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Figure 3. Quality comparison of the best of top 5 contact-assisted models generated by our two methods, 

CCMpred and MetaPSICOV. (A) Mixed vs. CCMpred; (B) Mixed vs. MetaPSICOV; (C) NonMP vs. 

CCMpred; (D) NonMP vs. MetaPSICOV. 

 

 

Figure 4. Case study of one CAMEO target 5h35E. (A) The long- and medium-range contact prediction 

accuracy of our methods, MetaPSICOV, CCMpred, and EVfold (web server). (B-D) The overlap between 

the native contact map and contact maps predicted by our method, CCMpred, MetaPSICOV, and EVfold. 

Top L predicted all-range contacts are displayed. A grey, red and green dot represents a native contact, a 

correct prediction and a wrong prediction, respectively. (E) The superimposition between our predicted 

model (in red) and the native structure (in green). 
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Figure 5. (A) TMscore with respect to ln(Neff), based upon the 354 multi-pass membrane proteins in 

PDB. (B) ln(Neff) distribution of the 354 multi-pass MPs in PDB. (C) ln(Neff) distribution of the 2215 

reviewed human multi-pass MPs. 

 

 

STAR Methods 
METHOD DETAILS 

Protein features 

Given a membrane protein (MP) sequence under prediction, we run PSI-BLAST (Altschul et al., 1997) or 

HHblits (Remmert et al., 2012) to find its sequence homologs and then build a multiple sequence 

alignment (MSA) of them. Starting from the MSA, we derive two types of protein features: sequential 

features and pairwise features, which are also called 1-dimensional (1D) and 2-dimensional (2D) features, 

respectively. The sequential features include protein sequence profile and secondary structure predicted 

by RaptorX-Property (Wang et al., 2016b, Wang et al., 2016a). The pairwise features include co-evolution 

strength generated by CCMpred (Seemayer et al., 2014), mutual information and pairwise contact 

potential (Miyazawa and Jernigan, 1985, Betancourt and Thirumalai, 1999). We have also tested some 

MP-specific features such as lipid accessibility and topology information.  

Calculation of Meff and Neff 
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Meff measures the amount of homologous information in an MSA (multiple sequence alignment). It can 

be interpreted as the number of non-redundant (or effective) sequence homologs in an MSA when 70% 

sequence identity is used as cutoff. To calculate Meff, we first calculate the sequence identity between any 

two proteins in the MSA. Let a binary variable Sij denote the similarity between two protein sequences i 

and j. Sij is equal to 1 if and only if the sequence identity between i and j is at least 70%. For a protein i, 

we calculate the sum of Sij over all the proteins (including itself) in the MSA and denote it as Si. Finally, 

we calculate Meff as the sum of 1/Si over all the protein sequences in this MSA. Neff is 

length-normalized Meff. We calculate Neff by 
𝑀𝑒𝑓𝑓

(𝐿𝑒𝑛)0.7
 to maximize the correlation between TMscore and 

Neff. 

Deep learning models and parameter optimization 

For the implementation of deep residual network, please see 

https://github.com/KaimingHe/deep-residual-networks. We train our deep learning models by 

maximum-likelihood with L2-norm regularization, and use a stochastic gradient descent algorithm to 

minimize the objective function. We implement the whole algorithm with Theano 

(http://www.deeplearning.net/software/theano/) and run it on GPU. 

Data for model parameter optimization and test 

In total there are 510 non-redundant MPs with solved structures in PDBTM (Kozma et al., 2012), a 

database depositing all MPs with solved structures. We use them to evaluate prediction methods. Among 

these 510 MPs, 5 of them have no contacts in transmembrane regions and thus, are not used to evaluate 

contact prediction accuracy in transmembrane regions. When MPs are involved in training, we randomly 

divide the 510 MPs into 5 subsets of same size for 5-fold cross validation. That is, we use 4 subsets of 

MPs for training and the remaining 1 subset of MPs for test.  

So far there are more than 10,000 proteins in PDB25, a representative set of non-redundant proteins in 

PDB in which any two proteins share less than 25% sequence identity (Wang and Dunbrack, 2003). To 

remove redundancy between MPs and PDB25, we exclude the proteins in PDB25 sharing >25% sequence 

identity or having a BLAST E-value <0.1 with any of the 510 MPs. This results in 9627 non-MPs in 

PDB25, all of which are non-redundant to the 510 MPs. From these 9627 non-MPs, we randomly sample 

600 proteins as the validation set and use the remaining ~9000 proteins as the training proteins.  

Three model training strategies  

1) Training deep models by MPs only (denoted as MP-only). That is, we train our deep learning model 

using only the 510 MPs. In total we have trained 5 models and for each of them, we use 4/5 of the 

510 (i.e., 408) MPs as the training and validation proteins and the remaining 1/5 MPs as the test 

proteins. We construct a validation set by randomly selecting 30 out of the 408 MPs. To reduce bias 

introduced by these 30 MPs, we also include 100 non-MPs in the validation set. The validation set is 

used to determine when to stop training and the regularization factor. Since there are only 378 MPs in 

the training set, we cannot use a very deep learning model. We tested several network architectures 

and found out that a deep model with two 1D convolutional layers (and 50 hidden neurons at each 

layer) and twenty 2D convolutional layers (and 30 hidden neurons at each layer) yields the best 

performance. We use the same architecture for all the 5 deep models and terminate the training 

procedure at 15 epochs (each epoch scans through all the training data once).  

2) Training deep models by non-MPs only (denoted as NonMP-only). That is, we train our deep learning 

model without using any MPs. In this case, we have trained only one model using the ~9000 non-MPs 

and validate it using 600 non-MPs and tested it using all the 510 MPs. Since we have a large training 

set, we use a model with 6 1D convolutional layers (50 hidden neurons at each layer) and 60 2D 

convolutional layers (and 60 hidden neurons at each layer). We terminate the training procedure at 20 

epochs. 

3) Training deep models by a mix of non-MPs and MPs (denoted as Mixed). In total we have trained 5 
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models. Each model is trained by a mix of 9000 non-MPs and 4/5 of the MPs. We validate this model 

using the 600 non-MPs and test it by the remaining 1/5 of the MPs. Here we use the same network 

architecture as the NonMP-only strategy. Since there are fewer MPs than non-MPs, we assign a 

weight factor to each training MP to achieve the maximal accuracy. We have tried a few different 

weight factors for MPs, such as 1, 3, 5, 7, and 9. Our experimental results show that by setting the 

weight of MPs to 5 or 7, we can obtain better accuracy than the other values, so finally we set the 

weight factor to 5. By the way, when the weight of MPs is infinity, this strategy becomes the MP-only 

strategy. Again we terminate the training procedure at 20 epochs. 

Contact-assisted folding 

For each test protein, we feed top predicted contacts and predicted secondary structure to CNS, a software 

package that builds 3D models from distance and angle restraints, to predict the 3D models.  

Template-based modeling (TBM) 

To generate template-based models (TBMs) for a test protein, we first run HHblits (with the 

UniProt20_2016 library) to generate an HMM file for the test protein, then run HHsearch with this HMM 

file to search for the best templates among the training proteins of our deep learning model, and finally 

run MODELLER to build a TBM from each of the top 5 templates. 

Competing methods 

We have tested Evfold(web server) (Marks et al., 2011), CCMpred (Seemayer et al., 2014), and 

MetaPSICOV (Jones et al., 2015). The first two methods are representative co-evolution analysis methods. 

MetaPSICOV is a supervised learning method that performed the best in CASP11 (Monastyrskyy et al., 

2015). These programs are run with parameters set according to their respective papers. We did not 

evaluate PconsC2 (Skwark et al., 2014) and its improved version PConsC3 since they are slow and did 

not outperform MetaPSICOV in latest CASPs (Monastyrskyy et al., 2015). It is challenging to evaluate 

MP-specific tools because of the following reasons. First, some tools such as OMPcontact (Zhang et al., 

2016b) are not available. Second, some tools need extra input information, such as [24]. We have talked 

to Prof. David Jones, who have developed both MP-specific tool MEMPACK and generic contact 

prediction tools PSICOV and MetaPSICOV and informed us that MEMPACK is not as good as 

MetaPSICOV. A recent paper(Zhang et al., 2016a) proposed a new MP-specific tool COMSAT, compared 

12 MP-specific and MP-independent contact prediction tools and showed that MP-specific tools have no 

significant advantage over the best MP-independent tools. To further verify this, we have tested our deep 

learning model (trained by non-MPs only) on the 87 membrane proteins tested in the COMSAT paper. 

Our result shows that our deep model outperforms COMSAT, which was reported to be the best 

MP-specific contact predictor. See Suppl. Table 2 for detailed results.  

Performance evaluation 

We evaluate our method in terms of both contact prediction and 3D modeling accuracy. We define that a 

contact is short-, medium- and long-range when the sequence separation of two residues in a contact falls 

into [6, 11], [12, 23], and ≥24, respectively. We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) 

predicted contacts where L is protein sequence length. The prediction accuracy is defined as the 

percentage of native contacts among the top L/k predicted contacts. In the case that there are no L/k native 

contacts in a category, we simply use L/k as the denominator when calculating the accuracy.  

We measure the quality of a 3D model by TMscore (Zhang and Skolnick, 2004), which ranges from 0 to 1 

indicating the worst and the best quality, respectively. A 3D model with TMscore≥0.6 is likely to have a 

correct fold while a 3D model with TMscore<0.5 usually does not. TMscore=0.5 is also used by the 

community as a cutoff to judge if a model has a correct fold or not. 

DATA AND SOFTWARE AVAILABILITY 

The web server implementing the deep learning method for contact prediction is publicly available at 
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http://raptorx.uchicago.edu/ContactMap/. The code and the list of non-membrane training proteins will be 

provided upon request to the Lead Contact. The list of 510 membrane proteins is available in the 

Supplemental File. The predicted contacts and 3D models of the 510 membrane proteins are also publicly 

available at Mendeley Data (https://data.mendeley.com/datasets/4wht7k4knt/1). 

ADDITIONAL RESOURCES 

CAMEO: www.cameo3d.org 
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