40). To conclude, both funictions & (p,) and G5 (p,) in (38) can be approximated by a sum of
exponential functions.

Secondly, [43] Shewed,that a sum of exponential functions has at most two intersections
with the abscissa. Consequently, noting that the relation in (38) can be expressed as a sum of

exponential-functions, the function G (p,) has at most two roots in the interval (0, +o0). |

Theorem ‘ds-There exists a sufficiently small positive value ¢, such that ¢ < o2, Vi € [1,n]

where/G (e) = 0 (i.e., € is a positive root for (38)). However, we are not interested in this root

in the proposed COPRA.

Proof: The proof of Theorem 4 is in Appendix B. [ ]
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Theorem 5. A sufficient condition for the function G (p,) to approach zero from a positive
direction at p, = +oo is given by

nTr (X*bb") > Tr (37,) Tr (bb") (41)
where b = UTy.

2

Proof: We let b = U™y, as in (38). Given that X is a diagonal matrix, ¥* = diag(¢?, 02, - -, 02

and from the trace function property, we can replace bb? = U”Tyy”U in (38) with a diago-

nal matrix bb’ that contains bb” diagonal entries without affecting the result. By defining

bbl = diag (b%,b3,- -, b?), we write (38) as

2 ni 2 ni

O'Jb] o; b 1
po) = 42 72 ; + SZ 22 N
EE T E ) AR YR )

B b o} RS b o} 4 ~  ojb]
_E o? QZ a? 2_5 a? 22 o? 2 p3 o? 2"
o 5= (p—i+1> pa (p—;+1) °j=1(p—g+1) i (p—;+1) °J1<p—i+1)

(42)
Then, we use some algebraic manipulations to obtain
- B S o} ! 1 1 < b?
po) = 32 RS D el Il D Pl
TR By AR
Po Po Po

ﬁ ni 0_24 n1 Ui2

PO e R Db sl & 43)
i=1 (p—i—l—l)

Po i1 (Z—i—kl)

Now, evaluating the limit of (43) as p, — +0o we obtain

Po—r+00 Po7+1+00 p

(44)
where 7/= hmp(ﬁJroo ot The relation in (44) can be simplified to
n n n n
T o -t 2 [ S (o3t 0) - S (oSt + 30
(45)
It is clear that (45) is zero; however, the direction from which (45) approaches zero depends on
the sign of the term between the square brackets. For G (p,) to approach zero from a positive

direction, knowing that the terms independent of 7 are the dominants, (41) must hold. [ |

g

2

lim G (po) = ( lim —) {Za2b2<7ﬁiaf+il+nz) —Zb?<75i:0?+i03>],
i=1 =1 j=1 i=1 i=1

),



Theorem 6. If (41) is satisfied, then G (p,) has a unique positive root in the interval (e, +00).

Proof: According to Theorem 3, the function G (p,) can have no root, one root, or two roots.
We already proved in Theorem 4 (Appendix B) that there exists a significantly small positive
root for the COPRA function at p,; = €, but we are not interested in this root. Therefore, we
would like to see if there exists a second root for G (p,) in the interval (e, 4+00).

From Property 3 and Theorem 4, we conclude that the COPRA function has a-positive value
before ¢, then it switches to negative. The condition in (41) guarantees that«G (pg) approaches
zero from a positive direction as p, approaches +oo. This means that G1(p,) has-an extremum
in the interval (e,+00), and this extremum is actually a minimum~peint, If the point of the
extremum is considered to be p,n, then the function increases for pg. > psm until it approaches
the second zero crossing at p, 2. Since Theorem 3 states clearly that we cannot have more than
two roots, we conclude that we have only one unique positive root over the interval (e, +00)

when (41) holds. [ |

A. Finding the root of G (p,)

To find the positive root of the COPRA. function.GG (p,) in (38), we use Newton’s method [44].
The function G (p,) is differentiable in the interval (e, +00), and we can obtain the expression
of the first derivative G’ (p,) easily. Newton’s method can then be applied in a straightforward
manner to find this root. Starfing’from’ an initial value p"=° > ¢ that is sufficiently small, we

perform the following iterations:

pn-i-l :pn_ G(pg)
(&) (&) ’( n\ "
0y)

The iterations stop'when |G (p?1) | < &, i.e., where ¢ is a sufficiently small positive quantity.

(46)

Q

B. Convergence

The _convergence of Newton’s method can be easily proved when condition (41) is satisfied.
From Theorem 5, the function G (p,) always has a negative value in the interval (¢, p, o). It is also
clear that G (p,) is an increasing function in the interval [p=°, p,o]. Thus, starting from p"=?,
(46) produces a consecutively increasing estimate for p,. Convergence occurs when G (p) — 0
and p"™' — pI. When the condition in (41) is not satisfied, the regularization parameter p,

should be set to €.



C. COPRA summary

Our proposed COPRA discussed is summarized in Algorithm 1.

Algorithm 1: COPRA summary
Input :y, A = UXVT £ =0 splitting threshold c, e.

Output: Signal estimate X.
1 if (41) is not satisfied then
2 po = € and go to step 11;
3 end
4 Obtain n; as ny = max;[o; > ¢ avg (diag (X))], and ny = n — nyy
s X =X(1:n),Ep=X(ny+1:n) asin (23);
6 Evaluate G (p"=°) and its derivative G' (p"=") using (38);
7 while |G (p?)] > € do
8 Solve (46) to obtain pT!;

n _ n+l.
9 po - po ’

10 end

1 Find x using (10);

Vo, SIMULATION RESULTS

In this section, we perform a‘comprehensive set of simulations to examine the performance
of the proposed COPRA and compare it with other benchmark regularization methods.

We simulate three different scenarios with an additional fourth scenario presented in [45].
First, we apply the proposed COPRA to a set of nine discrete an ill-posed real-world problems
that are commonly used to test the performance of regularization methods in discrete ill-posed
problems. Second, we illustrate the robustness and broad applicability of COPRA by using it
to estimatesthe signal x, when A is a random rank deficient matrix generated as A = %BBT,
where/B (m x n,m > n) is a random matrix with i.i.d. zero-mean unit variance and Gaussian

random entries. Finally, we restore an image in an ill-posed image tomography problem.>-¢

5The MATLAB code of the COPRA is provided at http://www.mohamedasuliman.com/research.html and
http://faculty.kfupm.edu.sa/ee/naffouri/publications.html and

® Another versions of the proposed COPRA are presented in [46], [47] using different assumptions.



A. Real-world discrete ill-posed problems

We use the Matlab regularization toolbox [48] to generate pairs of a matrix A € R59x%
and a signal xq. The discrete ill-posed test problems provided in the toolbox are derived from
discretizations of Fredholm integral equations as in (4) and they arise in many signal processing
applications.’

Experiment setup: The performance of COPRA is compared with the regularization algorithms
that provide the best performance amogst all the methods discussed in [28]. Precisely, we compare
with quasi-optimal, GCV, L-curve, and LS. The performances are evaluatedin terms of the
normalized MSE (NMSE); that is, the MSE normalized by ||xo||3. Noisetis added to the vector
Axq according to the signal-to-noise-ratio (SNR) SNR £ ||Axyl||2/no? in order to generate y,
and we set ¢ = 1. The performance is presented in dB as the NMSE (NMSE in dB = 10log,,
(NMSE)) versus SNR and is evaluated over 10° different noise realizations at each SNR value.
Since some regularization methods provide a high unreliable NMSE results that hinder the good
visualization of the NMSE, we set different upper thresholds for the vertical axis in the results
sub-figures.

Fig. 2 shows the results from all the nine\selected problems. Each sub-figure specifies the
condition number (CN) of the problem’s matrix. The NMSE curve disappears in certain cases
indicating that these methods performed so poorly that they are out of scale. For example,
the LS NMSE does not show up,in any of the tested scenarios, and the NMSE curves of the
quasi-optimal, GCV, and L+curveumethods disappear in quite a few cases.

Generally speaking,~an estimator offering NMSE > 0 dB is not sufficiently robust. From
Fig. 2, it is clear that COPRA is the most robust estimator, as it is the only approach whose
NMSE performance . remains below 0 dB in almost all cases. Comparing NMSE over the whole
range of SNR values, we find that COPRA exhibits the lowest NMSE on average in eight of
the nine test problems. The closest contender to COPRA is the quasi-optimal method. However,
all thesmethods except CPRA show lack of robustness in certain situations (i.e., high NMSE).

In Kig. 3, we provide the NMSE for the approximation of the perturbation-bound expression
in (27) by (36) for the selected ill-posed problem matrices. The two expressions are evaluated at

each SNR using the suboptimal regularizer in (30). The sub-figures show that the NMSE of the

"For more details regarding the test problems, we refer the reader to [48].
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as the SNReincreases. The increase of the error with the SNR is discussed in Appendix A.

B. Rank-deficient matrices

In this scenario, a rank-deficient random matrix A is considered. This is the case where

| X52]] = 0 in (23). This theoretical test is meant to illustrate the robustness of COPRA.

Experiment setup: A random matrix matrix A that satisfies A = 5—10BBT is generated, where

20
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(a) xo ~ N(0,I) with i.i.d; elements.  (b) xo with i.i.d. elements distributed uni-

formly in the interval (0,1).

Fig. 4: Performance comparison when A = --BB”, where B € R*% B;; ~ N(0,1).

B € R [B,; ~ N (0,1). The elements of x, are chosen to be Gaussian i.i.d. with zero-
mean unit variance, and are i.i.d. with uniform distribution within the interval (0, 1). Results are
obtained as-an average over 10° different realizations of A, x,, and z.

Wheén the elements of x, are Gaussian i.i.d., COPRA outperforms the other regularization
methods (Fig. 4). In fact, COPRA is the only approach that provides a NMSE below 0 dB across
the entire SNR range. The other algorithms produce a very high NMSE. The same behavior can
be observed when the elements of x; are uniformly distributed (Fig. 4(b)). The NMSE of the
LS method (not shown) is above 250 dB in both cases.
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Fig. 5: Tomography image restoration.

C. Image restoration

In this subsection, we present the visual results of the tomography image restoration.

Experiment setup: The elements of Ax, represent a line of integrals along direct rays that
penetrate a rectangular field. This field is discretized into n24cells, and each cell is stored with
its own intensity as an element in the image matrix ML.“Then, the columns of M are stacked

into xo. The entries of A are generated as

B lij, pixel; € ray,

ajj =
0%\ “else;

where [;; is the length of the 7th ray in pixel j. Finally, the rays are placed randomly. A noise

with an SNR of 30 dB is added to the 16 x 16 image and the performance is evaluated as an

average over 10° realizations of the noise and A.

In Fig. 5, we present the original image, the received image, and the images reproduced
by each of the regularization methods. Fig. 5 demonstrates that COPRA outperforms the other
methods by providing aiclear image that is very close to the original. A comparison of the
peak signal-to-neiseiratios (PSNR) of the algorithms (as in Table I) shows similar results, with
COPRA haying the largest PSNR. Moreover, the GCV algorithm provides an inaccurate result,
while the L-curve and quasi-optimal algorithms fail to restore the internal parts clearly, especially

those“the parts with colors close to the background color.

TABLE I: PSNR of the algorithms with SNR=30
Method || COPRA | L-curve | GCV Quasi-optimal
PSNR || 29.8331 | 13.6469 | 10.5410 | 15.9080
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D. Average runtime

In Fig. 6, we plot the average runtime of each method against the calculated SNR from the
simulation. The figure is a good representation for the runtime of all the problems (no significant
runtime variation between problems has been seen). The figure shows that COPRA is the fastest

algorithm as it has the shortest runtime in compare to all benchmark methods.
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Fig. 6: Average runtime.

VI. CONCLUSIONS

In this paper, we developed a new regularization approach and a new regularization parameter
selection method for linear discrete ill-posed problems. Due to the challenging singular-value
structure of such problems, many regularization approaches fail to provide good stabilized
solutions. In the proposed approach, the’singular-value structure of the model matrix is modified
by introducing an artificial{perturbation into it. To maintain the fidelity of the model, an upper-
bound constraint is added on the perturbation. The proposed approach minimizes the worst-case
residual error of thé estimator and selects a perturbation bound that approximately minimizes the
MSE. Thus, the approach combines the simplicity of the ordinary least-squares criterion with the
robustness:of MSE-based estimation. The regularization parameter is obtained as the solution to
a non-linear equation. Simulation results demonstrate that the proposed approach outperforms a

set of'benchmark regularization methods over a host of test problems.

APPENDIX A

ERROR ANALYSIS

In this appendix, we analyze the error of the approximation used to obtain (30). To simplify the

analysis, we consider the case when the approximation is applied directly to the MSE function
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given in (29). We start by defining H = 32# (X2 + pI,,) ", whose diagonal entries are written

as
o2
(o2 +p)"

Note that in our case kK = 0 and p = 2 for the diagonal matrix inside the trace function of the

second term in (29). However, we use these two variables to obtain the error expression for the
general case, then we substitute for £ and p. By using the inequalities from [35, Equ(5)], we

obtain

Amin(Roxy ) Tr (H) < Tr (HV Ry V) < Apax (Roxy ) Tr (H),, (A.2)
Similarly, we write
Amin (H) Tr (Ry,) < Tr (HV Ry, V) < A (H)Tr (R, ) - (A.3)

Since H is diagonal, Ay, (H) = min (diag(H)) and A\ (H) = max (diag(H)). Now, we define

the normalized error of the approximation as

o Tr (HV R, V) «2Tr (H) Tr (Rx,)
1Tr (H) Tr(Ry,)

Note that this is not the standard way of defining,the normalized error. Typically, the error ¢ is

(A.4)

normalized by the true quantity, i.e., Tr (HVTRXOV). However, this way of defining the error
is more useful for carrying out the‘following error analysis. Based on (A.4), we see that |¢| > 1
indicates an inaccurate approximation. Although it depends totally on the application, we adopt
le| < 1 as the reference for'evaluating the accuracy of the approximation. In fact, we can observe
from (A.4) that |e| =1 indicates that 1Tr (H) Tr (Rx,) = 0.5 Tr (HV?R, V). To this end, we
derive two bounds basedion (A.2) and (A.3). Then, we combine them to obtain the final error
bound.

Absoluté~error bound based on (A.2): Subtracting +Tr (H) Tr (Ry,) from (A.2) and dividing

by the same quantity, we obtain

)\min(Rxo) . 1 <e< )\maX(Rxo)
)\avg(Rxo) o N )\avg(Rxo)

where Ay (Rx,) £ 2Tr (Rx,). Thus, |¢| can be bounded by a positive quantity:

Amin(Rxo) >\max<Rx0)
>‘an (Rxo) 7 )‘an (Rxo)

-1, (A.5)

lex| < pp = max |1 — —-1]. (A.6)
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Absolute error bound based on (A.3): Starting from (A.3), and by applying the same approach

used to obtain (A.6), we derive the second bound as

)\min(H) Amax(H) :|
€a| < g = max [1 — , —1]. (A7)
= N ()" Ay (D)
Using (A.1), wE transform (A.7) into
|: O.Qk :| |: o.2k :|
mm i max i
ol < pra = max |1 L T 1 =12 A

1 "1
n 2aic1 (G n 2icl GTigp (Cang

The bound f,, depends only on Ry, while x, depends on both the singulag,values of A and the

unknown regularizer p. As in our case, £k = 0 and p = 2, and therefore, (A.8) ¢an be simplified

to
Bl 1
o 2 o2 2
|5a| < [l = max 1— - (n1+P) - - (nn+P) - -1 (A9)
w 2iml TR Q=N
Combined bound: By combining (A.6) and (A.9), we ‘ebtain“the final bound on the absolute
error as

le| < p = minh\(p1, i) - (A.10)

From (A.6), (A.9), and (A.10), we noticéuthat, the bound is the minimum of two independent
bounds. Below, we analyze each bound sepatately and then derive a conclusion concerning the

overall error bound.

A. Analysis of i,

When X, is deterministic, Amin(Rxy) = 0, Amax(Rx,) = [|X0][3 and Ayye(Rx,) = %on\]% By

substituting in (AL6), we obtain
py =max[l,n —1] =n—1. (A.11)

On the ‘other /hand, when x, is stochastic with ii.d. elements, A\pnin(Rx,) = Awe(Rx,) =
Amin(R2g)y= 02 . As a result,
11, = max [0,0] = 0, (A.12)

which means that, based on (A.10), the approximation is exact regardless of the contribution of
the error from p,. When the entries of x, are not i.i.d., p, is very difficult to obtain. Since no

previous knowledge about x, is assumed in this paper, this bound seems to be very loose for
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a general xg, and we should rely on p, instead to tighten and evaluate the bound of the error.

Thus, the modified bound, which can be larger than the actual bound, is given by

le] < g = pla- (A.13)

B. Analysis of i,

By taking the derivative of each of the two terms inside (A.9) w.r.t. p, we can.proveithat the
two functions are decreasing in p. In other words, we obtain the two extreme error bounds (the
largest and the smallest possible value of the absolute error) by analyzing‘the two.-extreme SNR
scenarios, i.e., the high SNR regime and the low SNR regime.

1) Analysis of the low SNR regime: In the extreme low SNR ‘regime, we have p — oo.

Therefore, we can obtain the minimum bound on the absolute error. Based on (A.1), we write

1 1
=4, M in Al4
(7 +p)?  p? (A1)

Consequently, (A.9) boils down after some manipulations to

hi; =

1 1
pol 2
eh] < pl = max |1 Gl 1
%Zi:1p_12 %Zi:lp%
n n
=max |l &=, =% —1] = 0. (A.15)
{ il D]

The result in (A.15) indicates/thatithe approximation becomes more accurate as the SNR
decreases. In the extreme low SNR/regime (i.e., p — o0), the absolute error is zero and the
approximated term is exactly ‘equal to the original one.

2) Analysis of the high SNR regime: With extremely high SNR, p is sufficiently small.
Therefore, doing an‘analysis allows us to obtain the upper worst-case value possible for ¢.

Based on [49], there always exists a positive regularizer p > 0 such that the regularized
estimator offers a lower MSE than the OLS estimator. This also applies to well-conditioned
problems. However, if the condition number is too small, both the regularization parameter and
the corresponding improvement in the MSE performance is to small compared to that of the
OLS estimator. Therefore, we conclude that, p converges to a minimum value p,;, for extremely
high SNRs. In what follows, we find a lower-bound expression for py,;, and examine the absolute

error in this value.
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Starting from the definition of SNR, we can write

|| Axol[35
||z]13

Applying the SVD of A to (A.16) and then doing some algebraic manipulations, we obtain

Tr (VZ*VTRy,)

2 )
noz

SNR =

(A.16)

SNR =

(A.17)

where R, = x0x] . Now, using (A.17) with the suboptimal regularizer p, expression from (30),

we write
1 Tr(VE*VIR,,)

SNR  Tr(Ry,)

From (A.18), we deduce the minimum achievable suboptimal regularizer ., depends on the

po = (A.18)

maximum SNR (i.e., SNR,,,x) for a given A and x,. That is
1 Tr (VEQVTRXO)
SNR jax Tr (Ryy)

Given the nature of ill-posed problems and their singular values behavior, we partition 3 and

Pmin = (A19)

V into two sub-matrices (as in Section II-C), and then, approximate (A.19) as
1 Tr (V% VI Ry,)

min ~> y A20
Pmin ™ SNR pa Tr (Roc, ) (A4.20)
where 32, = diag (02, ...,02,). The valii€"of o, in (A.20) can be bounded by

02, Tr (VI RyeVon) 0} Tr (VIR Vi) (A21)

SNRpm Tr(By) | =™ = SNRpm  Tr(Ro)
Since we are considering thel worst-case upper bound for the absolute error, and given that
this absolute error increases, as p decreases, we consider the lower bound of py;, as in (A.21).
Moreover, based on the unitary matrix property and the partitioning of V, we obtain a lower
bound for the lowér bound in (A.21) as
o2, Tr (V,TLIRXOVM) S o2, Tr(Ry,)

nl nl

min = > . A22
Prin Z SNRymw Tr (Rog,) SNRymer Tr (R, ) (A.22)
Thus, a lower bound for p,;, (i.e., pmin) can be written as
O (A.23)
Prmin = SNRmax : :

Now we are ready to study the behavior of the error in the high SNR regime. When p — p'. ,

(A.9) can be written as

1 1
(Jl +pm1n) (0-2 +pfmn)2

|| < max |1 — ~1]. (A.24)

1 71
ZZ 0 (g +pll'mn)2 Zl =0 (g’ +p£‘mn)2
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To evaluate (A.24), we rely on numerical results. First, we consider SNR,,x = 40 dB, which is
a realistic upper value in many signal processing and communication applications. Substituting
this value in (A.23), we find that pl, = 0.01802,. By substituting the result in (A.24), and
evaluating the expression for the nine ill-posed problems described in Section V, we find that

|eh] < ul ~ 1. As this represents the worst-case upper value for the absolute error, we find
" <o o<1 (A.25)
Finally, based on (A.10) and (A.13), and by combining (A.15) and (A.25), we conclude that
el €0,0; o<1 (A.26)
which indicates that Tr (H) Tr (Ry,) = ¢ Tr (HV'R,, V) where g € (05, 1].
APPENDIX B

PROOF OF THEOREM 4

We are interested in studying the behavior of lim .G (p,), assuming that e is sufficiently
small positive number (i.e., ¢ — 07), and € < o7, Yin€ [1, n]. Starting from COPRA function
in (38), and by defining b = Uly, we write
G o) = Z za?b? 2 Z (ﬁ0?+pog _z": : i iff? (50?+ﬂ20) +@z": 20%? )

= (07 +p0)” I (02N I (07 +p0) S (02 po) Po = (07 + po)
(B.1)

Given how we choose €, Eq*(B¢l) can be approximated as

n

G (¢) %Biaﬁbfiaﬁ—ﬁnlia[4bf+%20[2bf. (B.2)
i=1 =1 i=1

i=1
Solving G (e) =Oufrom (B.2) leads to the following root:
_ ey, 07 b

B 3070 = B o W Yk 0y

Now, we determine if the root defined by (B.3) is positive. For (B.3) to be positive, the following

€

(B.3)

relation should hold:
n n ni
ny Z o4 > Z o, 2b? Z 0]72. (B.4)
i=1 i=1 j=1

Starting from the right-hand side of (B.4), and with o1 >--- > o,,, we bound this term as

n ni n ni n

~272 -2 —2 ~272 _ —2 ~272
g o, °b; E o; <o, g o, °b; g 1 =ny0,; E o, °b;. (B.5)
i=1 j=1 i=1 j=1 i=1
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However, given how we choose n; and ny, we also have

i 02> iaﬁ, (B.6)
i=1

i=ni+1
which helps us to bound the left-hand side of (B.4) as

n n
ny Z 0;4b? > nlogf Z U{Qbf. (B.7)
i=1 i=1

From (B.5) and (B.7), we find that the lower bound for the left-hand side of (B.4) is equal to

the upper bound of its right-hand side. Then, we can conclude from these two, relations that

ny i U{4bf > i a[zb? i 0;2. (B.8)
i=1 i=1 j=1

Thus, € is a positive root for the COPRA function in (38).

Next, we would like to know if ¢ can be considered as a value for our regularization parameter.
A direct way to show that can be deduced from the fact that having € < o? Vi € [1,n] will
not provide any regularization to the problem. Hence, the'RLS estimator in (7) converges to the
OLS in (3).

As a remark, we assume that the approximation in (B.2) is uniform, such that it does not
affect the position of the roots. Therefore, We.can claim that this root is not coming from the
negative region of the axis. In fact, we'ean easily prove that (B.1) does not have a negative root
that is close to zero. Thus, thisrootidoes not come from the negative region as a result of this

function approximation (i.e.sperturbed root).
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