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ABSTRACT

Coral reefs are highly diverse ecosystems, wineraerous closely relatexpeciesoften ceexist.
How new species arise and are maintaimethesehigh gene flow environments &beenlong
standing conundrums. Hybridisation and patterns of introgressiobetween sympatric species
provides a unique insight into thmechanisms of speciation and thwintenance ofpecies
boundaries In this study we investigate the extent bf/bridisationbetween twoclosely elated
species of coral reef fisthe commorcoraltrout (Plectropomus leopardyisind the bacheekcoral
trout (Plectropomus maculatys Using a compkementary set of 25 microsatellite loci, we
distinguish pure genotype classes froifirst- and latergeneration hybridsWe provide the first
evidence of extensivéybridisation betweentwo co-occurring coral reef species within their
commongeographic range, identifyint24 interspecific hybrids from a collection alimostthree
thousandcoral trout sarpled in the southern Great Barrier Redflybrid individuals were
ubiquitous among reeftertile and spanned multiple generatiofe explore the extent of genomic
introgression, we constructedddRAD library of pureand hybrid classesvhichrecovered?,271
SNP loci. An analysis of genomic clinemdicates that genomavide introgression has occurred
with selection favouring bothureand hybrid genotype®ur resultsshow that hybridisation can
occur among closely related species with common geographic rangeand not just at
biogeographic boundaries. We suggistt both evolutionary and ecological process&sy act to

maintain species barriedgspite orgoing introgression
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INTRODUCTION

Naturalhybridisationbetweenclosely relatedspecies is considered almost ubiquitous in terrestrial
environments and a major driving force in evolutionary biology (Mallet 20067 Schwenket al.
2008 Abbott 2013. Genetic introgression blyybridisationcanrapidly introducegenetic novelties
(Martinsenet al. 2001), transfer adaptive traits tmixed lineages (Choleet al. 2004 Kim et al.
2008), and may even play a role in speciafidegarty and Hiscock 2008Ynder the biological
species concept (Mayr 1963; Arnold 199%),which species are reproductively isolated, mter
specific hybrids should be an extremely rare occurrehteeality, the evolutionary boundaries
betweenspeciesare permeableandbest estimates indicatbat 1 to 10% of all animal species and
up to 25%of plant specieshybridise with at least one other species in the wild (Mallet 2005;
Schwenket al.2008).What then, are the mechanisms that maintain spbomsdariesn the face

of on-going gene flonand allow for hybrid speciation® modern synthesisf the species concept
consides species agroups of individuals that formiscrete genotypic clusters (Gould 1994; Mallet
1995) a definition that incorporates a significaiste of hybridisationin the evolutionof species
and the mechanisms thamaintin species identityMallet 1995, 2007; Coyne and Orr 2004
Patterns ofhybridisationand introgression can indicat®w gene flow and selection counteract
each other to maintain boundaries between sympatric spao@sidentify loci involved in

adaptaion and speciatiorHarrison and Larson 2014

The marine environment offers fguhysicalbarriers to gene flonandyet it hoss some of
the most diverse ecosystenm the world Decipheringthe mechanisms that have generated this
diversity is still somewhat of amystery (Mayr 1999) This is particularly true for specigikh
environments such as coral reefs, where closely related speye®-occur orlive in proximity to
each othe(Bernadi 2013; Boweret al.2013) Many reefassociate@drganisms disperse by means
of a pelagic larval stage (Leis 2002; Mora and Sale 2002), wtrehtesthe potentialfor
individuals todisperse over very large distances (Wliteal. 2010 Wood et al.2013; Simpsoret
al. 2014). Given thie broad biogeogphic rangeand dispersive capacitypostmarinespecies are
capable of interacting wittheir closest congeneowever, recenstudiesalsoindicate thathere
can be substantial local retention of larvae (e.g., Jenak1999; Sweareet al.1999, Jones 2015),
brought about by eithelocal oceanographic processes (Paris and Cowen 2f0#h)e active
behaviour of larvae (Leist al. 2007; Shanks 2009)rocesseteading toself-recruitment(Mora
and Sale 2002 as well as adaptatioand competion for settlement habitat§Tolimieri 1995;
Holbrook et al. 2000; Munday 2002 Sponaugleet al. 2002; Boninet al. 2015) may partially
overcomethe homogenising effect of dispersaliowever, in the absence of physical barriers to
gene flow, there mustebevolutionary mechanisms thagaintainspecies boundarie@utlin et al.
2014) while generating the large amounts of genetic tamaoften associated with coral reef

3
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78 ecosystemsEvidence suggests that divergent selectiounld rapidly establishthe reproductive
79  barriersnecessary fospeciation (Bowert al.2013 Gaitheret al.2015, thoughhybridisationmay
80 havealso played a creativele in this process.

81 Marine geciation events have been strongly influencedhigyrise and fall of sea lewsel

82 which has led to well known examples of allopatric speciation. Tropical marine biogeographic
83 Dbarriers such as the closure of the Tethys Sea and Isthmus of Pamean@e obvioubarriers to

84 gene flow that led to the diversification of marine bidteowever evenstrong ocean currents,

85 upwellings and river outflows can alkead to persistent physical barriensd vicariancéreviewed

86 in Rocha 2007)lt is also generally accepted that adaptation to environmental conditions can
87 reinforce processes of naturalection, resulting in reproductive barriers and the evolution of new
88 speciesn the absence of geographic barri@Rindle and Nosil 20055chluter and Conte 2009;

89 Nosil 2012).Evidence ottheseprocessess scarce, thougkxamplef assortative matingloneset

90 al. 2003 Pueblaet al. 2007 and habitat specialisation (Mundagt al. 2004) have been

91 demonstratedn the marine environmentThe diversity of habitats and steep environmental
92 gradientgresenin coral reefecosystemsgrovidefertile grounds to investigate speciation, as many

93 closely relategpecies have adjacent (parapatricgwenoverlapping (sympatric) distributions.

94 Naturally occurring hybridsn coral reef fishesvere once thought to be rare. However,

95 recentstudieshaw identified at least5 specie®f coral reef fisithathybridisein the wild (Yaakub

96 et al.2006) Molecular tools have greatly facilitated the identification of hybadd many more

97 cases of hybridisation have been descrifgegl Hobbset al.2009 Marie et al.2007 Montanariet

98 al. 2012 Gainsfordet al. 2015 Payet et al. 20)6Most of these studies have been conducted in

99 well-known suture zones, where biogeographic regions cadtidenumerical disparity between
100 parent species can result eccdental hybridisation (Richards and Hobb2015. Natural
101 hybridisationand introgressiorcan be an important source of genetic noveitythese isolated
102 locations increasg genetic diversity and introdingy novel phenotypic traitswWhile this process
103 canfacilitate rapd evolutionary change and adaptive radiatidncan also lead to evolutionary
104 deadends if hybrids are rare and in isolatid@wontin and Birch 1966; Rieseberg 1997; McMillan
105 et al.1999; Grant and Grant 2003gehausen 2004; Riesebetal. 2007; Strelkov et al. 2007)
106 However, f levels ofhybridisationand introgressiobetween closely related species are high, it is
107 important to understand the additional processes necessary to maintain species .id&ugtethe

108 high diversity of coral reef fishes, it is possible thgridisationhas had a key role their evolution.

109 Coral trout Plectropomus spp.are commercially and ecologically important species of
110 coral reef fish throughout the Indeacific region On the Geat Barrier Reef the relative
111 distribution of two closely related coral trout speciekctropomus leopardu@d.acepede, 1802)

112 and Plectropomus maculatu¢Bloch, 1790), varies according to the crsbelf position of
4
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individual reefs (Mapstonet al. 1998) thoughfisheries of both arenanaged as a singlait.

Densities ofP. maculatusare generally highest on innghelf reefs, whileP. leopardusare the

more commonspecies on midand outershelf reefs (Heemstra and Randall 1993; Mapstdra.

1998. The two species can be found toamzur in large numbers on some inseelf reefs in

areas such as the Palm and Whitsunday Islands and on reefs located at the western (inshore) margir
of the Capricorn Bunker Reef§hese reefsnay provide anntermediate habitat between offshore
oligotrophic and more turbid inshore reefs whéreleopardusand P. maculatuscan interact
Naturally occurring hybrids of the two species have been detected from field collections in these
locations (van Herwerdeet al. 2002 2006) and aquariufbased breeding trials have shown that

the two species can produce hybrid offspring (Frisch and van Herwerden 2006).

In the present study, we examined keelsof hybridisationand directions of introgission
betweenP. leopardusand P. maculatus(Figure JA) and discusgheir causs and evolutionary
consequence Using a suite of 25 microsatellite markers that amplified in both species, we
measured the frequency of naturally ocitg hybrids in a sample almostthree thousanddult
and juvenile coral troutWe distinguished firstand latergeneration hybrids to establish whether
naturally occurring hybrids were reproductively viabi¢e alsoidentified the size and distribution
of hybrids to determine the exteaf hybridisationin three reef clusters of the southern Great
Barrier Reef (GBR), AustraligFigure B) and whether the occurrence of hybrids is explained by
the relative abundance afach species Finally, we performed a genoméde scan using a
genotyping by sequencing approach following a double digest restriction associated DNA (ddRAD)
protocol of pure and hybrid classes to evaluate the genomic divergence and level of admixture
between specie©ur findings indicate extensive intepecific gene flow occurring between these
closely related species of coral reef fish, and we discuss the ecological and evolutionary

mechanisms that could either maintauolutionary boundariedespite orgoing intiogression

MATERIAL AND METHODS
Study species and location

Coral trout Plectropomusspp., Family Serranidae) are large predatory coral reef fish that are
widely distributed throughout the IndRacific (Heemstra and Randall 1993). The two study
speciesP. maculatusand P. leopardus share many morphological and life history characteristics
(Leis 1986; Heemstra and Randall 1993). Adults are easily identified by their distinctive spot
patterns, but are visually indistinguishable as juveniesich posesa significant challenge in

assessing the recruitment patterns of each species where toeguco Divergence of the two
5
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species occurred some 3.5 million years ago (Ma €0dl§ and their appearance on the Great
Barrier Reef is likely to have followepostglacial range expansion from the central {Rdaific
regon.Thi s study was conducted in the Keppel | S
|l sl ands (21° 42" S, 150° 18’ E) , and the Cap!
southern secion of the Great Barrier Reef Marine Park (GBRMP), Australia. The Keppel and

Percy Island groups are archipelagos of high continental islands surrounded by fringing coral

reefs, while the CapricoraBunker group comprises emergent platform reefs located othe

outer margin of the continental shelf(see Supplementary Material for additional information).

Specimen collection

Tissue samples for 1,577 adult and 1,414 juvdpiéztropomus sppwvere collected from reefs in

the Keppel islands, the Percy islandsd the Capricorn Bunker group in the southern Great Barrier
Reef Marine Parksge Supplementary Materidlable 9-S3). Juvenile fish (<300 mnTotal

Length were collected on SCUBA using spears, clove oil (anaesthetic), hand nets and small fence
nets. Eab juvenile was measured to the nearest millimetre using dial calipers and a small section of
the pectoral fin was removed for the tissue sample. We used modified biopsy probeBdRneu
USA) on spears for nefatal collection of tissue samples from adigh (>300 mmTL) and the

size of each sampled fish was estimateditu to 50 mm size classes. All tissue samples were
preserved in 95% ethanol for genetic analyses. All samples were coltextteelen August 2010

and August 2013 under Marine Parks permit No. G11/3354.1, Queensland General Fisheries permit
No. 148534andJames Cook Universiti&nimal Ethics Permit A1625.

Microsatellite genotyping

DNA extractions were performed from tissisamples using the Nucleosg® Tissue Kit
(MachereyNagel). All individuals were genotyped at 25 microsatellite markers in three multiplex
PCRs Details ofthe procedureand locus characteristics atescribed in Harrison et al. (2012hd
Williamson et al. (in pressMEG16-0669). Briefly, loci were amplified using the Type
Microsatellite PCR kit (Qiagen), PCR products were screened on an ABI 3370xI DNA analyser
(Applied Biosystems), and individual genotypes were score in Genemapper v4.0 (Applied
Biosystems). Unique alleles were distinguished using mesgecific binsets in the R package
MsatAllele(Alberto 2009).

Relative abundance of species
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Prior to the sampling of adult fishes, a tow@BS underwater visual census (UVC) methodology
with stratification between reef habitat types (reef slope, reef crest, reef flat, lagoon) was used to
estimate population densities and sszeicture of both aduR. leopardusandP. maculatusat each

reef where collections took place. Divers on SCUBA recorded theiesg numbers and estimated

the total length (in 50 mm categories) of all sighted coral trout on replicatednle UVC tracks

within all habitat types present on each reef. The distance covered on each replicate track varied
between reefs and betweeabitat strata but typically ranged from 80 to 160 meters. The track
survey width was standardised to 10 meters (5 m either side of the observer). Between 4 and 7
replicate UVC tracks were conducted by each observer during each dive. A minimum of 1 minute
of steady swimming between replicate tracks was used to ensure the independence of each track
count. The number of replicate UVC tracks varied between reefs and between reef strata, but efforts
were made to ensure adequate habitat coverage at each redfsévers conducted underwater
length estimation training using coral trout models at the start of each survey trip. A total of 518
replicate UVC track surveys were carried out on 17 reefs in the Keppel Islands (n = 198), 2 reefs in
the Percy Islands (n £9) and 5 reefs in the Capricorn Bunker region (n = 381Kolmogorow

Smirnov test (KS) was used to compare the size frequency distribution of pure and hybrid classes

collected throughout the sampling area.

Identifying putative hybrids from microsatedl data

We applied a modédased Bayesian clustering method implemented in NEWHYBRADEdrson

and Thompson 2002 evaluate the most parsimonious allocation of samples to distinct hybrid or
pure classes. Specifically, we tested for the presencepwt individuals F1 hybrids and
backcrossed individuals with both species. Only samples with data on at least 18 loci were used in
the analysis and four of 25 lodPha027 Pma036 Pmal04and Pmal09 were removed from the
dataset due to a limitation of theftyeare to deal with large numbers of alleles. As such, our dataset
was composed df,577 adult and 1,414 juvenié®ral trout with 0.64% missing data across 21 loci.

We performed a singl e r uheta(alsle frequendies)fanor(miyings pr i
proportion) with a buran of 30,000 MCMC sweeps. Fiv& six genotype frequency classes were
considered and were specified in terms of the expected proportion of loci originating from one or
the other species, as described in Anderson and Thon{@602).To avoid influencing the
allocation of samples, ngrior information regarding the status or class of individwalsused.

The posterior probability of each individual belonging to each class was calculated from Monte
Carlo averages following 5000 sweepsWe did not test for the presence of F2 hybrids and

individuals for which no single class had more than or equal to 0.80 probability were considered
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hybrids of mixed ancestrfpescriptive statistics of genetic diversity were performed in Ggnepo
the web (Raymond and Rousset 1995; Rousset 2008ufeP. leoparduspureP. maculatusand
all hybrid classes combined for reference purposes ealy $upplementary Material Tabl)S

ddRAD library preparation and sequencing

A genomic library was prepared from a selection of 80 sampla®senting putative genotype
classes identified from microsatellite dater P. leopardus, 17 P. maculat8sfF1l hybrids, 18
backcrossed maculatus7 backcrossed leopardus and 3 individuaith ambiguous genotypes
Individuals were selected at randomhowever; the amount of available tissue was sometimes

a limiting factor. DNA concentration was first measured in a fluorometer with the Qubit HS
dsDNA essay kit (Life Technologies), and eacimgle was standarsid to 500 ng. The library was
prepared using modified doubtiigest RadSeq protocol described Bgtersonet al. (2012)
Samples were digested for 3 hours at 37°C, using restriction enzymes Sphl and MIuCl (New
England Biolabs). Digests were quantified with Qubitd$®NA essay kit (Life Technologies) and

a Qubit 2.0 Fluorometer, and then cleaned with Dynabead27M Streptavidin (Life
Technologies). Ligation was performed with P2 universal adaptors. Additionally, sets of 16
individuals were barcoded with 16 unique &laptors. After ligation, each group of 16 individuals
were pooled and bead cleaned. Pools weresslexted for a range of 400 bp using a 2% agarose
gel that was ran for 45 minutes, atiaen purified with the Zymoclean Gel DNA Recovery Kit.
Unique lllumna Indexes were added to each pool, and the libraries were amplified with 10 PCR
cycles using the high fidelity Platinum Tag DNA polymerase (Thermo Fisher Scientific). The
concentration of each pool was quantified using a High Sensitivity Kit on a 2X@nhdyzer
(Agilent Technologies) Tape Reader, standardised from qPCR assays, and merged into a single pool
for sequencing. Samples were sequenced in a single lane on an lllurteg B000, at KAUST
Genomics Core facilities, which resultedlih5,617,66%ingle end reads (100bp).

De novo assembly

Singleendreadsweredeu | t i pl exed and filtered for qualit
in Stacks version 1.3@Catchen et al. 2011)ndividual reads with phredcores below 30 (average

on sliding window) or with ambiguous barcodes or R&lQs were discarded (98.8% of reads
passed these quality filters). RADSeq loci were assembladae o usi ng the o6de
pipeline in Stacks. We usele following parameter combination to retrieve loci: minimum read
depth to create a stackm() = 3,number of mismatches allowed between loci within individuals (

M) = 2, number of mismatches allowed between loci within catalog< 3. Following denovo
8
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mapping, we used theopulationcomponents of Stacks to filter the data set. Only loci that were
present in at least 4 of five genotype classes, 90% of individuals within each genotype class, and
with a minor allele frequency equal or higher that 0.05 weta&ned for further analyses. We also

used thewrite_single_snmption to include only one single SNP per stagkiotal of 2,271 loci

were recovered with Stacks that passed filtering criteria and resulted in an average depth of

coverage per locus of 23gee SupplementaMaterial Table 5).

Estimating population admixture

We applied a moddbased Bayesian clustering algorithm implemented in STRUCTURE 2.3.2
(Pritchard et al. 2000, Falush et al. 2007) to obtain an estimate of mixing proportions between
leopardus and P. maculatusfrom both microsatellite and SNP data sethe analysisof
microsatellite datavas performed on 82f. leopardussamples and 826 randomly selected
maculatuswith dl 25 available microsatellite locA random subset d?. maculatuswas removed

to negate any bias that could be attributed to differences in sampl@tsizanalysis of SNP data

was performed o7 P. leopardussamples and 1. maculatusampleswith atotal of 2,271 loci

With the number of groupKJj set to2, corresponding to the two species, we performed a single
run with 300,000 MCMC iterations and a bamperiod of 200,000 steps to estimate the admixture

pr op o rmlphebo nb e ween speci es. No popul ation pri
frequencies were considered independently and alpha was inferred for each species. In addition, we
performed an analysis of molecular variance (AMOVA) on microsatellite data toagestiime
degree of pairwise genetic diversity amongstgenotype classes in Genodive v2 (Meirmans and

van Tienderen 2004) with 9,999 permutations.

Analysis of genomic introgression

We examined genomeide admixture for naturally occurring hybrids tomdiéy candidatdoci that

might indicate patterns ahtrogression We used the likelihood-basedgenomic clines method

i mpl emented i ni nthreo ¢((Forneppra ® Buergle 20@; 2010assuming that
admixture between populations was localised awdnte and that populations were large enough
for the effects of genetic drifto be negligible (Gompert & Buerkle 202). We first measured the
proportion of parental ancestry for each hybrid using the max#ikaiihood estimator of hybrid
index based orhe proportion of alleles inherited from each parental species (Buerkle 2005). In this
case, low hybrid index scores (<0.5) corresponB.teeopardusancestry and higher values (>0.5)
correspond td°. maculatusancestry. A logistic regression was used dbneate the probability of

observing homozygous and heterozygous genotypes for each locus as a function of the hybrid index
9
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282  of admixed individuals. We used the paramebases procedure with 1000 simulations to generate
283  predictions of neutral introgressi at each locus and compared the likelihood of the regression
284 model to that of a neutral model, given the observed data. Significant deviation from neutral
285 expectations for genomic clines was adjusted for multiple comparisons using the false discovery
286 rate (Benjamini & Hochberg 1995). The distribution of observed hybrid genotypes were compared
287 relative to the probability density of homozygous and heterozygous genotypes to ittstify

288  affected by introgressiofiollowing Nolte et al. 2009)For each locuspatterns obver and under

289 dominance, positive and negative selection, epistasis and admixture were recorded and the
290 proportion of loci with changes in the probability of the homozygous and heterozygous genotypes

291 were compared using a significance festgoodness of fit for equal probabilities.
292

293

294 RESULTS

295 Sample classification

296  Hybrid individuals were ubiquitous amongst our sample ,802 adult and juvenile coral trout,
297 representingt.1% of all sampledfishes(Figure2A; Table). Collectively, we identified94 hybrid
298 individuals with a posterior probabilit > 0.8 of being either a F1 hybrid or backcrosseth
299 either speciegFigure 2B). An additional 30 individualgould not be assigned to any particular
300 class and were considerbgbridsof mixed ancestrysee Supplementaiaterial Figure S1). Of
301 theidentifiedhybrids, 20 were F1 hybrids betwenleopardusandP. maculatus31 were hybrids
302 backcrossed wittpure P. leopardus and 43were hybridsbackcrossed wittpure P. maculatus
303 (Table ). The mean posterior probability of assignm@®ean of all 94 hybridsto their respective
304 classwas 0.976 £+ 0.048 SOhe presencef individualsof mixed ancestryn our sampleswhich
305 were all mature adults, alsoiggestshatmultiple levelsof backcrossindnave occurredOur sample
306 also contained 82@ure P. leopardus(Pmean= 0.997+ 0.014 SD)and 2041 pure P. maculatus
307  (Pmean=0.998 + 0.010 SD).

308
309 Size distribution

310 The size frequency distribution of hybrid genotype clas$egu(e 3A) broadly reflected the
311 distribution ofpureP. leopardusandP. maculatugFigure3B), but was statistically different (&

312 test: D =0.26, p < 0.001). Hybrids were present in both #818%) and juvenile sampleQ.5%),

313 covering a broad spectrum bbdy sizes from 41 mm to an estimated 800 mm in total length
314  (Figure3A). Most hybrids were present in the adult sample (72 of 94), whiclén the size range

10
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315 of individuals, is likely to represent multiple generations. However, all juvenile hybridsf @8 o
316 were sampled between March and June 2012 and were no more than one year old at the time of
317 collection (max total length 218 mm). Though our sample of juvenile hybrids can be considered as

318 asingle recruitment cohort, their origin could not be detegohiwvith certainty.
319
320 Spatialdistribution

321 Natural interspecific hybrids were widespreadt their distribution was not reflect@dthe relative
322 abundance dP. leopardusaandP. maculatusamongst the different reef systerkgstly, aur sample
323  of adult coral trout was unevenly distributed across the ttagiens with 857 adult coral trout
324  collected in the Capricorn Bunker group/3 adults in the Keppel Islands a2d7 adults in the
325 Percy IslandgTable 1. However, he relative proprtions of adultP. leopardusand P. maculatus
326 sampled from each reef system broadigresentethe relative density of each species observed in
327 the visual surveysHgure S2). Overall, reefs in theCapricorn Bunkers harboured th&rgest
328 number of hybrid with 8 hybrids spread across six reefspresentings.8% of the sampled
329 population.We alsoidentified 24 hybrids in the Keppel Island8.6%) and 20 in the Percy Islands
330 (3.0%), whereP. leoparduss less commoliTable 1, Figures?2).

331 Furthermorethe relative abundance of juvenile fish of each species did not always mirror
332 the relative abundance of adulfsssigningjuvenilesto a genotypeclassrevealedthat he Keppel

333 islandsweredominated byP. maculatusat both adul{95%) and juveniletages (8%) whereaghe

334 Percy Islands and the Capricorn Bunkers presedisdordancebetween adult and juveniles
335 samples. Recruitment in the Percy Islands was almost exclugtvatyaculatug98%), yet only

336 66% of sampledaduls wereP. maculatusSimilarly, approximately equal numbers of juveniles of
337 both specieswere collected from reefs in th€apricorn Bunker groypwhile P. leopardus

338 represented 846 of sampledadults Juvenile hybrids were also more common in the Capricorn

339 Bunkersrepresenting 5% afampled juveniles compared to 1% in other regions.

340 The relative abundance of adult populations and juvenile recruitment in the Capricorn
341 Bunkersalso varied amongreef (Figure 4). Plectropomusleoparduswas identified as the most

342 abundantoral trout species oa majority of reefs in theCapricorn Bunkegroup however, large

343 densities ofadult P. maculatusverepresent athe two mostnorthrwesternreefs. At Polmaise Reef

344  and Northwest Reefs, our adult sample was compose@fand 90%P. maculatus yet juvenile

345 samples wer87% and27% P. maculatusrespectively FFigure4). In contrast, our adult sample at
346  Erskine Reef wa®93% P. leopardusandour juvenile sample wag4% P. maculatusThe largest

347 numberof adult and juvenilehybrids was atPolmaise reef33 and 15 respectively which

348 incidentally also had similar proportionsf leopardug35%)andP. maculatug53%).
11
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Population admixtur@and genomidntrogression

Using microsatellite datanithis simple 2species modelve detected an admixture proportioh

2.5% in each speciegroviding furtherevidence ofbi-directional introgression between species
These resultgorrespad to anFst value of0.179between specied éble 2, in line with continuous
admixtureinthes peci es 0 e v o oruetentdivesgengdll lrdr \wlues degreaseakthe
phylogenetic relationsp of genotype classes became closer, confirming the correct allocation of
individual genotypesHowever,individuals of mixed ancestry were signédrtly different from all
genotype classes except F1 hybriéist(= 0.000, p = 0.674)The analysis 02,271 SNP loci
suggestedimilaradmixture proportions between lineages, Wi in each species

A further 581 SNP loci were removed from the data in order to assess genomic patterns of
introgression betweemure and hybrids classes. These include 522 loci with low observed
heterozygosity (<0.125), 198ci with rare alleles in eithgruresamples (<125),67 lociwith over
75% missing data iboth pureor hybridsamplesand11 loci with identicalallelic frequencies in
pure samples Of 1,690 SNP loci investigatedor patterns of introgressior61 (15.4%) deviated
from the model of neutral introgr&ien based on genorvade admixture (P < 0.@l significance
following FDR correctionfigure S3 Table S6). Loci that deviated from neutral expectatiware
allocated tosix categoriesTable S7) thatreflect different modelsof introgressiorandtheir effect
on hybrid genotypes. The prevailing mode of introgression was consistent with a model of
overdominant fithess of heterozygous genotypes. Fa® deviant loci, the probability for
heterozygous genotype was higher tauld beexpected under neutrakpectationgTable S6)

In contrast,50 loci displayed evidence for underdominaneéhich suggesta strong pattern of
heterozygous advantage-$ampleproportiontest: sample proportion 761, ¢ 2=55.8 d.f. = 1,

P =8.0* 10%. Loci that displayed evidence of overdominantg9 also displayed evidenasf
epistatic selectiof130), where the probability of homozygous parental genotigesflectedin the
value of the hybrid indekl-sample proportion test: sample proportion.550,¢ 2= 2.7, d.f. =1,

P = 0.10) Comparatively, onlyl8 loci displayed evidence of increased introgression, which is
consistent with selection for parental genotypesatple proportion test: sample proportion =
0878 ¢ 2=83.3 d.f. = 1,P = 2.2* 10%. However,evidence oflirectional selection of parental
genotypes was not widespredidough there was a skew towatosi displayingpatterns opositive
selection forthe P. leopardusgenotype %1) relative to the number of lodelected forthe P.
maculatusgenotype 27; 1-sample proportion test: sample proportion 658,¢ >=6.8, d.f. = 1,P

= 0.009.
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383
384 DISCUSSION

385 Our data indicate a high degreé hybridisation between twocommerciallyand ecologically
386 important coral reef fishon inshore and midshelf reefs of the southern Great Barrier Reef,
387 Australia(GBR). We found that 4% of sampled coral trout displayed evidence of hsfezcific
388  hybridisation with hybridsfound in all size classes. Hybrids wea@mmon at all three geographic
389 locations but weremost abundant in the Capricorn Bunkesdhere both species amcurred in
390 greatestdensities Both first- and latergenerationhybrids were identified indicating that hybrids
391 are reproductively active and produce viable offspridgr dataalso showeda high degree of
392 admixture between species widtvidence ofbi-directional introgressionn nuclear makers. A
393 genomewide analysis detected strong variation in the patterns of introgressibs.#86 of loci, of
394  which 61% indicatedpatterrs of selection for hybrid genotypes epistasis Our findings clearly
395 demonstrate that heterospecific mating betwBerleopardusand P. maculatusis a common
396 occurrenceandboth ecological and evolutionary factors are favouthregspread ofiable hybrids
397 while maintaimng evolutionary boundaries betweelosely relatedpecies

398 Hybrids are rare in naturegenerally comprising less than 0.1% of individuals in a
399 population (Mayr 1963, Mallet 2005)This is usually explained by strong speepecific
400 recognition systems dvecausehybridstend to exhibit mtermediate phenotypdakat maybe ill -
401 adapted to environmental conditiof@oyne and Orr 2004; Husband 2008pwever, coral reefs
402 are highly diverse ecosystems and the evidene@ddspeadhybridisationamong conspecifics is
403 growing (Yaakubet al. 2006). Most studies dfiybridisationin coral reef fish have focused on
404  recording and describing intgpecific hybridisationin suture zones, where distinct biogeographic
405 regionsoverlap (DiBattista et al. 2015 Payet et al. 2006 Thoughthe extent ofybridisationin
406  suture zoness uncertain it is clear that a large number of species are capable of producing
407  interspecific hybrids To our knowledge thistudy represert the first attempt atestimating the
408 extent ofhybridisationin coral reef fishest multiple locations within common geographic ranges
409 and provides a rare glimpse into the processes that generate diaedsityaintain species barriers
410 It alsoprovides a unique naturaystemto investigateadaptation and the evolution of reproductive

411  barriers intheface of ongoing gene flow
412
413  Ecological basis for evolutionary boundaries

414  The commonR. leopardu¥ and barcheek P. maculatus coral trouthave sympatric distributions
415  with very similar life history characterissdut occupy different coral reef habitgdtdeemstra and

416 Randall 1993; Mapstonet al. 1998) It is clear from our results thathere they interact, these
13
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speciescan produce viableffspring Most identified hybrids were mature adultand given the
growth ratefor Plectropomus spgFerreira and Russ 1992), somdividualscould be as much as
1520 years old Around 20% of hybrids werealso youngof the year suggesting intspecific
hybridisation is a commmooccurrenceSince ®ral reef fish larvae are capable of dispersing over
hundreds of kilometres (Simpson et a014), it was not possible to determine where juvenile
hybrids hadriginated.However, recent studies of coral trout have demonstrated th&tapricorn
Bunkers, Keppel Islands and Percy Islands are partiallyseelfingand connecte@Harrison et al.
2012; Williamson et ain press. Similarly, Plectropomus areolatus in Papua New Guinea were
found to largely recruit close to their natal souces (Almany et al. 2013) Assuming that hybrids

in our study arghe progeny of local populations, the distribution and abundanke lebpardus
and P. maculatuss likely to be an important factor in the proliferation of irtpecific hybrids.
However,it will be necessary to understand both teeroductive behaviours and patteafisarval
dispersal to determine tliemographi@rocesssthat generate hybrids.

While both species appear to maintpneferencegor different habitatscoral trout are not
distinctly habitat specialists. The southern GBR, particularly the Capricorn Bunker group,
represents thenargin o f the speciesd range and may prov
offshore oligotrophic andnore turbidinshore reefsvhere P. leopardusand P. maculatuscan
interact. Since both species have peak spawning around the new moon lunar phase and are known
to form large spawning aggregatiofamoilys 1997)it is possible that hybrids are the results of
sneak mating oaccicental fertilsation (Hubbs 1955; Avise and Saunders 1984; Wirtz 1999). For
example,P. leopardusare rare on inshore reefs of the GBR such as the Keppel Islands, and the
large disparity in abundance of one species relative to the other may encouragelesttamd
females to engage in sneak mating or result in accidental fertilisétiozontrast, reefs of the
Capricorn Bunkers have high densities of both spemnes some degree of assortative maisg

likely to occursimply due tothesehabitat prefereres.

Habitat specialisation and assortative mating in adults appears to be reinforced by some
degree of post settlement selection or ksfgecific competition at juvenile stagésirval coral trout
are capable of dispersing widely so tliscordancef ore species over another in juvenile samples
collected from reefs in th€apricorn Bunkers was unexpectégiven the propensity for self
recruitment in these species (Harrisdral.2012; Williamsoret al.in pres3, wemayanticipatethe
relative abundaneseof juvenile fish to reflect theelative abundanceof adults of each species.
Instead, we observed redtsg. Northwest reef, where juvenile samples were largélyleopardus
and adults samples almost entirély maculatus In contrast, neighbouring ets were entirely
composed oP. leopardusat both juvenile and adult stag€ur results stipulateome mechanism,
whether habitat preferences or interspecific competitwmch favours the recruitment of one

14
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species over anotheAssortative mating, reforced by posskettlement selectigrmay limit the
interactions between species htutdoes not explain how or why parental lineages have not
coalesced, or why so many hybrids are present in the population.

Evolutionary barriers to adaptivetrogression

It is evident from the analysis of microsatellite loci and genwanae SNP loci that interspecific
hybridisationhas led to genetic introgression of parental lineagagefs of the southern GBRhe
presence of firstand latergeneration Wbrids indicates that recent introgression has occurred,
though it remains difficult to isolate contemporary patterns of interspecific gene flow from ancestral
introgression and incomplete lineage sortingestimates of admixture proportiofidarrison and
Larson 2014 Microsatelliteand SNHoci indicate some degree of genomic introgression, though a
complete genome analysis and a linkage map would be necessary to determine the iampact of

genomic rearrangements.

We also found differential patterns of introgression amongst loci. Ovet&ll®o of loci
analysed did not conform to a model of neutral introgression based on gemdenadmixture,
with the prevalenpatterns of introgression indicating a selective advantagédth hybrid and
parental genotyped.oci that exhibited increased probability for heterozygous allelic cleeases
consistent with a pattern of overdominaiG®mpertet al.2009; Nolteet al.2009) which could be
the result of increased fitness of hgbrgenotypes Since hybridisation can generate both
phenotypic and genetic novelty (Arnold 1997; Rieselmrgl. 2003), the proliferation of hybrids
has often been linked to the presencemkrging and rapidly changing environmethiat favour
the survial of hybrid phenotypes (Seehausen 2004; Mallet 2@kinco 2013 Hybrids can be
poorly adapted to either parental habitat, yet outcompete parental species in others (Schluter 2000;
Gavrilets 2004)While contemporaryybridisationbetween coral trout nyandicate the emergence
of novel habitats, other factors must be selected for in parental lineages to restrict introgression and
the convergence of speciedle also observed aimcreased probability for homozygous allelic
classes consistent with a pattesh epistasis, which could be the result of increased fitness of
parental lineagesThese results indicate that both hybrids and parental lineages are conferred a
selective advantage and habitat preferencedilaly a key factor in this processleverthéess,
severalcaveatsmust be considerenh the analysis of patterns of genetic introgression. First, the
restricted number of individuals in the analysis of genomic clines may not pracmceate
estimates of allelifrequentesat each locus. Second, loci under selection could be linked, therefore
overestimating the proportion of loci that deviated from a neutral model of gemmae
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485 introgressionlastly, the number of loci that deviate from the null model of neutral introgmess

486 may be inflated if genetic drift is acting upon admixed populations.
487
488 Semipermeable barriers to gene flow

489 The maintenance @pecies lineages in the face of recurrent and widespread introgression may also
490 point to an evolutionary paraddxased orthe accumulation of genomic incompatibility between
491 specieJRoux et al.2013; Christeet al.2016. In theory, large genomic islands of divergemes

492  accumulate during the process of speciatforming strong barriers to gene flamd leaving other

493 genomic regions more permeable to introgreséidichel et al.2010. Once presentheseislands

494  of divergence may restrict furthemtrogressionby generatingmeiotic reombinations thatare

495 deleterious orbreak down advantageous gempayg A small proportion of combinations may
496 however lead to novel and adaptive traits that would result in a small number of hybrids with
497 increased fitnessAs a resulttrue F1 hybridshould berarein the populationbut backcrosses to
498 parental lineags wouldbe more commonbecause of fewegeneticincompatibilities.In theory, he

499 number of hybrids in a populatiamould also depend aie frequency of crosiertilisation and the

500 genomic architecture of islands of divergence in parental linedagesgh plausible in the case of
501 coral trout in the souther@BR, further investigation of genomic patterns of introgression will be
502 necessary to identify intraspecific incompatibilities and their rolecreating semipermeable

503 barriers to gene flow.

504

505 Our present work demonstratevidespreadhybridisation between two important fishery
506 species in the Great Barrier Reef, with-directional introgression of parental lineagdhe
507 presence of wild hybrids in our sample of coral trout appears to be driverttbhgdmogical and
508 evolutionary factors. Althougiwve could not determine thenderlyingmechanisma that led to the
509 divergence othese species or that maintapecies barriers in spite of introgressiour results
510 provide arareinsightinto theextent ofhybridisationin coral reef fishes and offers a useful model
511 for understanding the molecular basis of speciatOuor results indicate that hybrids were
512  ubiquitous, viable and have led to extensive introgression in parental linEagker investigation
513 of selective pressures and patterns of genomic introgression will be necessary to determine the
514  phenotypic traits involved in speciation and the natuteybfidisationbetween these speci&ince
515 mostfish and invertebrateeproduce externally in theefagic environment and in close proximity
516 to their closest congener, natungbridisationcould bemore common than previously thought
517 throughout marine ecosystems and a major driving force in evolaidrdiversification of marine

518 taxa
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751  Figure 1.A) Adult Plectropomugeopardus(backgroundandP. maculatugforegroundare easily
752  distinguished by their characteristic blue spot pattewisch become appareri-3 months post
753  settlementAdults of each speciemre seen here in their mating amations On the Great Barrier
754  Reef, thetwo speciedrequently co-occuron inner and mid-shelf reefs, thougl®. leopardusis
755 more commonly associated with outdrelf, oligotrophic reefs whild®>. maculatusdominates
756 inshore reefs(Photo credit: Phil WoodheddWet Image Underwater PhotograptB) Adult and
757 juvenile coral troutR®. leopardusandP. maculatuswere collected from reefs in the Percy Islands,
758 Keppel Islands, and Capricorn Bunkers. The Capricorn Chaapalrates these inshore and -mid
759  shelf reefs from the outeshelf of the Great Barrier Reef.

760

761  Figure 2. The posteor probability of assignment simpled coral trouiPlectropomuspp.)to one
762  of 5 genotype classésllowing a Bayesian clustering analys# total of 2,991 adult and juvenile
763  coral trout were collected fromeefs in the southern Great Barrier Raeél identified here as either
764  pureP. leopardusP. maculatusF1 hybridsor backcrossed to eithpurespecies94 samples were
765 classified a®ither F1 hybrid or a backcrossed individuéth a posterior probability above 0.8n
766  additional 30 individuals could not be assigned to any particular class andlassified ahybrids

767  of mixed ancestrysge Supplementary Material Fig)S1
768

769  Figure 3. Size frequency distribution of adult and juvenile coral trout collected from reefs in the
770 southern Great Barrier RedS. Hybrids were present in both adult and juvenile samples, covering
771 the full spectrum of sizes, ranging from 41 mm to an estimatean®d@n total lengthB. The size
772  frequency distribution of the 94 hybrids closely match that of theRB22opardusand 2,040P.

773 maculatudor which sizes were recorded.
774

775  Figure 4. The relative proportions ¢1. leopardusandP. maculatusampled from each reef system
776 broadly represented the relative density of each species observed in the visual steeeys (
777  Supplementary Material Fig $2hough he relative distribution cddults in the Capricorn Bunker
778 group (darker pie charts) did nalways reflect the distribution of juvenile recruitment (light pie
779 charts).

780
781

782

26



Harrison et al. Hybridisation in coral reef fishes

783 Table 1. Classification ofadult and juvenile coral trout collected in three reef systems of the

784  southern Great Barrier Reef, Australia.

785

Class Capricorn Bunkers Keppel Islands Percy Islands Total
Adult Juvenile  Adult Juvenile  Adult Juvenile

P. leopardus 549 197 8 1 69 2 826
Backcross P. leo 19 5 2 - 5 - 31
F1 Hybrid 8 3 4 - 5 - 20
Backcross P. mac 17 8 9 3 3 3 43
P. maculatus 252 309 447 449 163 421 2041
Mixed ancestry 12 8 3 3 2 2 30
Total 857 530 473 456 247 428 2991

786

787

788

789

790 Table 2. Pairwise genetic difference amongst genotype classes (lower diagonal) and level of

791 significance (upper diagonal).

P. leopardus Backcross F1 hybrid Backcross P. maculatus Mixed
P. leopardus P. maculatus ancestry

P. leopardus - * * * * *
Backcross P. leo 0.014 - * * * *
Hybrid F1 0.047 0.011 - * * 0.674
Backcross P. mac 0.116 0.054 0.016 - * *
P. maculatus 0.179 0.113 0.057 0.012 - *
Mixed ancestry 0.061 0.018 0.000 0.009 0.044 -

* Significant a-

792
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