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HIGHLIGHTS

• New regularization approach: We proposed a new approach for linear discrete ill-posed

problems based on adding an artificial perturbation matrix with a bounded norm to the

model matrix A. The objective of this artificial perturbation is to improve the singularvalue

structure of A. This perturbation affects the fidelity of the model y = Ax0 + z, and as a

result, the equality relation becomes invalid. We show that using such modification provides

a solution with better numerical stability.

• New regularization parameter selection method: We develop a new regularization parameter

selection approach that selects the regularizer in a way that minimizes the mean-squared

error (MSE) between x0 and its estimate x̂, i.e., E‖x̂− x0‖22 .

• Generality: A key feature of the approach is that it does not impose any prior assumptions

on x0. The vector x0 can be deterministic or stochastic, and in the later case we do not

assume any prior statistical knowledge. In addition, knowledge of the noise variance σ2
z

is not required. This makes the proposed approach applicable to a large number of linear

discrete ill-posed problems.
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Perturbation-Based Regularization for Signal

Estimation in Linear Discrete Ill-Posed

Problems

Mohamed A. Suliman, Tarig Ballal, and Tareq Y. Al-Naffouri

Abstract

Estimating the values of unknown parameters in ill-posed problems from corrupted measured data

presents formidable challenges in ill-posed problems. In such problems, many of the fundamental

estimation methods fail to provide meaningful stabilized solutions. In this work, we propose a new

regularization approach combined with a new regularization-parameter selection method for linear least-

squares discrete ill-posed problems called constrained perturbation regularization approach (COPRA).

The proposed COPRA is based on perturbing the singular-value structure of the linear model matrix

to enhance the stability of the problem solution. Unlike many regularization methods that seek to

minimize the estimated data error, the proposed approach is developed to minimize the mean-squared

error of the estimator, which is the objective in many estimation scenarios. The performance of the

proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems.

Simulation results show that the proposed approach outperforms a set of benchmark regularization

methods in most cases. In addition, the approach enjoys the shortest runtime and offers the highest level

of robustness of all the tested benchmark regularization methods.

Index Terms

Linear estimation, ill-posed problems, linear least squares, regularization, perturbed models.
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I. INTRODUCTION

We consider the standard problem of recovering an unknown signal x0 ∈ Rn from a vector

y ∈ Rm of noisy, linear observations given by

y = Ax0 + z, (1)

where A ∈ Rm×n is a known linear-model matrix, and z ∈ Rm×1 is a vector of additive white

Gaussian noise (AWGN) with unknown variance σ2
z that is independent of x0. This problem has

been extensively studied because of its practical and theoretical importance in many fields of

science and engineering, e.g., communication, signal processing, computer vision, control theory,

and economics [1]–[3].

Over the past years, several mathematical tools have been developed for estimating the un-

known vector x0. The most prominent approach is the ordinary least-squares (OLS) estimator

[4], which finds an estimate x̂OLS of x0 by minimizing the Euclidean norm of the estimator

residual error, i.e.,

x̂OLS = arg min
x
||y −Ax||22. (2)

If A is a full column rank matrix, then (2) has the unique solution

x̂OLS =
(
ATA

)−1
ATy = VΣ−1UTy, (3)

where A = UΣVT =
∑n

i=1 σiuiv
T
i is the singular value decomposition (SVD) of A; ui and

vi are the left and right orthogonal singular vectors, respectively, and the singular values σi are

assumed to satisfy σ1 ≥ σ1 ≥· · · ≥ σn.

Despite being a popular approach, the OLS estimator suffers when it is applied to discrete ill-

posed problems. A problem is considered well-posed when its solution always exists, is unique,

and depends continuously on the initial data. Ill-posed problems fail to satisfy at least one of

these conditions [5]. The matrix A of an ill-posed problem is ill-conditioned and the computed

OLS solution in (3) is potentially very sensitive to perturbations in the data such as z [6].

Discrete ill-posed problems arise in a variety of applications in signal processing and computer

vision [7]–[10], computerized tomography [11], astronomy [12], image restoration and deblurring

[13], [14], and edge detection [15]. Interestingly, in all these applications, the data are gathered

by convoluting a noisy signal with a detector [16], [17]. A linear representation of such process
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is given by ∫ b2

b1

a (s, t) x0 (t) dt = y0 (s) + z (s) = y (s) , (4)

where y0 (s) is the true signal, and the kernel function a (s, t) represents the response. It is

shown in [18] how a problem with a formulation similar to (4) fails to satisfy the well-posed

conditions introduced above. The discretized version of (4) can be represented by (1).

To solve ill-posed problems, regularization methods, such as truncated SVD [19], hybrid

methods [20], the covariance-shaping LS estimator [21], and the weighted LS estimator [22],

are commonly used. These methods are based on leveraging additional known information into

the solution of the problem and replacing the ill-posed problem with a well-posed one. This

replacement should be done after carefully analyzing the ill-posed problem in terms of its physical

plausibility and mathematical properties.

The most common and widely used approach is the regularized M-estimator that obtains an

estimate x̂ of x0 by solving the convex problem

x̂ := arg min
x
L (y −Ax) + γf (x) , (5)

where the loss function L : Rm → R measures the fit of Ax to the observation vector y, the

penalty function f : Rm → R establishes the structure of x, and γ provides a balance between

the two functions. Different choices of L and f distinguish the different estimation techniques.

The most popular technique is the Tikhonov regularization [23] which is given in its simplified

form by

x̂RLS := arg min
x

||y −Ax||22 + γ ||x||22. (6)

The solution to (6) is given by the regularized least-square (RLS) estimator,

x̂RLS =
(
ATA + γIn

)−1
ATy, (7)

where In is an n× n identity matrix. In general, γ is unknown and must be chosen judiciously.

Several methods have been proposed to select the value of the regularization parameter γ.

These include the generalized cross validation (GCV) [24], L-curve [25], [26], and quasi-optimal

method [27]. A survey of regularization parameter selection methods is given in [28]. The GCV

method obtains the regularizer γ by minimizing the GCV function, which suffers from a very

flat minimum that is challenging to locate numerically. The L-curve method, on the other hand,

is a graphical tool with a very high computational complexity. Finally, the quasi-optimal method
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does not take noise level into account. In general, the performance of these methods varies

significantly depending on the nature of the problem.

A. Paper contributions

The contributions of this paper can be summarized as follows:

1) New regularization approach: We propose a new approach for linear discrete ill-posed

problems that is based on adding an artificial perturbation matrix with a bounded norm to

the model matrix A. The objective of this artificial perturbation is to improve the singular-

value structure of A. This perturbation affects the fidelity of the model y = Ax0 + z;

as a result, the equality relation becomes invalid. We show that using such a modification

provides a solution with better numerical stability.1

2) New regularization-parameter selection method: We develop a new approach for selecting

a regularization parameter that minimizes the mean-squared error (MSE) between x0 and

its estimate x̂, i.e., E ||x̂− x0||22. 2

3) Generality: A key feature of the approach is that it does not impose any prior assumptions

on x0. The vector x0 can be deterministic or stochastic and, in the later case, we do not

assume any prior statistical knowledge. In addition, knowledge of the noise variance σ2
z

is not required. This makes the proposed approach applicable to a large number of linear

discrete ill-posed problems.

B. Paper organization

This paper is organized as follows. In Section II, we present the formulation of the problem

and derive the solution. In Section III, we derive the artificial perturbation bound that minimizes

the MSE. Further, we derive the characteristic equation of the proposed approach which is used to

obtain the regularization parameter. In Section IV, we study the properties of the characteristic

equation, and in Section V we present the performance of the proposed approach based on

simulation results. Finally, concluding remarks are given in Section VI.

1The work presented in this paper is an extended version of [29].

2Little work on MSE-based estimators is available in the literature; for example, in [30] the authors derived an estimator

for the linear model problem that was based on minimizing the worst-case MSE (as opposed to the actual MSE) while imposing

a constraint on the unknown vector x0.
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C. Notations

Matrices are denoted by boldface uppercase letters (e.g., X). Column vectors are represented

by boldface lowercase letters (e.g., x). The notation (·)T denotes the transpose operator, E (·)
denotes the expectation operator, while In and 0 denote the (n× n) identity matrix and the zero

matrix, respectively. The notation ||·||2 indicates the spectral norm for matrices and the Euclidean

norm for vectors. The operator diag (·) returns a vector that contains either the diagonal elements

of a matrix, or a diagonal matrix if it operates on a vector where the diagonal entries of the

matrix are the elements of that vector.

II. PROPOSED REGULARIZATION APPROACH

A. Background

We consider the linear discrete ill-posed problem in (1) without imposing any assumptions on

x0. As stated above, matrix A is ill-conditioned and may have a very fast singular-value decay

[31]. In Fig. 1, we observe that the singular values of matrix A decay very fast, though without

a sharp transition, towards markedly small singular values.
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Fig. 1: Singular-value decay pattern of an ill-posed matrix, A ∈ R50×50.

B. Problem formulation

We start by considering the OLS solution in (3). Due to the singular-value structure of matrices

in ill-posed problems, and the interaction that they have with the noise, (3) cannot produce a

sensible estimate of x0. Herein, we propose adding an artificial perturbation ∆A ∈ Rm×n to

A. We will show later that adding ∆A to A tends to provide a regularized solution in the

form x̂ =
(
ATA + ρ (δ, x̂) In

)−1
ATy as opposed to the OLS solution x̂LS =

(
ATA

)−1
ATy.
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Therefore, perturbing the model (1) is equivalent to enhancing the singular values of the ill-

posed matrix ATA by adding a regularization matrix given by ρ (δ, x̂) In. We assume that this

process, which replaces A with (A + ∆A), improves the singular-value structure of A and the

estimate of x0. In other words, we assume that using (A + ∆A) to estimate x0 from y can

provide more accurate estimation results than using A. To strike a balance between improving

the singular-value structure and maintaining the fidelity of the basic linear model, we add the

constraint ||∆A||2 ≤ δ, δ ∈ R+.

The linear model in (1), modified according to the discussion above, can be written as

y ≈ (A + ∆A) x0 + z; ||∆A||2 ≤ δ. (8)

The model in (8) has been considered for signal estimation in the presence of data errors but

with strict equality (e.g., [30], [32], [33]). These studies assumed that A was not known perfectly

due to some error contamination, but that prior knowledge about the real error bound (which

corresponds to δ in our case) was available. However, in our case matrix A is known perfectly,

whereas δ is unknown.

The question now is what is the best ∆A and the bound on the norm of this perturbation

δ. It is clear that these values are important since they affect the model fidelity and dictate the

quality of the estimator. This question is addressed further ahead in this section. For now, we

start by assuming that δ is known. We use this assumption to obtain and estimate of x0 based

on (8) that is a function of δ; then, we address the problem of obtaining the value of δ.

To obtain an estimate of x0, we consider minimizing the worst-case residual function of the

new perturbed model in (8), which is given by

min
x

max
||∆A||2≤δ

Q (x,∆A) := ||y − (A + ∆A) x||2. (9)

For each choice of x in (9), there are infinite choices of the perturbation ∆A that satisfy

||∆A||2 ≤ δ. For example, for x = x1, the residual error as a function of the perturbation is

given by Q1(∆A) = Q(x1,∆A). For another choice x = x2, we have Q2(∆A) = Q(x2,∆A),

and so on. Each Qi(∆A) has a maximum value Qi,max at a certain choice of ∆A (possibly for

multiple choices of ∆A). In (9), we choose an estimate xi that corresponds to the smallest Qi,max

because it explains the data best when a worst-case bounded perturbation is applied.
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Theorem 1. The unique minimizer x̂ for (9) when δ > 0 is given by

x̂ =
(
ATA + ρ (δ, x̂) In

)−1
ATy, (10)

where ρ (δ, x̂) is a regularization parameter related to the perturbation bound δ by

ρ (δ, x̂) = δ
||y −Ax̂||2
||x̂||2

. (11)

Proof: By using the Minkowski inequality [34], we find the upper bound of the cost function

Q (x,∆A) in (9) as

||y − (A + ∆A) x||2 ≤ ||y −Ax||2 + ||∆A x||2 ≤ ||y −Ax||2 + ||∆A||2||x||2

≤ ||y −Ax||2 + δ ||x||2. (12)

However, upon setting ∆A to be the rank-one matrix

∆A =
(Ax− y)

||y −Ax||2
xT

||x||2
δ, (13)

we show that the bound in (12) is achievable by

||y − (A + ∆A) x||2 = || (y −Ax) +
(y −Ax)

||y −Ax||2
xT

||x||2
xδ||2

= || (y −Ax) +
(y −Ax)

||y −Ax||2
||x||2δ||2. (14)

Since the two added vectors (y −Ax) and (y−Ax)
||y−Ax||2 ||x||2δ in (14) are positively linearly depen-

dent (i.e., pointing in the same direction), we conclude that

|| (y −Ax) +
(y −Ax)

||y −Ax||2
||x||2 δ||2 = ||y −Ax||2 + δ||x||2︸ ︷︷ ︸

W (x)

. (15)

As a result, (9) can be expressed equivalently by

min
x

max
||∆A||2≤δ

Q (x,∆A) ≡ min
x

W (x) . (16)

It is easy to check that the solution space for W (x) is convex in x, and hence, any local

minimum is also a global minimum. But at any local minimum, it either holds that the gradient

of W (x) is zero, or W (x) is not differentiable. More precisely, W (x) is not differentiable only

when x = 0 or y − Ax = 0. However, we do not consider the trivial case of x = 0, and

y −Ax = 0 is impossible by definition. Therefore, we can obtain the gradient of W (x) as

∇xW (x) =
AT (Ax− y)

||y −Ax||2
+

δ x

||x||2
=

1

||y −Ax||2

(
ATAx +

δ ||y −Ax||2 x

||x||2
−ATy

)
.

(17)
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Defining ρ (δ, x̂) as in (11), we solve for ∇xW (x̂) = 0 to obtain (10).

Remark 1. It can be said that perturbing A allows us to move from the LS estimator that has zero

residual norm (fits the observations perfectly), to a class of estimators that fit the observations

loosely (have less respect for the observations), which is the basic idea of regularization. On

the other hand, the linear minimum mean-squared error (LMMSE) [4] does not try to fit the

observations model by definition. Instead, it tries to minimize the difference between x̂ and x0.

Remark 2. The regularization parameter ρ in (11) is a function of the unknown estimate x̂ and

of the perturbation upper bound δ (we drop the dependence of ρ on δ and x̂ in the notation

to simplify it). In addition, it is clear from (15) that δ controls the weight given to the side-

constraint minimization relative to the residual-norm minimization. We have assumed that δ is

known in order to obtain the min-max optimization solution in (9). However, this assumption is

not valid in reality. Thus, is it impossible to obtain ρ directly from (11) given that both δ and

x̂ are unknown.

Now, it is obvious with (10) and (11) in hand, we can eliminate the dependency of ρ on x̂.

By substituting (10) into (11) and performing some manipulations, we obtain

δ2
[
yTy − 2yTA

(
ATA + ρIn

)−1
ATy + ||A

(
ATA + ρIn

)−1
ATy||2

]

= ρ2yTA
(
ATA + ρIn

)−2
ATy. (18)

In the next subsection, we utilize (18) to obtain the δ that corresponds to an optimal choice of

ρ.

C. Finding the optimal perturbation bound

The optimal ρ and δ that minimize the MSE are denoted by ρo and δo, respectively. To simplify

(18), we substitute the SVD of A and solve for δ2. Next, we take the trace Tr (·) of the two

sides considering the evaluation point to be (δo, ρo). This results in

δ2o Tr
((

Σ2 + ρoIn

)−2
UT

(
yyT

)
U
)

︸ ︷︷ ︸
D(ρo)

= Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UT

(
yyT

)
U
)

︸ ︷︷ ︸
N(ρo)

. (19)

In order to obtain a useful expression, we think of δo as a single universal value that is computed

over many realizations of the observation vector y. Based on this perception, yyT can be replaced
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by its expected value, E(yyT ). In other words, we look for δo that is optimal (in the MSE sense)

for all realizations of y. We assume that such a value exists. Then, the parameter δo is clearly of

a deterministic nature. Taking the expected value of both sides of (19) for a fixed δo is equivalent

to replacing yyT with E(yyT ), which can be expressed using (1) as

E
(
yyT

)
= ARx0A

T + σ2
zIm = UΣVTRx0VΣUT + σ2

zIm, (20)

where Rx0 , E
(
x0x

T
0

)
. For a deterministic x0, Rx0 = x0x

T
0 (for simplicity, we use Rx0 in

both the deterministic and stochastic cases). Substituting (20) for yyT in (19) results in

N (ρo) = Tr
(
Σ2
(
Σ2 + ρoIn

)−2
Σ2VTRx0V

)
+ σ2

zTr
(
Σ2
(
Σ2 + ρoIn

)−2)
, (21)

and

D (ρo) = δ2o

[
Tr
((

Σ2 + ρoIn

)−2
Σ2VTRx0V

)
+ σ2

zTr
((

Σ2 + ρoIn

)−2) ]
. (22)

Considering the singular-value structure of the ill-posed problems in the general case, we can

divide the singular values into two groups of significant, or relatively large, and trivial, or nearly

zero, singular values.3 For example, we see in Fig. 1 that the singular values of the ill-posed

model matrix A decay very fast, making it possible to distinguish the significant and trivial

groups. Thus, the matrix Σ can be divided into two diagonal sub-matrices: Σn1, which contains

the significant n1 diagonal entries; and Σn2, which contains the trivial n2 = n − n1 diagonal

entries.4 Therefore, Σ can be written as

Σ =


Σn1 0

0 Σn2


 . (23)

Similarly, we partition V as V = [Vn1 Vn2], where Vn1 ∈ Rn×n1 and Vn2 ∈ Rn×n2 . Now, we

can rewrite (21) in terms of the partitioned Σ and V as

N (ρo) = Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

)

+ Tr
(
Σ2
n2

(
Σ2
n2 + ρoIn2

)−2
Σ2
n2V

T
n2Rx0Vn2

)

+ σ2
zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2)
+ σ2

zTr
(
Σ2
n2

(
Σ2
n2 + ρoIn2

)−2)
. (24)

3This includes the special case when all the singular values are significant, and so all are considered.

4To identify the two singular-value clusters, simple thresholding can be applied, e.g., using a threshold obtained by

multiplying the average of the singular values by a constant c, where c ∈ (0, 1).
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Given that Σn1 contains the significant singular values and Σn2 contains the nearly zero singular

values, we have ‖Σn2‖ ≈ 0. So, we can approximate N (ρo) by

N (ρo) ≈ Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

)
+ σ2

zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2)
. (25)

Similarly, D (ρo) in (22) can be approximated as

D (ρo) ≈ σ2
z Tr

((
Σ2
n1 + ρoIn1

)−2)
+
n2σ

2
z

ρ2o
+ Tr

((
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

)
. (26)

By substituting (25) and (26) into (19) and performing manipulations, we obtain

δ2o ≈
[
σ2
zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2)
+ Tr

(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

) ]/

[
σ2
zTr
((

Σ2
n1 + ρoIn1

)−2)
+
n2σ

2
z

ρ2o
+ Tr

((
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

) ]
. (27)

The bound δo given by (27) is a function of the unknown quantities ρo, σ2
z, and Rx0 . Estimating

σ2
z and Rx0 without any prior knowledge is a very tedious process. The problem is worse when

x0 is deterministic. In such case, the exact value of x0 is required to obtain Rx0 = x0x
T
0 . In the

following section, we use the MSE criterion to eliminate the dependence of δo on these unknown

quantities, and obtain the final expression of the optimal perturbation bound δo.

III. MINIMIZING THE MSE FOR THE SOLUTION OF THE PROPOSED APPROACH

The MSE for an estimate x̂ of x0 is given by

MSE = E
[
||x̂− x0||2

]
= Tr

(
E
(
(x̂− x0)(x̂− x0)

T
))
. (28)

For the proposed approach, the signal estimation is given by (10). Hence, we substitute (10) for

x̂ in (28) and use the SVD of A to obtain

MSE (ρ) = σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−2)
+ ρ2Tr

((
Σ2 + ρIn

)−2
VTRx0V

)
. (29)

Theorem 2. For σ2
z > 0, an approximate value of the optimal regularizer ρo that approximately

minimizes the MSE in (29) is given by

ρo ≈
σ2
z

Tr (Rx0) /n
. (30)

Proof: The global minimizer of the function in (29) (i.e., ρo) can be obtained by differen-

tiating (29) with respect to ρ and setting the result to equal zero, i.e.,

∇ρ MSE (ρ) = −2σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−3)
+ 2ρTr

(
Σ2
(
Σ2 + ρIn

)−3
VTRx0V

)

︸ ︷︷ ︸
S

= 0. (31)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

Equation (31) dictates the relationship between the optimal regularization parameter ρo and the

parameters of (1). By solving (31), we obtain the optimal regularizer ρo. However, with the

lacking of knowledge on Rx0 , we cannot obtain a closed-form expression for ρo in the general

case. Instead, we seek to obtain a suboptimal regularizer that approximately minimizes (29).

In what follows, we show how through some bounds and approximations, we can obtain this

suboptimal regularizer.

By using the trace inequalities in [35, Eq.(5)], we bound the second term in (31) by

λmin (Rx0) Tr
(
Σ2
(
Σ2 + ρIn

)−3) ≤ S = Tr
(
Σ2
(
Σ2 + ρIn

)−3
VTRx0V

)

≤ λmax (Rx0) Tr
(
Σ2
(
Σ2 + ρIn

)−3)
, (32)

where λmin and λmax are the smallest and the largest singular values, respectively. Our main goal

in this paper is to find a solution that is approximately feasible for all discrete ill-posed problems

and also suboptimal in some sense. In other words, we would like to find a ρo for all (or almost

all) possible A that approximately minimizes the MSE. To achieve this, we consider the average

value of S in (31) based on the inequalities in (32) as our evaluation point:

S ≈ Tr
(
Σ2
(
Σ2 + ρIn

)−3) Tr (Rx0)

n
. (33)

Substituting (33) in (31) yields

∇ρ MSE (ρ) ≈ −2σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−3)
+ 2ρ

Tr (Rx0)

n
Tr
(
Σ2
(
Σ2 + ρIn

)−3)
= 0. (34)

Note that the same approximation can be applied from the beginning to the second term in (29)

and the same result in (34) will be obtained after taking the derivative of the new approximated

MSE function. In Appendix A, we provide an error analysis for this approximation and show

that, in most cases, the error bound is sufficiently small to consider the approximation feasible.

In the case where the elements of x0 are independent and identically distributed (i.i.d.), it can

be shown that (34) and (31) are exactly equivalent to each other (see Appendix A). By solving

(34), we obtain ρo as in (30).

Remark 3. The result in (30) shows that there always exists a positive ρo for σ2
z 6= 0 that

approximately minimizes the MSE. The fact that the regularization parameter ρo is generally

dependent on the noise variance has been shown before in different contexts (e.g., [36], [37]).
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For the special case where the entries of x0 are i.i.d. with zero mean, we have Rx0 = σ2
x0

In.

Since the optimal LMMSE estimator of x0 is defined as [4]

x̂LMMSE =
(
ATA + σ2

zR
−1
x0

In

)−1
ATy, (35)

substituting Rx0 = σ2
x0

I makes the value of the parameter multiplying the identity matrix in the

LMMSE expression exactly equivalent to ρo in (30), since ρo = σ2
z

Tr(Rx0)/n
= σ2

z

σ2
x0

. In this case,

and with the presence of prior information about the distributions of x0 and z, the value of ρo

can be estimated as in [38] under certain assumptions about the distribution of A. This shows

that (30) is exact when the input is white; while for a general input x0, the optimum matrix

regularizer is given in (35). In other words, the result in (30) provides an approximate optimum

scalar regularizer for a general colored input. Note that since σ2
z and Rx0 are both unknowns,

ρo cannot be obtained directly from (30).

We are now ready to eliminate the dependency of δo (27) on the unknowns σ2
z and Rx0 using

the result in (30) and the perturbation-bound expression in (27).

A. Setting the optimal perturbation bound that minimizes the MSE

By applying the same reasoning used to obtain (33) to both the numerator and the denominator

of (27) and performing some manipulations, we obtain

Tr

(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
(

Σ2
n1 +

n1σ
2
z

Tr (Rx0)
In1

))

≈ δ2o

[
Tr

((
Σ2
n1 + ρoIn1

)−2
(

Σ2
n1 +

n1σ
2
z

Tr (Rx0)
In1

))
+

n2n1σ
2
z

ρ2oTr (Rx0)

]
. (36)

We evaluate the accuracy of this approximation using simulations in Section V.

Now, we use the relationship of σ2
z and Tr (Rx0) to the suboptimal regularizer, n1σ2

z

Tr(Rx0 )
≈ n1

n
ρo,

obtained from (30) to impose a constraint on (36) that makes the selected perturbation bound

minimize the MSE and also makes (36) an implicit equation in δo and ρo only. By substituting
n1σ2

z

Tr(Rx0 )
= n1

n
ρo in (36) and performing manipulations, we obtain

δ2o ≈
Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2 ( n
n1

Σ2
n1 + ρoIn1

))

Tr
((

Σ2
n1 + ρoIn1

)−2 ( n
n1

Σ2
n1 + ρoIn1

))
+ n2

ρo

. (37)
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The expression in (37) represents the δo that approximately minimizes the MSE. Now, we have

two equations, (18) (evaluated at δ0 and ρ0) and (37), and two unknowns δ0 and ρ0. By substituting

the SVD of A in (18) and solving simultaneously with (37), we reach the characteristic equation

of our proposed constrained perturbation regularization approach (COPRA) as

G (ρo) = Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UTyyTU

)
Tr
((

Σ2
n1 + ρoIn1

)−2 (
βΣ2

n1 + ρoIn1
))

+
n2

ρo
Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UTyyTU

)

− Tr
((

Σ2 + ρoIn

)−2
UTyyTU

)
Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2 (
βΣ2

n1 + ρoIn1
))

= 0, (38)

where β = n
n1

.

For simplicity, the first two terms in (38) are denoted by G1 (ρo) and the last term in (38) is

denoted by G2 (ρo). The COPRA equation (38) is a function of the model matrix A, the received

signal y, and the regularization parameter ρo, which is the only unknown in (38). Solving for

G (ρo) = 0 should lead to the regularization parameter ρo that approximately minimizes the

MSE of the RLS estimator. Our main interest is to find a positive root ρ∗o > 0 for (38). In the

following section, we study the main properties of this equation and investigate the existence

and uniqueness of its positive root.

IV. ANALYSIS OF THE FUNCTION G (ρO)

In this section, we analyze the COPRA function G (ρo) in (38) in details. We start by examining

some main properties of G (ρo) that are straightforward to prove.

Property 1. G (ρo) is continuous over the interval (0,+∞).

Property 2. G (ρo) has n different discontinuities at ρo = −σ2
i ,∀i ∈ [1, n]. However, these

discontinuities are of no interest as far as COPRA is considered.

Property 3. limρo→0+ G (ρo) = +∞.

Property 4. limρo→0− G (ρo) = −∞.

Property 5. limρo→+∞G (ρo) = 0.

Properties 3 and 4 show clearly that G (ρo) has a discontinuity at ρo = 0.
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Property 6. Both functions G1 (ρo) and G2 (ρo) in (38) are completely monotonic in the interval

(0,+∞).

Proof: According to [39] and [40], a function F (ρo) is completely monotonic if it satisfies

(−1)n F (n) (ρo) ≥ 0, 0 < ρo <∞,∀n ∈ N, (39)

where F (n) (ρo) is the n-th derivative of F (ρo).

By continuously differentiating G1 (ρo) and G2 (ρo), we see that both functions satisfy the

monotonic condition in (39).

Theorem 3. The COPRA function G (ρo) in (38) has at most two roots in the interval (0,+∞) .

Proof: The proof of Theorem 3 will be conducted in two steps. Firstly, [41], [42] proved

that any completely monotonic function can be approximated by a sum of exponential functions.

That is, if F (ρo) is a completely monotonic, then it can be approximated by

F (ρo) ≈
l∑

i=1

lie
−kiρo , (40)

where l is the number of the terms in the sum, and li and ki are two constants. There always

exists a best uniform approximation of F (ρo) and the error in this approximation gets smaller

as we increase the number of the terms l. However, rather than finding the best number of

the terms or the unknown parameters li and ki, our main concern here is the relation given by

(40). To conclude, both functions G1 (ρo) and G2 (ρo) in (38) can be approximated by a sum of

exponential functions.

Secondly, [43] showed that a sum of exponential functions has at most two intersections

with the abscissa. Consequently, noting that the relation in (38) can be expressed as a sum of

exponential functions, the function G (ρo) has at most two roots in the interval (0,+∞).

Theorem 4. There exists a sufficiently small positive value ε, such that ε � σ2
i , ∀i ∈ [1, n]

where G (ε) = 0 (i.e., ε is a positive root for (38)). However, we are not interested in this root

in the proposed COPRA.

Proof: The proof of Theorem 4 is in Appendix B.
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Theorem 5. A sufficient condition for the function G (ρo) to approach zero from a positive

direction at ρo = +∞ is given by

nTr
(
Σ2bbT

)
> Tr

(
Σ2
n1

)
Tr
(
bbT

)
, (41)

where b = UTy.

Proof: We let b = UTy, as in (38). Given that Σ2 is a diagonal matrix, Σ2 = diag (σ2
1, σ

2
2,· · · , σ2

n),

and from the trace function property, we can replace bbT = UTyyTU in (38) with a diago-

nal matrix bbTd that contains bbT diagonal entries without affecting the result. By defining

bbTd = diag (b21, b
2
2,· · · , b2n), we write (38) as

G (ρo) =
β

ρ4o

n∑

j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

n1∑

i=1

σ2
i(

σ2
i

ρo
+ 1
)2 +

1

ρ3o

n∑

j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

n1∑

i=1

1
(
σ2
i

ρo
+ 1
)2

− β

ρ4o

n∑

j=1

b2j(
σ2
j

ρo
+ 1
)2

n1∑

i=1

σ4
i(

σ2
i

ρo
+ 1
)2 −

1

ρ3o

n∑

j=1

b2j(
σ2
j

ρo
+ 1
)2

n1∑

i=1

σ2
i(

σ2
i

ρo
+ 1
)2 +

n2

ρ3o

n∑

j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2 .

(42)

Then, we use some algebraic manipulations to obtain

G (ρo) =
1

ρ3o

n∑

j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

[
β

ρo

n1∑

i=1

σ2
i(

σ2
i

ρo
+ 1
)2 +

n1∑

i=1

1
(
σ2
i

ρo
+ 1
)2 + n2

]
− 1

ρ3o

n∑

j=1

b2j(
σ2
j

ρo
+ 1
)2×

[
β

ρo

n1∑

i=1

σ4
i(

σ2
i

ρo
+ 1
)2 +

n1∑

i=1

σ2
i(

σ2
i

ρo
+ 1
)2

]
. (43)

Now, evaluating the limit of (43) as ρo → +∞ we obtain

lim
ρo→+∞

G (ρo) =

(
lim

ρo→+∞
1

ρ3o

)[ n∑

j=1

σ2
j b

2
j

(
τβ

n1∑

i=1

σ2
i +

n1∑

i=1

1 + n2

)
−

n∑

j=1

b2j

(
τβ

n1∑

i=1

σ4
i +

n1∑

i=1

σ2
i

)]
,

(44)

where τ = limρo→+∞
1
ρo

. The relation in (44) can be simplified to

lim
ρo→+∞

G (ρo) =

(
lim

ρo→+∞
1

ρ3o

)[ n∑

j=1

σ2
j b

2
j

(
τβ

n1∑

i=1

σ2
i + n

)
−

n∑

j=1

b2j

(
τβ

n1∑

i=1

σ4
i +

n1∑

i=1

σ2
i

)]

(45)

It is clear that (45) is zero; however, the direction from which (45) approaches zero depends on

the sign of the term between the square brackets. For G (ρo) to approach zero from a positive

direction, knowing that the terms independent of τ are the dominants, (41) must hold.
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Theorem 6. If (41) is satisfied, then G (ρo) has a unique positive root in the interval (ε,+∞).

Proof: According to Theorem 3, the function G (ρo) can have no root, one root, or two roots.

We already proved in Theorem 4 (Appendix B) that there exists a significantly small positive

root for the COPRA function at ρo,1 = ε, but we are not interested in this root. Therefore, we

would like to see if there exists a second root for G (ρo) in the interval (ε,+∞).

From Property 3 and Theorem 4, we conclude that the COPRA function has a positive value

before ε, then it switches to negative. The condition in (41) guarantees that G (ρo) approaches

zero from a positive direction as ρo approaches +∞. This means that G (ρo) has an extremum

in the interval (ε,+∞), and this extremum is actually a minimum point. If the point of the

extremum is considered to be ρo,m, then the function increases for ρo > ρo,m until it approaches

the second zero crossing at ρo,2. Since Theorem 3 states clearly that we cannot have more than

two roots, we conclude that we have only one unique positive root over the interval (ε,+∞)

when (41) holds.

A. Finding the root of G (ρo)

To find the positive root of the COPRA function G (ρo) in (38), we use Newton’s method [44].

The function G (ρo) is differentiable in the interval (ε,+∞), and we can obtain the expression

of the first derivative G
′
(ρo) easily. Newton’s method can then be applied in a straightforward

manner to find this root. Starting from an initial value ρn=0
o > ε that is sufficiently small, we

perform the following iterations:

ρn+1
o = ρno −

G (ρno )

G′ (ρno )
. (46)

The iterations stop when |G (ρn+1
o ) | < ξ̄, i.e., where ξ̄ is a sufficiently small positive quantity.

B. Convergence

The convergence of Newton’s method can be easily proved when condition (41) is satisfied.

From Theorem 5, the function G (ρo) always has a negative value in the interval (ε, ρo,2). It is also

clear that G (ρo) is an increasing function in the interval [ρn=0
o , ρo,2]. Thus, starting from ρn=0

o ,

(46) produces a consecutively increasing estimate for ρo. Convergence occurs when G (ρno )→ 0

and ρn+1
o → ρno . When the condition in (41) is not satisfied, the regularization parameter ρo

should be set to ε.
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C. COPRA summary

Our proposed COPRA discussed is summarized in Algorithm 1.

Algorithm 1: COPRA summary

Input : y,A = UΣVT , ξ̃, ρn=0
o , splitting threshold c, ε.

Output: Signal estimate x̂.

1 if (41) is not satisfied then

2 ρo = ε and go to step 11;

3 end

4 Obtain n1 as n1 = maxi[σi ≥ c avg (diag (Σ))], and n2 = n− n1;

5 Σn1 = Σ (1 : n1) ,Σn2 = Σ (n1 + 1 : n) as in (23);

6 Evaluate G (ρn=0
o ) and its derivative G

′
(ρn=0

o ) using (38);

7 while |G (ρno ) | > ξ̃ do

8 Solve (46) to obtain ρn+1
o ;

9 ρno = ρn+1
o ;

10 end

11 Find x̂ using (10);

V. SIMULATION RESULTS

In this section, we perform a comprehensive set of simulations to examine the performance

of the proposed COPRA and compare it with other benchmark regularization methods.

We simulate three different scenarios with an additional fourth scenario presented in [45].

First, we apply the proposed COPRA to a set of nine discrete an ill-posed real-world problems

that are commonly used to test the performance of regularization methods in discrete ill-posed

problems. Second, we illustrate the robustness and broad applicability of COPRA by using it

to estimate the signal x0 when A is a random rank deficient matrix generated as A = 1
n
BBT ,

where B (m× n,m > n) is a random matrix with i.i.d. zero-mean unit variance and Gaussian

random entries. Finally, we restore an image in an ill-posed image tomography problem.5,6

5The MATLAB code of the COPRA is provided at http://www.mohamedasuliman.com/research.html and

http://faculty.kfupm.edu.sa/ee/naffouri/publications.html and

6Another versions of the proposed COPRA are presented in [46], [47] using different assumptions.
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A. Real-world discrete ill-posed problems

We use the Matlab regularization toolbox [48] to generate pairs of a matrix A ∈ R50×50

and a signal x0. The discrete ill-posed test problems provided in the toolbox are derived from

discretizations of Fredholm integral equations as in (4) and they arise in many signal processing

applications.7

Experiment setup: The performance of COPRA is compared with the regularization algorithms

that provide the best performance amogst all the methods discussed in [28]. Precisely, we compare

with quasi-optimal, GCV, L-curve, and LS. The performances are evaluated in terms of the

normalized MSE (NMSE); that is, the MSE normalized by ‖x0‖22. Noise is added to the vector

Ax0 according to the signal-to-noise-ratio (SNR) SNR , ‖Ax0‖22/nσ2
z in order to generate y,

and we set c = 1. The performance is presented in dB as the NMSE (NMSE in dB = 10 log10

(NMSE)) versus SNR and is evaluated over 105 different noise realizations at each SNR value.

Since some regularization methods provide a high unreliable NMSE results that hinder the good

visualization of the NMSE, we set different upper thresholds for the vertical axis in the results

sub-figures.

Fig. 2 shows the results from all the nine selected problems. Each sub-figure specifies the

condition number (CN) of the problem’s matrix. The NMSE curve disappears in certain cases

indicating that these methods performed so poorly that they are out of scale. For example,

the LS NMSE does not show up in any of the tested scenarios, and the NMSE curves of the

quasi-optimal, GCV, and L-curve methods disappear in quite a few cases.

Generally speaking, an estimator offering NMSE > 0 dB is not sufficiently robust. From

Fig. 2, it is clear that COPRA is the most robust estimator, as it is the only approach whose

NMSE performance remains below 0 dB in almost all cases. Comparing NMSE over the whole

range of SNR values, we find that COPRA exhibits the lowest NMSE on average in eight of

the nine test problems. The closest contender to COPRA is the quasi-optimal method. However,

all the methods except CPRA show lack of robustness in certain situations (i.e., high NMSE).

In Fig. 3, we provide the NMSE for the approximation of the perturbation-bound expression

in (27) by (36) for the selected ill-posed problem matrices. The two expressions are evaluated at

each SNR using the suboptimal regularizer in (30). The sub-figures show that the NMSE of the

7For more details regarding the test problems, we refer the reader to [48].



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

SNR [dB]
-10 0 10 20 30

N
M

SE
 [

dB
]

-10

0

10

20

30

40

50

60

LS
GCV
L-curve
Quasi
COPRA

(a) Tomo (CN = 3.2 ×1016).
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(b) Wing (CN = 1.6 ×1018).
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(c) Heat (CN = 2.4 ×1026).

SNR [dB]
-10 0 10 20 30

N
M

SE
 [

dB
]

-2

-1.5

-1

-0.5

0
LS
GCV
L-curve
Quasi
COPRA

(d) Spikes (CN = 4.6 ×1018).
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(e) Baart (CN = 4 ×1017).
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(f) Foxgood (CN = 2.4 ×1018).
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(g) I-Laplace (CN = 3.4 ×1033).
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(h) Deriv2 (CN = 3 ×103).
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(i) Shaw (CN = 2 ×1018).

Fig. 2: Normalized mean-squared error (NMSE) [dB] versus signal-to-noise ratio (SNR) [dB]

(CN ≡ condition number).

approximation is extremely small (less than -20 dB in most cases) and that the error increases

as the SNR increases. The increase of the error with the SNR is discussed in Appendix A.

B. Rank-deficient matrices

In this scenario, a rank-deficient random matrix A is considered. This is the case where

‖Σn2‖ = 0 in (23). This theoretical test is meant to illustrate the robustness of COPRA.

Experiment setup: A random matrix matrix A that satisfies A = 1
50

BBT is generated, where
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Fig. 3: NMSE [dB] versus SNR [dB] between Eq. (27) and Eq. (36) for various matrices A. (a)

Wing problem. (b) Heat problem. (c) Foxgood problem. (d) Deriv2 problem [48].
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(a) x0 ∼ N (0, I) with i.i.d. elements.
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(b) x0 with i.i.d. elements distributed uni-

formly in the interval (0, 1).

Fig. 4: Performance comparison when A = 1
50

BBT , where B ∈ R50×45, Bij ∼ N (0, 1).

B ∈ R50×45, Bij ∼ N (0, 1). The elements of x0 are chosen to be Gaussian i.i.d. with zero-

mean unit variance, and are i.i.d. with uniform distribution within the interval (0, 1). Results are

obtained as an average over 105 different realizations of A, x0, and z.

When the elements of x0 are Gaussian i.i.d., COPRA outperforms the other regularization

methods (Fig. 4). In fact, COPRA is the only approach that provides a NMSE below 0 dB across

the entire SNR range. The other algorithms produce a very high NMSE. The same behavior can

be observed when the elements of x0 are uniformly distributed (Fig. 4(b)). The NMSE of the

LS method (not shown) is above 250 dB in both cases.
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(a) Original. (b) Recieved. (c) COPRA. (d) L-curve. (e) GCV. (f) Quasi.

Fig. 5: Tomography image restoration.

C. Image restoration

In this subsection, we present the visual results of the tomography image restoration.

Experiment setup: The elements of Ax0 represent a line of integrals along direct rays that

penetrate a rectangular field. This field is discretized into n2 cells, and each cell is stored with

its own intensity as an element in the image matrix M. Then, the columns of M are stacked

into x0. The entries of A are generated as

aij =





lij, pixelj ∈ rayi

0 else,

where lij is the length of the ith ray in pixel j. Finally, the rays are placed randomly. A noise

with an SNR of 30 dB is added to the 16 × 16 image and the performance is evaluated as an

average over 106 realizations of the noise and A.

In Fig. 5, we present the original image, the received image, and the images reproduced

by each of the regularization methods. Fig. 5 demonstrates that COPRA outperforms the other

methods by providing a clear image that is very close to the original. A comparison of the

peak signal-to-noise ratios (PSNR) of the algorithms (as in Table I) shows similar results, with

COPRA having the largest PSNR. Moreover, the GCV algorithm provides an inaccurate result,

while the L-curve and quasi-optimal algorithms fail to restore the internal parts clearly, especially

those the parts with colors close to the background color.

TABLE I: PSNR of the algorithms with SNR=30

Method COPRA L-curve GCV Quasi-optimal

PSNR 29.8331 13.6469 10.5410 15.9080
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D. Average runtime

In Fig. 6, we plot the average runtime of each method against the calculated SNR from the

simulation. The figure is a good representation for the runtime of all the problems (no significant

runtime variation between problems has been seen). The figure shows that COPRA is the fastest

algorithm as it has the shortest runtime in compare to all benchmark methods.
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Fig. 6: Average runtime.

VI. CONCLUSIONS

In this paper, we developed a new regularization approach and a new regularization parameter

selection method for linear discrete ill-posed problems. Due to the challenging singular-value

structure of such problems, many regularization approaches fail to provide good stabilized

solutions. In the proposed approach, the singular-value structure of the model matrix is modified

by introducing an artificial perturbation into it. To maintain the fidelity of the model, an upper-

bound constraint is added on the perturbation. The proposed approach minimizes the worst-case

residual error of the estimator and selects a perturbation bound that approximately minimizes the

MSE. Thus, the approach combines the simplicity of the ordinary least-squares criterion with the

robustness of MSE-based estimation. The regularization parameter is obtained as the solution to

a non-linear equation. Simulation results demonstrate that the proposed approach outperforms a

set of benchmark regularization methods over a host of test problems.

APPENDIX A

ERROR ANALYSIS

In this appendix, we analyze the error of the approximation used to obtain (30). To simplify the

analysis, we consider the case when the approximation is applied directly to the MSE function
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given in (29). We start by defining H , Σ2k (Σ2 + ρIn)
−p, whose diagonal entries are written

as

hii =
σ2k
i

(σ2
i + ρ)

p ; i = 1, 2, · · · , n. (A.1)

Note that in our case k = 0 and p = 2 for the diagonal matrix inside the trace function of the

second term in (29). However, we use these two variables to obtain the error expression for the

general case, then we substitute for k and p. By using the inequalities from [35, Eq.(5)], we

obtain

λmin(Rx0)Tr (H) ≤ Tr
(
HVTRx0V

)
≤ λmax(Rx0)Tr (H) . (A.2)

Similarly, we write

λmin (H) Tr (Rx0) ≤ Tr
(
HVTRx0V

)
≤ λmax (H) Tr (Rx0) . (A.3)

Since H is diagonal, λmin (H) = min (diag(H)) and λmax (H) = max (diag(H)). Now, we define

the normalized error of the approximation as

ε =
Tr
(
HVTRx0V

)
− 1

n
Tr (H) Tr (Rx0)

1
n

Tr (H) Tr (Rx0)
. (A.4)

Note that this is not the standard way of defining the normalized error. Typically, the error ε is

normalized by the true quantity, i.e., Tr
(
HVTRx0V

)
. However, this way of defining the error

is more useful for carrying out the following error analysis. Based on (A.4), we see that |ε| ≥ 1

indicates an inaccurate approximation. Although it depends totally on the application, we adopt

|ε| < 1 as the reference for evaluating the accuracy of the approximation. In fact, we can observe

from (A.4) that |ε| = 1 indicates that 1
n

Tr (H) Tr (Rx0) = 0.5 Tr
(
HVTRx0V

)
. To this end, we

derive two bounds based on (A.2) and (A.3). Then, we combine them to obtain the final error

bound.

Absolute error bound based on (A.2): Subtracting 1
n

Tr (H) Tr (Rx0) from (A.2) and dividing

by the same quantity, we obtain

λmin(Rx0)

λavg(Rx0)
− 1 ≤ ε ≤ λmax(Rx0)

λavg(Rx0)
− 1, (A.5)

where λavg(Rx0) , 1
n

Tr (Rx0). Thus, |ε| can be bounded by a positive quantity:

|εx| ≤ µx = max

[
1− λmin(Rx0)

λavg(Rx0)
,
λmax(Rx0)

λavg(Rx0)
− 1

]
. (A.6)
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Absolute error bound based on (A.3): Starting from (A.3), and by applying the same approach

used to obtain (A.6), we derive the second bound as

|εa| ≤ µa = max

[
1− λmin(H)

λavg(H)
,
λmax(H)

λavg(H)
− 1

]
. (A.7)

Using (A.1), wE transform (A.7) into

|εa| ≤ µa = max


1−

min
i

[
σ2k
i

(σ2
i +ρ)

p

]

1
n

∑n
i=1

σ2k
i

(σ2
i +ρ)

p

,
max
i

[
σ2k
i

(σ2
i +ρ)

p

]

1
n

∑n
i=1

σ2k
i

(σ2
i +ρ)

p

− 1


 i = 1, 2, · · · , n. (A.8)

The bound µx depends only on Rx0 , while µa depends on both the singular values of A and the

unknown regularizer ρ. As in our case, k = 0 and p = 2, and therefore, (A.8) can be simplified

to

|εa| ≤ µa = max

[
1−

1
(σ2

1+ρ)
2

1
n

∑n
i=1

1
(σ2

i +ρ)
2

,

1
(σ2

n+ρ)
2

1
n

∑n
i=1

1
(σ2

i +ρ)
2

− 1

]
(A.9)

Combined bound: By combining (A.6) and (A.9), we obtain the final bound on the absolute

error as

|ε| ≤ µ = min (µx, µa) . (A.10)

From (A.6), (A.9), and (A.10), we notice that the bound is the minimum of two independent

bounds. Below, we analyze each bound separately and then derive a conclusion concerning the

overall error bound.

A. Analysis of µx

When x0 is deterministic, λmin(Rx0) = 0, λmax(Rx0) = ||x0||22 and λavg(Rx0) = 1
n
||x0||22. By

substituting in (A.6), we obtain

µx = max [1, n− 1] = n− 1. (A.11)

On the other hand, when x0 is stochastic with i.i.d. elements, λmin(Rx0) = λavg(Rx0) =

λmin(Rx0) = σ2
x0

. As a result,

µx = max [0, 0] = 0, (A.12)

which means that, based on (A.10), the approximation is exact regardless of the contribution of

the error from µa. When the entries of x0 are not i.i.d., µx is very difficult to obtain. Since no

previous knowledge about x0 is assumed in this paper, this bound seems to be very loose for
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a general x0, and we should rely on µa instead to tighten and evaluate the bound of the error.

Thus, the modified bound, which can be larger than the actual bound, is given by

|ε| ≤ µ = µa. (A.13)

B. Analysis of µa

By taking the derivative of each of the two terms inside (A.9) w.r.t. ρ, we can prove that the

two functions are decreasing in ρ. In other words, we obtain the two extreme error bounds (the

largest and the smallest possible value of the absolute error) by analyzing the two extreme SNR

scenarios, i.e., the high SNR regime and the low SNR regime.

1) Analysis of the low SNR regime: In the extreme low SNR regime, we have ρ → ∞.

Therefore, we can obtain the minimum bound on the absolute error. Based on (A.1), we write

hii =
1

(σ2
i + ρ)2

→ 1

ρ2
; i = 1, 2, · · · , n. (A.14)

Consequently, (A.9) boils down after some manipulations to

|εla| ≤ µla = max

[
1−

1
ρ2

1
n

∑n
i=1

1
ρ2

,

1
ρ2

1
n

∑n
i=1

1
ρ2

− 1

]

= max

[
1− n∑n

i=1 1
,

n∑n
i=1 1

− 1

]
= 0. (A.15)

The result in (A.15) indicates that the approximation becomes more accurate as the SNR

decreases. In the extreme low SNR regime (i.e., ρ → ∞), the absolute error is zero and the

approximated term is exactly equal to the original one.

2) Analysis of the high SNR regime: With extremely high SNR, ρ is sufficiently small.

Therefore, doing an analysis allows us to obtain the upper worst-case value possible for ε.

Based on [49], there always exists a positive regularizer ρ > 0 such that the regularized

estimator offers a lower MSE than the OLS estimator. This also applies to well-conditioned

problems. However, if the condition number is too small, both the regularization parameter and

the corresponding improvement in the MSE performance is to small compared to that of the

OLS estimator. Therefore, we conclude that, ρ converges to a minimum value ρmin for extremely

high SNRs. In what follows, we find a lower-bound expression for ρmin and examine the absolute

error in this value.
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Starting from the definition of SNR, we can write

SNR =
||Ax0||22
||z||22

. (A.16)

Applying the SVD of A to (A.16) and then doing some algebraic manipulations, we obtain

SNR =
Tr
(
VΣ2VTRx0

)

nσ2
z

, (A.17)

where Rx0 = x0x
T
0 . Now, using (A.17) with the suboptimal regularizer ρo expression from (30),

we write

ρo =
1

SNR

Tr
(
VΣ2VTRx0

)

Tr (Rx0)
. (A.18)

From (A.18), we deduce the minimum achievable suboptimal regularizer ρmin depends on the

maximum SNR (i.e., SNRmax) for a given A and x0. That is

ρmin =
1

SNRmax

Tr
(
VΣ2VTRx0

)

Tr (Rx0)
. (A.19)

Given the nature of ill-posed problems and their singular values behavior, we partition Σ and

V into two sub-matrices (as in Section II-C), and then approximate (A.19) as

ρmin ≈
1

SNRmax

Tr
(
Vn1Σ

2
n1V

T
n1Rx0

)

Tr (Rx0)
, (A.20)

where Σ2
n1 = diag (σ2

1, . . . , σ
2
n1). The value of ρmin in (A.20) can be bounded by

σ2
n1

SNRmax

Tr
(
VT
n1Rx0Vn1

)

Tr (Rx0)
≤ ρmin ≤

σ2
1

SNRmax

Tr
(
VT
n1Rx0Vn1

)

Tr (Rx0)
(A.21)

Since we are considering the worst-case upper bound for the absolute error, and given that

this absolute error increases as ρ decreases, we consider the lower bound of ρmin as in (A.21).

Moreover, based on the unitary matrix property and the partitioning of V, we obtain a lower

bound for the lower bound in (A.21) as

ρmin ≥
σ2
n1

SNRmax

Tr
(
VT
n1Rx0Vn1

)

Tr (Rx0)
≥ σ2

n1

SNRmax

Tr (Rx0)

Tr (Rx0)
. (A.22)

Thus, a lower bound for ρmin (i.e., ρlmin) can be written as

ρlmin =
σ2
n1

SNRmax
. (A.23)

Now we are ready to study the behavior of the error in the high SNR regime. When ρ→ ρlmin,

(A.9) can be written as

|εha| ≤ max


1−

1
(σ2

1+ρ
l
min)

2

1
n

∑n−1
i=0

1
(σ2

i +ρ
l
min)

2

,

1
(σ2

n+ρ
l
min)

2

1
n

∑n−1
i=0

1
(σ2

i +ρ
l
min)

2

− 1


 . (A.24)
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To evaluate (A.24), we rely on numerical results. First, we consider SNRmax = 40 dB, which is

a realistic upper value in many signal processing and communication applications. Substituting

this value in (A.23), we find that ρlmin = 0.018σ2
n1. By substituting the result in (A.24), and

evaluating the expression for the nine ill-posed problems described in Section V, we find that

|εha| ≤ µha ≈ 1. As this represents the worst-case upper value for the absolute error, we find

|εha| ≤ %; % < 1. (A.25)

Finally, based on (A.10) and (A.13), and by combining (A.15) and (A.25), we conclude that

|ε| ∈ [0, %]; % < 1. (A.26)

which indicates that 1
n

Tr (H) Tr (Rx0) = q Tr
(
HVTRx0V

)
where q ∈ (0.5, 1].

APPENDIX B

PROOF OF THEOREM 4

We are interested in studying the behavior of limρo→εG (ρo), assuming that ε is sufficiently

small positive number (i.e., ε → 0+), and ε � σ2
i , ∀i ∈ [1, n]. Starting from COPRA function

in (38), and by defining b = UTy, we write

G (ρo) =
n∑

i=1

σ2
i b

2
i

(σ2
i + ρo)

2

n1∑

j=1

(
βσ2

j + ρo

)
(
σ2
j + ρo

)2 −
n∑

i=1

b2i

(σ2
i + ρo)

2

n1∑

j=1

σ2
j

(
βσ2

j + ρo

)
(
σ2
j + ρo

)2 +
n2

ρo

n∑

i=1

σ2
i b

2
i

(σ2
i + ρo)

2 .

(B.1)

Given how we choose ε, Eq. (B.1) can be approximated as

G (ε) ≈ β
n∑

i=1

σ−2i b2i

n1∑

j=1

σ−2j − βn1

n∑

i=1

σ−4i b2i +
n2

ε

n∑

i=1

σ−2i b2i . (B.2)

Solving G (ε) = 0 from (B.2) leads to the following root:

ε =
n2

∑n
i=1 σ

−2
i b2i

βn1

∑n
i=1 σ

−4
i b2i − β

∑n
i=1 σ

−2
i b2i

∑n1

j=1 σ
−2
j

. (B.3)

Now, we determine if the root defined by (B.3) is positive. For (B.3) to be positive, the following

relation should hold:

n1

n∑

i=1

σ−4i b2i ≥
n∑

i=1

σ−2i b2i

n1∑

j=1

σ−2j . (B.4)

Starting from the right-hand side of (B.4), and with σ1 ≥· · · ≥ σn, we bound this term as
n∑

i=1

σ−2i b2i

n1∑

j=1

σ−2j ≤ σ−2n1

n∑

i=1

σ−2i b2i

n1∑

j=1

1 = n1σ
−2
n1

n∑

i=1

σ−2i b2i . (B.5)
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However, given how we choose n1 and n2, we also have
n∑

i=n1+1

σ−2i ≥
n1∑

i=1

σ−2i , (B.6)

which helps us to bound the left-hand side of (B.4) as

n1

n∑

i=1

σ−4i b2i ≥ n1σ
−2
n1

n∑

i=1

σ−2i b2i . (B.7)

From (B.5) and (B.7), we find that the lower bound for the left-hand side of (B.4) is equal to

the upper bound of its right-hand side. Then, we can conclude from these two relations that

n1

n∑

i=1

σ−4i b2i ≥
n∑

i=1

σ−2i b2i

n1∑

j=1

σ−2j . (B.8)

Thus, ε is a positive root for the COPRA function in (38).

Next, we would like to know if ε can be considered as a value for our regularization parameter.

A direct way to show that can be deduced from the fact that having ε � σ2
i ∀i ∈ [1, n] will

not provide any regularization to the problem. Hence, the RLS estimator in (7) converges to the

OLS in (3).

As a remark, we assume that the approximation in (B.2) is uniform, such that it does not

affect the position of the roots. Therefore, we can claim that this root is not coming from the

negative region of the axis. In fact, we can easily prove that (B.1) does not have a negative root

that is close to zero. Thus, this root does not come from the negative region as a result of this

function approximation (i.e., perturbed root).
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