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We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory
systems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies
in finding the best rational approximation for the scalar sign function, which also corresponds to the polar
factor for symmetric matrices, to further accelerate the QDWH convergence. Based on the Zolotarev rational
functions—introduced by Zolotarev (ZOLO) in 1877— this new PD algorithm ZOLO-PD converges within two
iterations even for ill-conditioned matrices, instead of the original six iterations needed for QDWH. ZOLO-PD
uses the property of Zolotarev functions that optimality is maintained when two functions are composed in
an appropriate manner. The resulting ZOLO-PD has a convergence rate up to seventeen, in contrast to the
cubic convergence rate for QDWH. This comes at the price of higher arithmetic costs and memory footprint.
These extra floating-point operations can, however, be processed in an embarrassingly parallel fashion. We
demonstrate performance using up to 102, 400 cores on two supercomputers. We demonstrate that, in the
presence of a large number of processing units, ZOLO-PD is able to outperform QDWH by up to 2.3X speedup,
especially in situations where QDWH runs out of work, for instance, in the strong scaling mode of operation.
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1 INTRODUCTION
Today’s hardware landscape has persuaded computational scientists to rethink their underlying
mathematical algorithms in order to take advantage of ever-increasing single node core counts
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for maximizing performance. For instance, Intel Knights Landing provides up to 72 cores with
potentially 288 threads when hyperthreading is enabled, while NVIDIA has just announced a new
GPU codenamed Volta with 84 streaming multiprocessors. While the scientific community has
routinely enjoyed weak scaling across the entire system for the last two decades, the shrinking
single chip memory per core ratio has exposed the vulnerability of the distributed-memory only
execution model. Hybrid algorithmic adaptations that embrace strong scaling within a node have
become critical to harvesting latent hardware capability, especially moving towards the exascale
frontier [5].
Given this challenging apparatus, we redesign the distributed-memory implementation of the

polar decomposition (PD) for dense matrices, a fundamental matrix decomposition revealing the
nearest orthogonal matrix [10, Ch. 8], and more recently used as the building block for spectral
divide-and-conquer algorithms to compute the singular value decomposition (SVD) of a general
nonsymmetric matrix as well as the eigenvalue decomposition (EIG) for Hermitian matrices. These
aforementioned matrix decompositions represent some of the main linear algebra algorithms re-
quired for a broad class of scientific applications [8, 9, 25]. Originally introduced by Nakatsukasa and
Higham [18], the current PD employs the inverse-free, iterative QR-based Dynamically Weighted
Halley (QDWH) algorithm. QDWH relies on conventional dense linear algebra operations such as
QR/Cholesky factorizations and matrix-matrix operations, Level 3 BLAS compute-bound kernels,
and are all widely available in vendors’ optimized numerical libraries. Although QDWH is optimized
for reducing data movement and uses computationally intensive numerical kernels, its SVD solver
variant may perform, for instance, up to three times more floating-point operations (flops) than the
standard SVD solver based on reduction to bidiagonal form, as implemented in the ScaLAPACK
library [3]. This may sound prohibitive, but in practice, these extra flops are compensated by very
efficient and high concurrency numerical kernel executions, as demonstrated in the first high
performance distributed-memory QDWH implementation [21, 24]. The corresponding open-source
software release is freely available at https://github.com/ecrc/qdwh.

Herein, we describe a novel high performance PD implementation, an algorithm introduced by
Nakatsukasa and Freund [16], which is a higher-order variant of QDWH. It uses the best rational
approximation to the sign function (Zolotarev functions) derived by Zolotarev (ZOLO-PD) [27],
along with its remarkable property that composing two Zolotarev functions appropriately results in
another Zolotarev function, of much higher degree. In fact, this new ZOLO-PD algorithm converges
within two iterations in double precision, for matrices with condition number ≤ 1015, instead of
the original six iterations, as seen in QDWH. The resulting ZOLO-PD convergence rate is up to
seventeen, more than five times the cubic convergence rate observed for QDWH. However, there is
no free lunch: this comes at the price of higher arithmetic costs and memory footprint than QDWH
for the polar decomposition. These extra flops may however be processed in an embarrassingly
parallel fashion. This naturally strong scaling algorithm is therefore well-suited for exploiting high
granularity computing resources, as already exhibited by the current fastest supercomputer in the
world [1] with more than 10 million cores.

Our new high performance ZOLO-PD implementation relies on ScaLAPACK [3] and its inherent
two-dimensional block cyclic data distribution to scatter the matrix over the memories of remote
nodes while reducing the impact of load imbalance. ZOLO-PD is able to excel in situations where
QDWH runs out of work in the context of strong scaling experiments. Our experiments demonstrate
that ZOLO-PD is able to outperform QDWH by up to 2.3X speedup using a Cray XC40 system on
3200 Intel two-socket 16-core Haswell nodes with a total of 102, 400 cores.
The remainder of the paper is organized as follows. Section 2 provides a literature review for

the current PD algorithms and their corresponding implementations. Section 3 briefly recalls the
main algorithmic phases of the QDWH algorithm. Section 4 describes the ZOLO-PD algorithm and
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Section 5 highlights its high performance implementation. Section 6 details the ZOLO-PD algo-
rithmic complexity and memory footprint and compares them against QDWH. Section 7 presents
numerical accuracy, performance, profiling and scalability results. We conclude in Section 8.

2 RELATEDWORK
Polar decomposition (PD) algorithms have been investigated intensively in terms of convergence
theory, stability and accuracy [4, 6, 7, 11–14]. Classical algorithms include one via the SVD (which is
clearly too expensive; the opposite direction of using PD for computing SVD is of current interest),
and the scaled Newton method [4, 10], which involves explicit matrix inverses (so directly applicable
only to square matrices) and is less accurate than QDWH for large matrices [16]. Other less efficient
methods, such as Padé iterations, are detailed in [10, Ch. 9].

More recently, its iterative, inverse-free QR-based Dynamically Weighted Halley (QDWH) vari-
ant [15, 18] has enhanced the popularity of the PD algorithm in scientific computing with its
inverse-free and communication-minimizing nature, together with a cubic convergence rate in
addition to a favorable hardware landscape, thanks to the technology scaling (i.e., wider vector
units).

Moreover, as described in [18], QDWH can be used as a building block for the dense symmetric
eigensolver and singular value decomposition [9, 25], which represents a pathfinder toward future
research directions. In fact, the first high performance QDWH implementation and its SVD variant
were performed on hardware accelerators [23] and distributed-memory systems [21, 24], where
the calculation of the polar factor is the most-time consuming phase. Performance results reported
show a decent speedup against state-of-the-art SVD solvers.
Around the same time, QDWH was also developed in the high performance software library

Elemental [19] on distributed-memory systems. Furthermore, a task-based QDWH has been imple-
mented on various shared-memory hardware architectures [22] using fine-grained computational
kernels associated with the StarPU dynamic runtime system [2]. The latter task-based QDWH
implementation has shown performance enhancements against QDWH from Elemental and Intel
MKL, while ensuring software portability across a wide range of x86, PowerPC and GPU-based
systems. Last but not least, the authors in [16] have introduced the ZOLO-PD algorithm, which is
projected to further improve the parallel performance, thanks to the high concurrency exposed
by the ZOLO-PD algorithm. In [16], however, only MATLAB experiments are presented, with an
actual parallel implementation left as future work.

In this paper, we describe, design and implement the ZOLO-PD algorithm on two large distributed-
memory systems.

3 THE QDWH-BASED POLAR DECOMPOSITION ALGORITHM
The polar decomposition (PD) of the matrix A ∈ Cm×n (m ≥ n) is written A = UpH , whereUp has
orthonormal columns and H =

√
A∗A is a symmetric positive semidefinite matrix. To find the polar

decomposition, the original dynamically weighted iteration can be derived as follows:
X0 = A/α ,

Xk+1 = Xk (ak I + bkX
∗
kXk ) (I + ckX

∗
kXk )

−1.
(1)

In particular, choosing (ak = 3,bk = 1, ck = 3) reduces (1) to the Halley iteration. In the QDWH
algorithm, the scalars (ak ,bk , ck ) are dynamically chosen instead, to speed up the convergence [15].
After k iterations of (2), the singular values Σk of Xk are mapped to Σk = Rk (. . .R2 (R1 (Σ))), where
Rk (x ) = x ak+bkx 2

1+ckx 2 is a scaled Zolotarev function (best rational approximant to the sign function on
[−1,−ℓk ]∪ [ℓk−1, 1]) of type (3, 2), denoted by Z3 (x ; ℓk−1), where ℓ0 = 1/κ2 (A) (or its estimate) and
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ℓk = Rk (ℓk−1). Remarkably, the rational function Rk (. . .R2 (R1 (Σ)))) is again a Zolotarev function,
of much higher type (3k , 3k −1). Together with the exponential convergence of Zolotarev functions,
QDWH converges in at most six iterations, in double precision for matrices with κ2 (A) ≤ 1015.
The iterates (1) can be computed using the mathematically equivalent but numerically more

stable QR-based implementation [18]:
[√

ckXk
I

]
=

[
Q1
Q2

]
R,

Xk+1 =
bk
ck

Xk +
1
√
ck

(
ak −

bk
ck

)
Q1Q

∗
2 .

(2)

This uses the fact [10, p. 219] that cX (I + c2X ∗X )−1 = Q1Q
∗
2 , where

[
cX
I

]
=

[
Q1
Q2

]
R is the QR

decomposition, where X ,Q ∈ Rm×n and Q2,R ∈ R
n×n . This represents the QR-based Dynamically

Weighted Halley (QDWH) algorithm. Further details can be found in [16].
Finally, after a few QDWH iterations, (2) can be replaced with a lower-cost Cholesky-based

iteration, since Xk becomes well-conditioned:

Xk+1 =
bk
ck

Xk +

(
ak −

bk
ck

)
(XkW

−1
k )W −∗

k ,

Wk = chol(Zk ), Zk = I + ckX
∗
kXk .

(3)

All in all, the QDWH algorithm performs up to six successive QR/Cholesky-based iterations,
depending on the original matrix condition number, see [18] for further details.

4 THE ZOLO-BASED POLAR DECOMPOSITION ALGORITHM
The main idea behind the ZOLO-PD algorithm is to generalize the rational approximant underlying
the QDWH iterations. Surprisingly, this also results in an opportunity to parallelize the overall PD
procedure across iterations.

Once we view the QDWH iterates as a composition of type (3, 2) Zolotarev functions, a natural
idea is to use Zolotarev functions of higher type (2r + 1, 2r ) for an integer r ≥ 1. As derived
by Zolotarev, the type (2r + 1, 2r ) Zolotarev function (the best rational approximant to the sign
function) on [−1,−ℓ] ∪ [l , ℓ] is

Z2r+1 (x ; ℓ) = MxΠr
j=1

x2 + c2j

x2 + c2j−1
, (4)

whereM > 0 and satisfies the following:

1 − Z2r+1 (1; ℓ) = −(1 − Z2r+1 (l ; ℓ)).

The scalars c1, c2, . . . , c2r can be computed using the Jacobi elliptic functions sn(u; ℓ′), cn(u; ℓ′).
Evaluating Z2r+1 (x ; ℓ) at a matrix argument X to obtain UZ2r+1 (Σ; ℓ)V ∗ where X = U ΣV ∗ is the
SVD can be done by

Z2r+1 (X ; ℓ) = MXΠr
j=1 (X

∗X + c2j I ) (X
∗X + c2j−1I )

−1.

We rewrite this in partial fraction form, to improve the degree of parallelism: we can find aj ∈ R
such that

Z2r+1 (X ; ℓ) = M (X + Σrj=1ajX (X ∗X + c2j−1I )
−1). (5)
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Again, Z2r+1 (X ; ℓ) in (5) can be computed stably as
[

X
√
c2j−1I

]
=

[
Q j1
Q j2

]
R j ,

Z2r+1 (X ; ℓ) = X + Σrj=1
aj
√
c2j−1

Q j1Q
∗
j2.

(6)

This represents a number of r embarrassingly parallelQR factorizations and matrix-matrix multipli-
cationsQ j1Q

∗
j2. The upshot of ZOLO-PD is that by taking r = 8, we obtain ∥Z2r+1 (Z2r+1 (A; ℓ0); ℓ1)−

Up ∥ ≤ 10−15 for any A with κ2 (A) ≤ 1012, implying that convergence is attained in just two steps.
Similar to the QDWH algorithm, the QR iterations in (6) can be reformulated as Cholesky-based

iterations with a lower arithmetic cost, as in (3), once Xk is well-conditioned. This condition is
already satisfied at the second iteration even for ill-conditioned matrices.
All in all, the ZOLO-PD algorithm can be seen as a generalization of QDWH into a series of

independent QDWH subproblems with only two iterations per subproblem, instead of the original
six iterations, as mentioned in Section 3.

5 IMPLEMENTATION DETAILS
Our high performance ZOLO-PD implementation relies on the ScaLAPACK library [3]. Algorithm 1
presents the ZOLO-PD pseudo-code. ScaLAPACK uses the two-dimensional block cyclic data
distribution (2D_BCDD) to scatter the matrices across remote main memory’s nodes. The internal
block size has been set to 64, which is a typical value for tuning most of the dense linear algebra
operations occurring in the ZOLO-PD algorithm. ScaLAPACK relies on the Basic Linear Algebra
Communication Subprograms (BLACS) library, which is in charge of abstracting data movements
through the traditional MPI functions.

The pseudo-code can be split into four computational phases:

(1) line 1 - line 19: this phase initializes the two-dimensional grid of processors and instantiates
two contexts from the BLACS library. These contexts help in defining processor group, similar
to the group concept in MPI with its corresponding communicator. The ictxt_all context
is used when all processors have to collaboratively participate in the same operation. The
ictxt_local context is used only when subgroups of processors have to participate in a given
operation. These subgroups are defined by a mapping array from line 10 to line 16. This latter
context ensures embarrassingly parallel PD iterations.

(2) line 20 - line 36: this phase estimates the condition number cond of the input matrix. This
determines how many iterations are necessary per subproblems. It also sets the group_id for
each MPI process. It is then is used to identify to which group each MPI process belongs to.

(3) line 37 - line 110: this phase executes the bulk of the ZOLO-PD computation. After solving
for the Zolotarev rational functions, the processor subgroups simultaneously perform either
a QR or a Cholesky-based iteration depending on the condition number cond (line 50 - line
60). The matrix condition number cond of the iterate is then updated for the next iteration.
There are then two communication steps: a gather and accumulate step (line 68 - line 94),
which is similar to MPI_Reduce using the MPI_SUM operation mode, is first performed across
all subgroups to a root subgroup, followed by a broadcast step (line 95 - line 110) from the
root subgroup to all other subgroups. These two communication steps are both handled and
encapsulated within the BLACS pdgemr2d routine. After these two steps, all subgroups are
ready to launch the second and last iteration, in case the matrix is ill-conditioned, or to stop
the iteration procedure otherwise.
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Algorithm 1 Distributed-memory ZOLO-PD Pseudo-Code based on ScaLAPACK.

1: ▷ Set the block size
2: nb = 64
3: Cblacs_get( -1, 0, ictxt_all );
4: Cblacs_gridinit( ictxt_all, "R", nprow_all, npcol_all );
5: Cblacs_gridinfo( ictxt_all, nprow_all, npcol_all, myrow, mycol );

▷ Map processes to different context to solve independent nbprob
problems in parallel

6: int *imap = (int *)malloc(nprow*npcol*sizeof(int));
7: int *ictxt_id = (int *)malloc(nbprob*sizeof(int));
8: memset(ictxt_id, -1, nbprob* sizeof(int));
9: k = 0;
10: for i = 0; i < nprow; i++ do
11: for j = 0; j < npcol; j++ do
12: *(imap + i + j * nprow) = nprow*npcol*(int)(myrank_mpi /

(nprow*npcol)) + k;
13: k = k + 1;
14: end for
15: end for
16: Cblacs_get(0, 0, ictxt_local);
17: Cblacs_gridmap(ictxt_local, imap, nprow, nprow, npcol);
18: Cblacs_gridinfo(ictxt_local, nprow, npcol, myrow, mycol);
19: *(ictxt_id + (int)(myrank_mpi / (nprow*npcol))) = ictxt_local;

▷ Initialize data structures using the 2D-BCDD descinit()
▷ Estimate the condition number

20: pdlacpy(A, descA, B, descB, ictxt_all);
21: pdgetrf(B, descB, ictxt_all);
22: pdgecon(B, descB, alpha, ictxt_all);
23: pdlacpy(A, descA, X, descX, ictxt_local);
24: pdlascl(X, descX, α , ictxt_local), α ≈ ∥A∥2 ;
25: k = 1; Li = β ∗ α ;
26: cond = 1/Li;

▷ Determine the number of independent problems m_zol to be
solved in parallel

27: choosem(cond , m_zol);
▷ Determine the number of required iterations based on the cond

28: if cond < 2 then
29: num_while_itr = 1;
30: else
31: num_while_itr = 2;
32: end if
33: group_id = (int)(myrank_mpi / (nprow * npcol));
34: if дroup_id == 0 then
35: descinit(nb, nb, U_ac, descU_ac); Fill_in(U_ac, descU_ac);
36: end if

▷ Compute the polar decomposition A = UpH using ZOLO-PD
37: c = (double *)malloc(2 * m_zol * sizeof(double));
38: it = 0;
39: while it < num_while_itr do
40: pdlacpy( X, descX, B, descB, ictxt_local);
41: it = it + 1;
42: kp = 1/cond ;
43: alpha = acos (kp );

▷ Compute the scalars for each subproblem using ELLIPKE Com-
plete elliptic integral and mELLIPJ Jacobi elliptic functions

44: mellipke( ictxt_local, K);
45: for ii = 1; ii ≤ (2 * m_zol); ii++) do
46: mellipj(ii * K / (2 * m_zol+1),ictxt_local, sn, cn, tn);
47: c[ii-1] = (sn * sn)/(cn * cn);
48: end for
49: compute (c, maxc);
50: if it ≤ 1 & & maxc > 1e2) then

▷ QR-based iterations

51: C =
[
sqr t (c[2 ∗ ii − 2])I

B

]
;

52: pdgeqrf (C, descC, tau, ictxt_local);
53: pdorgqr (C, descC, tau, ictxt_local);

▷ Compute Xk from Xk−1

54: pdgemm(C(1:m, :), descC, C(m:m+n, :), descC, X, descX, ictxt_local)
;

55: else
▷ Cholesky-based iterations

56: pdlaset(C, descC, 0.0, 1.0, ictxt_local);
57: pdgemm(B, descB, B, descB, C, descC, ictxt_local);
58: pdposv(C, descC, B, descB, ictxt_local);

▷ Compute Xk from Xk−1
59: pdgeam(B, descB, X, descX, ictxt_local);
60: end if
61: k = k + 1;
62: ff_1 = 1.; ff_cond = cond;
63: for i=1; i ≤ m; i++ do
64: ff_1 = ff_1 * (1.+c[2 * i-1])/(1.+c[2 * i-2]);
65: ff_cond = ff_cond * (cond * cond+c[2 * i-1])/(cond * cond+c[2 * i-2]);
66: end for
67: cond = max(ff_cond/ff_1,1);

▷ Gather and accumulate the computed U to U_ac on the group_id =
0

68: if group_id == 0 then
69: descX[1] = -1;
70: for j=1; j <nbprob; j++ do
71: if group_id , 0 & & group_id != j then
72: descX[1] = -1;
73: end if
74: pdgemr2d(M, N, X, i1, i1, descX, U_ac, i1, i1, descU_ac, ctxt_all);
75: if group_id != 0 & & group_id != j then
76: descX[1] = ictxt;
77: end if
78: if group_id == 0 then
79: descX[1] = ictxt;
80: pdgeadd(alpha, U_ac, descU_ac, alpha, X, descX, ic-

txt_local);
81: descX[1] = -1;
82: end if
83: end for
84: end if
85: if group_id == 0 then
86: descX[1] = ictxt;
87: alpha = 1.0;
88: pdlascl( ff_1, alpha, X, descX, ictxt_local);
89: if (symm) then
90: pdlacpy( X, descX, B, descB, ictxt_local);
91: alpha = 0.5;
92: pdgeadd ( alpha, B, descB, alpha, X, descX, ictxt_local);
93: end if
94: end if

▷ Broadcast the new U_ac on group_id = 0 to the different subgroup
contexts

95: if group_id == 0 then
96: pdlacpy(X, descX, U_ac, descU_ac, ictxt_local);
97: descX[1] = -1;
98: end if
99: descX[1] = ictxt;
100: for j=1; j < nbprob; j++ do
101: if group_id , j then
102: descX[1] = -1;
103: end if
104: pdgemr2d(M, N, U_ac, i1, i1, descU_ac, X, i1, i1, descX, ctxt_all);
105: if group_id , j then
106: descX[1] = ictxt;
107: end if
108: end for
109: descX[1] = ictxt;
110: end while

▷ Compute the Hermitian factor of A
111: pdgemm(X, descX, A, descA, H, descH, ictxt_all);
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(4) line 111: once the PD iteration procedure has converged to the polar factor, the Hermitian
factor is then calculated.

All processes jointly participate in the first, second and fourth computational phases. The third
phase involves all processes, however, they have to split into processor subgroups to operate
independently from each other in the PD iterations, resulting in less processing units per PD
iterations than QDWH.

6 ALGORITHMIC COMPLEXITY AND MEMORY FOOTPRINT
In this section, we compare the algorithmic complexity of the QDWH algorithm against the ZOLO-
PD algorithmic variants with successive or independent PD iterations. We consider square matrices
A ∈ Cn×n for simplicity; the algorithms are directly applicable to rectangular matrices.

The condition number estimate L0 can be calculated using the LU factorization, which requires
2
3n

3, followed by a few triangular solvers, which costO (n2) flops. As shown in (2) and (6) for QDWH
and ZOLO-PD, respectively, the QR-based PD iteration requires the QR factorization of 2n × n

matrix for a cost of (3+ 1
3 )n

3 flops. Then, forming
[
Q1
Q2

]
explicitly, needs (3+ 1

3 )n
3 flops. The product

Q1Q
∗
2 additionally needs 2n3 flops. Therefore, the arithmetic cost of each QR-based iteration is

(8 + 2
3 )n

3 flops 1. For the Cholesky-based PD iteration in (3), matrix-matrix multiplication involves
2n3, the Cholesky factorization needs 1

3n
3, and solving two linear systems requires 2n3. Therefore,

the arithmetic cost of a Cholesky-based iteration (3) is (3 + 1
3 )n

3 per iteration. Computing the
positive semidefinite matrix H = U ∗pA requires 2n3.

Hence, the overall cost of QDWH is

#f lops =23n
3 + (8 + 2

3 )n
3 × #itQR

+(3 + 1
3 )n

3 × #itChol

+2n3,

(7)

where #itQR and #itChol correspond to the number of QR-based and Cholesky-based iterations,
respectively.

The cost of ZOLO-PD is
2
3n

3 + (8 + 2
3 )n

3 × r + (3 + 1
3 )n

3 × r + 2n3, (8)

where the total number of iterations is 2 (#itQR=1 and #itChol=1), and r = 1, . . . , 7, 8 is the number
of independent problems to be solved in an embarrassingly parallel fashion at each iteration, as we
mentioned above. As shown in (6), ZOLO-PD solves r embarrassing parallel factorizations, and
along the critical path, the arithmetic cost of ZOLO-PD is

2
3n

3 + (8 + 2
3 )n

3 + (3 + 1
3 )n

3 + 2n3. (9)

For ill-conditioned matrices with condition number κ = 1012, QDWH requires 2 QR-based
iterations followed by 4 Cholesky-based iterations, and ZOLO-PD needs two successive iterations
with r = 8. As far as memory footprint is concerned, there is a trade-off between degree of
parallelism and memory allocation. Executing ZOLO-PD with independent problems obviously
requires as many distinct data structures to operate on as the number of problems. The following
table summarizes and compares the flop count and memory footprint of QDWH and ZOLO-PD
1The flop counts here are different from [16] since the counting here does not exploit the symmetry and the identity
structure in the bottom block.
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for matrices with κ = 1012. QDWH performs around 2.2 times more flops than the parallel ZOLO-

Table 1. Algorithmic complexity and memory footprint for various PD algorithms with κ2 (A) = 1012.

Successive Independent
QDWH ZOLO-PD ZOLO-PD

# QR-based iterations 2 8 1
# Cholesky-based iterations 4 8 1
Algorithmic complexity 33n3 100n3 15 n3
Memory footprint 6n2 6n2 48n2

PD version, but this assumes again that there are enough compute and memory resources to
simultaneously execute the independent problems on the targeted system.

7 PERFORMANCE RESULTS
This section highlights the comprehensive experimental results and reports numerical accuracy,
performance, speedup, profiling and scalability results.

7.1 Apparatus
Our experiments have been conducted on a Cray XC40 system codenamed Shaheen-2, installed at
the KAUST Supercomputing Laboratory (KSL), with the Cray Aries network interconnect, which
implements a Dragonfly network topology. It has 6174 compute nodes, each with two-socket
Intel Haswell 16-cores running at 2.3GHz and 128GB of DDR3 main memory. We use the vendor
ScaLAPACK library from the optimized Cray LibSci numerical library with an internal block size
of 64 and the Cray MPICH library. The second test system codenamed Crystal is still a Cray XC
but now featuring compute nodes with two-socket Intel Broadwell processors each. The core
counts of the Broadwell processors range from 18 to 22, i.e., from 36 to 44 per node, with the
majority of processors having 18 cores. The base frequency is 2.1GHz and both processors on a
node share 128GB of DDR4 memory. We use only 32 cores per compute node, which are evenly
distributed among the two sockets in order to properly compare the experiments between both
systems. Similarly, the Cray LibSci and MPICH libraries are used. The work load managers on
Shaheen-2 and Crystal are native SLRUM and Moab/TORQUE+ALPS, respectively. Hugepages are
employed on both systems to improve memory accesses and communication. While Shaheen-2
is a shared resource with many users during the experiments, Crystal is used exclusively for this
purpose.

Our code is written in C programming language, is purely MPI, and is linked against sequential
Intel Math Kernel Library for single core high performance. This MPI-only programming model
turns out to be the best performing configuration for our ScaLAPACK-based code, as also seen
in previous works [21, 24]. We compile our code with the Intel compiler suites v15.0.2.164 and
v17.0.4.196 on Shaheen-2 and Crystal, respectively. We have generated only ill-conditioned matrices,
which are the most challenging numerically, using the pdmatgen ScaLAPACK routine with a
condition number κ = 1012. All computations are performed in double precision arithmetic. All
experiments have been run five times and only the minimum time to solution is reported for
each test case. The studied matrix sizes are selected within the range from 20K to 70K to create
opportunities for strong scaling mode of operation, for which ZOLO-PD may demonstrate its
potential.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Massively Parallel Polar Decomposition on Distributed-Memory Systems 1:9

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

O
rt

h
o
g
o
n
a
lit

y
 o

f 
U

Matrix size

ZOLO-PD

QDWH

(a) Orthogonality of Up on 200
nodes.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

O
rt

h
o
g
o
n
a
lit

y
 o

f 
U

Matrix size

ZOLO-PD

QDWH

(b) Orthogonality of Up on 400
nodes.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

O
rt

h
o
g
o
n
a
lit

y
 o

f 
U

Matrix size

ZOLO-PD

QDWH

(c) Orthogonality of Up on 800
nodes.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

A
c
c
u
ra

c
y
 o

f 
U

H

Matrix size

ZOLO-PD

QDWH

(d) Accuracy ofUpH on 200 nodes.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

A
c
c
u
ra

c
y
 o

f 
U

H

Matrix size

ZOLO-PD

QDWH

(e) Accuracy ofUpH on 400 nodes.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

10
k

20
k

30
k

40
k

50
k

60
k

70
k

A
c
c
u
ra

c
y
 o

f 
U

H

Matrix size

ZOLO-PD

QDWH

(f) Accuracy ofUpH on 800 nodes.

Fig. 1. Assessing the numerical accuracy/robustness of QDWH and ZOLO-PD on Shaheen-2.
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Fig. 2. Assessing the numerical accuracy/robustness of QDWH and ZOLO-PD on Crystal.
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7.2 Numerical Accuracy
Before focusing on the performance results, it is crucial to check on the numerical accuracy and
stability of the ZOLO-PD algorithm compared to the QDWH implementation. Figures 1 and 2
show the numerical assessment by checking on the orthogonality of the polar factor as well as the
backward error using 200, 400 and 800 nodes, on Shaheen-2 and Crystal, respectively.
The orders of the orthogonality and backward errors are similar to QDWH and stand around

machine precision, i.e., 1e − 15, which demonstrates the numerical robustness of the algorithm.
QDWH is indeed proven to be stable [17], while a proof for ZOLO-PD is currently unavailable; it is
conjectured to be stable.
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Fig. 3. Performance comparisons on Shaheen-2 (a-b-c) and Crystal (d-e-f).

7.3 Performance Comparisons
Figure 3 presents the performance comparisons of ZOLO-PD against QDWH using 200, 400 and 800
nodes on Shaheen-2 and Crystal. On 200 nodes for both systems, QDWH outperforms ZOLO-PD
across all matrix sizes, especially for large matrix sizes. Indeed, ZOLO-PD performs much more flops
than QDWH and is not capable of compensating them by executing the independent problems in
parallel, due to the lack of resources. To better understand this phenomenon, one should recall how
the PD iteration works for QDWH as opposed to ZOLO-PD (see Section 5). In QDWH, although the
PD iterations are done successively, and therefore, all processes work together in computing the QR
and Cholesky-based iterations (up to six). In ZOLO-PD, although the PD iterations are performed
in parallel, the overall number of processes is split in process subgroups to work independently
on each iteration. As a consequence, there are less processing units per subproblem, which is of
similar size than the single QDWH problem. Therefore, for the same matrix size and number of
processes, we can highlight the fundamental performance trade-off between QDWH and ZOLO-PD:
successive versus independent PD iterations and all processes versus process subgroup per PD
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iteration. This trade-off stands like a tuning recipe, provides a great flexibility and makes ZOLO-PD
amenable to various hardware configurations.
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Fig. 4. Performance speedup ZOLO-PD versus QDWH on Shaheen-2.

On 400 nodes, we notice a quite similar performance pattern between QDWH and ZOLO-PD for
the small matrix sizes. For the largematrix sizes, the performance gap between both implementations
shrinks: as the matrix size increases, the highly parallel ZOLO-PD code starts getting closer to the
performance of QDWH, thanks to a better exploitation of the resources available at hand, but still
suffers from the lower number of computing resources per independent PD iterations.

On 800 nodes, this configuration actually provides the necessary computational power for ZOLO-
PD to outperform QDWH. The performance curves are now inverted. The crossover point occurs
directly at the very first small matrix size. While ZOLO-PD exposes plenty of concurrent workloads,
QDWH runs out of work and hits the limits of strong scaling by beingmostly communication-bound.
ZOLO-PD takes better advantage of the underlying hardware than QDWH and demonstrates a
clear performance advantage across all matrix sizes. Furthermore, the performance reported on
Shaheen-2 and Crystal are very similar, although one would have expected that Shaheen-2 would
have been faster due to a higher clock frequency, as described in Section 7.1. But since Shaheen-2
resources are shared (e.g., the network interconnect) and not dedicated like Crystal, performance
on the former may be close to Crystal or slightly slower, as shown in Figure 3.

For the subsequent graphs, we decide to only focus on Shaheen results, since similar benchmarking
numbers have been obtained for Crystal.
To further highlight the performance gain, Figure 4 reports the speedup between QDWH and

ZOLO-PD. The trend is even clearer: the speedup improves significantly, as the number of node
increases. All in all, ZOLO-PD outperforms QDWH by achieving up to 2.3X speedup on up to
102, 400 cores (i.e., 800 nodes), especially for small matrix sizes, when running in challenging
situations, such as strong scaling mode of operation.
One can also notice that the performance speedup decreases as the matrix size increases, for a

given node configuration. This shows QDWH regaining its compute-bound regime of operations,
while ZOLO-PD performance starting to cripple due to the algorithmic complexity overhead.

Recalling previous performance comparisons on ill-conditionedmatrices obtained in [21], QDWH
outperforms its two counterparts, from Elemental [20] and from the SVD-based ScaLAPACK im-
plementation, by up to 4X and 5X, respectively, on Shaheen-2. This makes our ZOLO-PD imple-
mentation, which is the crux of this paper, outperforming by an order of magnitude the current
state-of-the-art software libraries for the polar decomposition.
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7.4 Performance Profiling
To better put the performance results from Section 7.3 in perspective, we present in this section
some profiling results where we break down the time to solution into the computational phases,
introduced in Algorithm 1 of Section 5. Figure 5 shows the time breakdown for QDWH and ZOLO-
PD on 200, 400 and 800 nodes. For QDWH, we can see that the PD iterations (i.e., including PO/QR
iterations) take up to 85% of the overall execution time. In particular, the QR-based iterations are
more time consuming than Cholesky-based iterations. We can see a nice stair-step shape for QDWH,
as the matrix size increases for the configuration of 200 nodes. This shape gets attenuated for larger
node counts, due to the predominance of communication overheads in performing small dense
linear algebra workloads on rather large number of processing units. In particular, for the 800 node
case, QDWH experiences a slowdown, since the implementation is mostly communication-bound
driven and performs only low arithmetic intensity kernel computation at that scale.

For ZOLO-PD, we observe a nice stair-step shape for all node configurations, as we increase the
matrix sizes. The time taken by the independent subproblems to calculate the two PD iterations
(one QR-based and one Cholesky-based iterations) is also the predominant computational part of
the overall execution time. When the number of nodes increases, the PD iterations keep scaling
nicely, since they can be launched in an embarrassingly parallel fashion. The remaining necessary
housekeeping operations for ZOLO-PD (i.e., Gather and Scatter operations) are not critical and do
not impede the overall parallel performance. All in all, ZOLO-PD benefits from the concurrency
exposure and extracts performance from the available processing units.
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(a) QDWH on 200 nodes.
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(b) QDWH on 400 nodes.
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(c) QDWH on 800 nodes.
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(d) ZOLO-PD on 200 nodes.
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(e) ZOLO-PD on 400 nodes.
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Fig. 5. Profiling QDWH and ZOLO-PD on Shaheen-2.

7.5 Performance Scalability
Figure 6 shows the strong scalability for each PD implementations. This figure does not compare
QDWH against ZOLO-PD but rather looks separately at their own strong scalability on 400 and
800 nodes, using the corresponding elapsed time of the 200 nodes configuration as the reference.
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Fig. 6. Performance scalability study of QDWH and ZOLO-PD on Shaheen-2.

QDWH has major issues in scaling for all matrix sizes studied in this paper, which are representative
of strong scaling scenarios. The 800 node case slows down the overall application and does not
leverage performance compared to 400 nodes, let alone the 200 nodes case. On the opposite,
ZOLO-PD decently scales up to 800 nodes. There are however some room for further performance
improvements. For instance, process placements have not been studied in this paper and this is an
important tuning parameter in order to mitigate the data movement overheads in favor of locally
cached data within a single node and/or closer physical inter-node communication operations,
especially when the hardware occupancy is low [26].

8 CONCLUSION AND FUTUREWORK
We have presented a high performance implementation of the massively parallel polar decomposi-
tion using Zolotarev rational functions (ZOLO-PD) on large-scale distributed-memory systems.
Compared to the QR-based Dynamically Weighted Halley (QDWH) algorithm for the polar decom-
position, ZOLO-PD further exposes concurrency, and therefore, is able to better extract performance
from the underlying hardware architecture in a strong scaling mode of operation. Although ZOLO-
PD requires more floating-point operations than QDWH, ZOLO-PD still outperforms by up to
2.3X speedup QDWH on up to 102, 400 cores for ill-conditioned matrices. This certainly comes at
the price of higher memory footprint. This may be mitigated when operating on well-conditioned
matrices using Cholesky-based PD iterations. The open-source software will be released and made
freely available at https://github.com/ecrc and is currently under consideration by Cray for in-
tegration into their numerical software library LibSci, as a follow-up to their QDWH software
release [21].

Furthermore, ZOLO-PD opens new research opportunities in investigating the direct performance
impact it may have on computing the symmetric eigendecomposition and the SVD, since both
traditional linear algebra algorithms suffer from data movement overheads during the panel
factorization and the resulting poor scalability. Moreover, we would like to implement a task-based
ZOLO-PD, similar to [22], using a dynamic runtime system for task scheduling. This will enable an
asynchronous flow of fine-grained computational tasks, which may result in an out-of-order task
execution, where communication can potentially be overlapped by computation.
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