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Abstract—Complex wireless transmission systems re-

quire multi-dimensional joint statistical techniques for
performance evaluation. Here, we first present the exact

closed-form results on order statistics of any arbitrary
partial sums of Gamma random variables with the closed-

form results of core functions specialized for independent
and identically distributed Nakagami-m fading channels

based on a moment generating function-based unified
analytical framework. These both exact closed-form results

have never been published in the literature. In addition, as
a feasible application example in which our new offered

derived closed-form results can be applied is presented.
In particular, we analyze the outage performance of the

finger replacement schemes over Nakagami fading channels
as an application of our method. Note that these analy-

sis results are directly applicable to several applications,
such as millimeter-wave communication systems in which

an antenna diversity scheme operates using an finger
replacement schemes-like combining scheme, and other

fading scenarios. Note also that the statistical results can
provide potential solutions for ordered statistics in any

other research topics based on Gamma distributions or
other advanced wireless communications research topics

in the presence of Nakagami fading.

Index Terms—Fading channels, outage performance, or-
der statistics, partial sums, Nakagami-m fading.

I. INTRODUCTION

Order statistics have played a critical role in the design

and analysis of many emerging wireless transmission

techniques, such as advanced diversity combining, chan-

nel adaptive transmission, and multiuser scheduling [2]–

[17]. Previous order statistics results in [5]–[9] were

obtained based on conventional or slightly modified

statistical theories (e.g., simple one or two dimensional
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joint statistics). Later, with the advent of complex trans-

mission systems, more complicated multi-dimensional

joint statistical techniques became necessary [10]–[17].

Some previous results have been helpful in the accurate

quantification of performance versus complexity among

different transmission design options. Other results, how-

ever, such as the joint distribution functions of linear

functions of ordered random variables (RVs) are not

helpful due to their high complexity. Comprehensive

analysis of how both conventional and new order statis-

tics results help in obtaining the desired statistics of the

received output signal-to-noise ratio (SNR) in wireless

transmission systems has not yet been reported.

Recently, [18] and [19] introduced new results to

determine the joint statistics of partial sums of ordered

exponential RVs. In [19], a successive conditioning

approach was used to convert dependent ordered RVs

into independent unordered RVs. Obtaining distribution

functions, including the probability density function

(PDF), the cumulative distribution function (CDF), and

the moment generating function (MGF), is now possi-

ble with this framework and related results. However,

this approach requires some case-specific manipulations,

which may not always be generalizable. In [18], we

introduced a unified analytical framework to determine

the joint statistics of partial sums of ordered RVs using

an MGF-based approach. With our proposed approach,

the joint statistics of any arbitrary partial sums of ordered

statistics in terms of MGF and PDF, especially in the

presence of Rayleigh fading, can be derived systemati-

cally.

On another front, the Nakagami-m distribution often

gives the best fit to urban [20] and indoor [21] multipath

propagation of wireless transmission. Most importantly,

Nakagami fading captures a wide range of multipath

channels via the fading parameter, m, including the

Rayleigh distribution (m = 1) as a special case [22].

In addition, when m > 1, the Nakagami-m distri-

bution closely approximates the Rice distribution [22]



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2717048, IEEE Access

S.S. NAM et al.: NEW RESULTS ON ORDERED STATISTICS OVER NAKAGAMI-M FADING 2

by one-to-one mapping between the Rician factor and

the Nakagami fading parameter. Some analytical results

on Nakagami-m fading assumptions based on order

statistics can be found in [6], [23]–[25]. However, in

most cases, fundamental one- or trivial two-dimensional

joint statistical results are provided. These results do not

lend themselves to more sophisticated performance eval-

uation. Thus far, no exact closed-form results, even sim-

plified results, of complicated multi-dimensional joint

statistics under Nakagami fading conditions are available

in the literature. The primary goal of this paper is thus

to provide new exact closed-form results on the order

statistics of any arbitrary partial sums of Gamma random

variables, we present a feasible performance evaluation

example, in which we apply closed-form results under

independent and identically distributed (i.i.d.) Nakagami-

m fading conditions to the MGF-based unified approach

in [18].

A. Main Contributions

The main contributions and points of difference be-

tween the previous works and this work are briefly

summarized as follows:

� In [18], some closed-form results for Rayleigh

fading assumptions were provided using a unified

MGF-based approach. Especially, with the newly

provided MGF-based unified framework and related

core functions specialized for Rayleigh fading, the

joint statistic closed-form results of any arbitrary

partial sums of ordered statistics were derived

systematically. Although [18] provides new useful

closed-form results on ordered statistics, deriving

the closed-form results over Nakagami fading chan-

nel is another challenge. Therefore, in this paper,

we provide some new closed-form results of core

functions specialized for Nakagami fading and then

with these results, some exact closed-form results

on ordered statistics of partial sums of Gamma ran-

dom variables are newly provided. These both exact

closed-form results have never been published in the

literature and may stimulate researchers to find new

results in the general order statistics theory.

� As a feasible application example in which our

derived joint statistic closed-form results can be ap-

plied, we consider the outage performance analysis

of the finger replacement schemes (FRS) proposed

in [26] by extending channel model to Nakagami-

m fading channels. It is very noticeable that the

FRS in [26] can also apply to the new “trendy”

applications such as millimeter-wave (mmWave)

communication systems in which an antenna diver-

sity scheme operates using an FRS-like combining

scheme. In mmWave systems, with an increase

of the number of Rake fingers, a significant im-

provement is expected because the channel impulse

response is completely decayed in a very short time

period compared with the typical RAKE receiver

based systems (i.e., carrier frequencies below 10

GHz) [27], [28]. Therefore, a larger number of

fingers are required while there exist the limited

number of fingers in the mobile unit. This can

point to very clear conclusion that it is more neces-

sary to apply the low complexity and low power

consumption finger management schemes with a

minimal amount of additional network resources

for RAKE reception in the SHO region with mul-

tiple base stations (BSs) to achieve the required

performance. Here, for mmWave communication

systems, Nakagami assumption is more proper than

Rayleigh assumption because it is not always possi-

ble to satisfy Rayleigh criterion [29], [30]. However,

in [26], the author has investigated and analyzed

the performance over i.i.d. Rayleigh fading envi-

ronments with multiple BSs based on the statistical

derivation approach used in [19]. In [19], the re-

quired joint statistics of ordered RVs were obtained

by applying the conditional PDF based approach

proposed. However, this approach is limited to

when assuming Rayleigh fading from path to path

and does not allow for similar simplifications for

Nakagami case. Therefore, we address this mathe-

matical issue by providing a general comprehensive

analysis framework for outage performance analysis

in the presence of Nakagami fading by adopting

the MGF-based unified approach in [18] instead

of [19]. More specifically, we slightly modify

the performance analysis framework used in [26]

to make it suitable for these newly derived joint

statistical results.

Note that the slightly modified analytical framework

suitable for the derived statistical results can also be

configured to be directly applicable to other various

fading scenarios while the analytical framework in [26],

the conditional PDF based approach, and related results

were limited only to i.i.d. Rayleigh fading assumptions.

Note also that our derived statistical results are much

simpler than the original multiple-fold integral forms

based on the conventional MGF based approaches.

II. SYSTEM MODELS AND STATISTICAL ANALYSIS

OF THE OUTAGE PERFORMANCE OF APPLICATION

EXAMPLE

Here, we consider the full scanning method in [26]

in the presence of Nakagami fading. Using the system

model assumptions in [26], we assume that L base

stations (BSs) are active and that there are a total of N(L)
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resolvable paths which is defined as N(L) =
L
∑

n=1
Nn

where Nn is the number of resolvable paths from the n-

th BS. [26] assumed that in the soft handover (SHO)

region, for RAKE reception, only Nc out of N(n)

(1≤n≤L) paths are used. Without loss of generality,

N1 is defined as the number of resolvable paths from the

serving BS while N2, N3, · · · , NL are defined as those

from the target BSs. In the SHO region, the receiver

is assumed at first to rely only on N1 resolvable paths

and, as such, to start with Nc/N1-generalized selection

combining (GSC) [5] which combines the strongest Nc

resolvable paths among the N1 available ones. These

schemes are based on the comparison of blocks consist-

ing of Ns (<Nc <Nn) paths from each BS.

If we let Y be the sum of the Nc−Ns strongest paths

from the serving BS, Y =
Nc−Ns

∑

i=1
γi:N1 , and Wn be the

sum of the Ns smallest paths from the serving BS for

n = 1 and be the sum of the Ns strongest paths from the

target BS for n = 2, · · · , L, Wn =
Nc
∑

i=Nc−Ns+1

γi:Nn
for

n = 1 and Wn =
Ns
∑

i=1
γi:Nn

for n = 2, · · · , L, then after

GSC, the received output SNR becomes Y +W1, where

γi:Nn
(i=1, 2, · · · , Nn) is the i-th order statistics out of

Nn SNRs of paths from the n-th BS by arranging Nn

nonnegative i.i.d. RVs, {γj}
Nn

j=1, where γj is the SNR of

the j-th path from the n-th BS, such that γi:N1 ≥γi:N2 ≥
· · · ≥ γi:Nn

. Based on [26], the receiver compares the

output SNR, Y +W1, with a certain target SNR at the

beginning of every time slot. Then, if the sum of the

Nc − Ns strongest paths from the serving BS and the

Ns smallest paths from the serving BS, Y+W1 is greater

than or equal to the target SNR, a one-way SHO is used

and no finger replacement is needed. On the other hand

(i.e., Y +W1 falls below the target SNR), the receiver

attempts a two-way SHO by starting to scan additional

paths from other target BSs.

To show the validity of our derivations, we con-

sider outage performance. We modify the mathematical

analysis framework in [26] to make it suitable for our

newly derived joint statistical results. This framework

to determine outage performance is configured to be

directly applicable to other fading scenarios with the help

of the unified MGF-based approach in [18] rather than

the approaches in [26] and [19]. Based on the mode of

operation in Sec. [26, II-B], an overall outage probability

is declared when the final combined SNR, γF , falls

below a predetermined threshold, x. Based on it, we can

define the outage probability as FγF
(x) = Pr [γF < x],

where γF = Y + W1 for Y + W1 ≥ γT and γF =
Y +max {W1, W2, · · · , WL} for Y +W1 < γT . Then, by

separately considering two cases i) when the combined

SNR falls below the target SNR (i.e., 0 < x < γT ) and

ii) when the combined SNR is greater than or equal to

the target SNR, γT , (i.e., x≥γT ), the outage probability

can be rewritten as

FγF
(x)

=

8

>

<

>

:

Pr [Y + max {W1, W2, · · · , WL} < x] , 0 < x < γT ;
Pr [γT ≤ Y + W1 < x]
+Pr [Y + W1 < γT , γT ≤ Y
+max {W1, W2, · · · , WL} < x] , x ≥ γT .

(1)

Here, Y and Wn for n = 1 are correlated while Y and

Wn ( n = 2, · · · , L ) are independent. Thus, by adopting

the proposed mathematical approach in [18] instead of

applying [19], we can evaluate key statistics in (1) as

Pr [γT ≤ Y + W1 < x] = FY +W1 (x) − FY +W1 (γT ) , (2)

Pr [Y + max {W1, W2, · · · , WL} < x]

=

Z x

0

Z x−y

0

fY,W1 (y, w1)

L
Y

n=2

FWn (x − y)dw1dy,
(3)

and

Pr [Y +W1 <γT , γT ≤ Y +max {W1, W2, · · · , WL}<x]

=

Z γT

0

Z γT −y

0

fY,W1 (y, w1)

L
Y

n=2

FWn (x − y)dw1dy.

(4)

III. JOINT STATISTICS OF PARTIAL SUMS OF

ORDERED RANDOM VARIABLE OVER I.I.D.

NAKAGAMI-m FADING

A. Main Approach

For the Nakagami-m fading case, the instantaneous

SNR, γ, has the PDF given by [2, eq. (2.55)]

p (γ)=

„

m

γ̄

«m
γm−1

Γ(m)
exp

„

−
m

γ̄
γ

«

, γ ≥ 0, (5)

where Γ(·) denotes the gamma function [31, eq.

(8.310.1)] and γ̄ is the common average faded SNR.

Note that the major difficulty lies in deriving the required

joint statistics of ordered RVs. In [26], by applying the

conditional PDF based approach proposed in [19], the

required joint statistics were obtained, especially with

an assumption of i.i.d. Rayleigh fading. However, our

concern is Nakagami-m fading which includes a wide

range of multipath channels via the fading parameter,

m, [22]. In this setting, we cannot directly adopt the

proposed method in [19]. Hence, we borrow the con-

cept of the unified MGF-based systematical framework

proposed in [18].

B. Common Core Functions and Relations

For mathematical tractability, let us consider integer-

order fading parameters (i.e., m takes positive integer

values). Even with integer fading parameter values,
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[c (γ,−si)]
n =

„

m

γ̄

«n·m„
m

γ̄
+ si

«−n·m n
X

k=0

 

n

k

!

(−1)k exp

„

−

„

m

γ̄
+ si

«

k · γ

«

×
X

n1,n2 ,··· ,nm≥0
n1+n2+···+nm=k

 

k

n1, n2, · · · , nm

!

γN(m)

m−1
Q

l=0

(l!)nl+1

N(m)
X

j=0

 

N (m)

j

!

„

m

γ̄

«N(m)−j

si
j ,

(6)

[e (γ,−si)]
n =

„

m

γ̄

«n·m„
m

γ̄
+ si

«−n·m

exp

„

−

„

m

γ̄
+ si

«

n · γ

«

×
X

n1,n2 ,··· ,nm≥0
n1+n2+···+nm=n

 

n

n1, n2, · · · , nm

!

γN(m)

m−1
Q

l=0

(l!)nl+1

N(m)
X

j=0

 

N (m)

j

!

„

m

γ̄

«N(m)−j

si
j
,

(7)

and

[µ (γa, γb,−si)]
n =

„

m

γ̄

«n·m„

m

γ̄
+ si

«−n·m

exp

„

−

„

m

γ̄
+ si

«

γa · n

« n
X

h=0

 

n

h

!

(−1)n−h

×
X

n1,n2 ,··· ,nm≥0
n1+n2+···+nm=h

X

n′
1 ,n′

2 ,··· ,n′
m≥0

n′
1+n′

2+···+n′
m=n−h

 

h

n1, n1, · · · , nm

! 

n − h

n′
1, n′

2, · · · , n′
m

!

×
γa

N(m)

m−1
Q

l=0

(l!)nl+1

·
γb

M(m)

m−1
Q

k=0

(k!)n′
k+1

N(m)
X

j=0

M(m)
X

q=0

 

N (m)

j

! 

M (m)

q

!

„

m

γ̄

«N(m)+M(m)−j−q

si
j+q

,

(8)

where N (m) =
∑m−1

l=0 l · nl+1 and M (m) =
∑m−1

k=0 k · mk+1.

closed-form results of partial sums of ordered RV over

Nakagami-m fading remain an open problem. Many

previous studies [32]–[39] focused on performance anal-

ysis over Nakagami fading channels with the integer

fading parameter. These works showed that the integer

fading parameter is sufficient to model a wide range of

fading conditions and can cover most cases of interest in

practice (e.g., for many practical channels, 1 ≤ m ≤ 15,

[32]).

Here, we first observe three common core functions

of i.i.d. Nakagami distributions: i) a mixture of a CDF

and an MGF, c (γ, λ) =
∫ γ

0
dx p (x) exp (λx), ii) a

mixture of an exceedance distribution function (EDF)

and an MGF, e (γ, λ) =
∫

∞

γ
dx p (x) exp (λx), and

iii) an interval MGF, µ (γ, λ) =
∫ γb

γa
dx p (x) exp (λx),

where γ is real and λ can be complex [18, Sec. III-

A]. We further consider the n-th power of these com-

mon core functions for arbitrary n, such as [c (γ, λ)]
n

,

[e (γ, λ)]
n

, and [µ (γ, λ)]
n

. The closed-form results of

these functions will play a important role to simplify the

derivation of joint MGFs in later sections.

As shown in Appendix A, each function can be

expressed in a finite summation form, enabling us to

apply an inverse Laplace transform (LT) with the MGF

expressions in deriving the closed-form expressions of

the final PDF. The resulting n-th power of common core

functions are as shown in top of this page.

In the special case of the Rayleigh fading channel

(m = 1), the results are given in [18]. With (6)-(8) and

the unified framework for Rayleigh fading assumptions

in [18], we can obtain the generic MGF expressions in

a compact form as well as the desired PDF expressions

through an inverse LT (see Appendix B).

In what follows, we show how our results can be

greatly simplified. Let Z1 =
n
∑

i=1
γi:N and Z2 =

N
∑

i=n+1
γi:N for example. Then, the original second-order

MGF expression of Z = [Z1, Z2] can be written as an

N -fold integral expression

MGFZ (λ1, λ2) = E {exp (λ1Z1 + λ2Z2)}

=
N !

(N − n)! (n − 1)!

∞
Z

0

dγ1:Np (γ1:N ) exp (λ1γ1:N )

· · ·

γn−1:N
Z

0

dγn:Np (γn:N ) exp (λ1γn:N )

×

γn:N
Z

0

dγn+1:Np (γn+1:N ) exp (λ2γn+1:N )

· · ·

γK−1:N
Z

0

dγN :Np (γN :N) exp (λ2γN :N ).

(9)

Following from (9) and simplifying the N -fold integral
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expression with the help of the interchange of multiple

integrals technique and simplified results given in [18,

eqs. (10) and (12)], the 2-dimensional joint PDF of Z =
[Z1, Z2] can be expressed, more specifically by applying

the PDF of the RV of interest, specifically (5), into the

simplified form [18, eq. (25)], as

fZ(z1, z2) = L−1
S1 ,S2

{MGFZ (−S1,−S2)}

=
N !

(N − n)! (n − 1)!

×

Z ∞

0

dγn:N

„

m

γ̄

«m
γn:N

m−1

Γ (m)
exp

„

−
m

γ̄
· γn:N

«

× L−1
s1

˘

exp(−s1γn:N)[e (γn:N ,−s1)]
n−1¯

× L−1
s2

n

[c (γn:N ,−s2)]
N−n

o

.

(10)

Then, adapting (7) to (10) yields the first inverse LT term

as

L−1
s1

˘

exp (−s1γn:N ) [e (γn:N ,−s1)]
n−1¯

=
X

n′
1 ,n′

2 ,··· ,n′
m≥0

n′
1+n′

2+···+n′
m=n−1

 

n − 1

n′
1, n′

2, · · · , n′
m

!

„

m

γ̄

«(n−1)·m

× exp

„

−
m

γ̄
· γn:N

«

γn:N
N ′(m)

m−1
Q

l′=0

(l′!)n′
l′+1

×

N ′(m)
X

j′=0

 

N ′ (m)

j′

!

„

m

γ̄

«N ′(m)−j′

×L−1
s1

(

s1
j′
„

m

γ̄
+s1

«−(n−1)·m

exp

„

−

„

m

γ̄
+s1

«

·n·γn:N

«

)

,

(11)

where N ′ (m) =
∑m−1

`′=0 `′ · n′

`′+1 and, with the help of

(38) in Appendix B,

L−1
s1

(

s1
j′
„

m

γ̄
+s1

«−(n−1)·m

exp

„

−

„

m

γ̄
+s1

«

·n·γn:N

«

)

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

exp
“

−m
γ̄
·n·γn:N

”

(z1−n·γn:N )(n−1)·m−1

((n−1)·m)!

× exp
“

−m
γ̄
·(z1 − n·γn:N )

”

U(z1 − n·γn:N ) ,

for j′ = 0

exp
“

−m
γ̄
·n·γn:N

”

»

dj′ g(z1−n·γn:N )

dz1
j′

+
j′−1
P

k′=0

g(k′) (0) δ(j′−k′−1) (z1 − n·γn:N )

#

×U(z1 − n·γn:N ) ,
for j′ > 0

.

(12)

where

g(t) =
t(n−1)·m−1 exp (−at)

((n − 1) · m − 1)!
, (13)

or equivalently (12) can be also simplified when n > m

as

L−1
s1

(

s1
j′
„

m

γ̄
+s1

«−(n−1)·m

exp

„

−

„

m

γ̄
+s1

«

·n·γn:N

«

)

= exp

„

−
m

γ̄
·n·γn:N

«

(z1−n·γn:N)(n−1)·m−j′−1

((n − 1)m)!

× 1F̃1

„

(n − 1) m, (n − 1)m − j
′
,−

m

γ̄
(z1 − n · γn:N)

«

× U (z1 − n · γn:N) .
(14)

Similarly, with (6), the second inverse LT term in (10)

can also be written as

Ls2
−1
n

[c (γn:N ,−s2)]N−n
o

=

N−nX

k=0

X

n1,n2 ,··· ,nm≥0
n1+n2+···+nm=k

“N − n

k

”“ k

n1, n2, · · · , nm

”

(−1)k

×

„
m

γ̄

«(N−n)·m N(m)
X

j=0

“N (m)

j

”„m

γ̄

«N(m)−j

×Ls2
−1

(

s2
j

„
m

γ̄
+s2

«−(N−n)·m

exp

„

−

„
m

γ̄
+s2

«

·k·γn:N

«)

,

(15)

and in (15) the inverse LT term, Ls2

−1{·}, can be

obtained as

L−1
s2

(

s2
j

„
m

γ̄
+ s2

«−(N−n)·m

exp

„

−

„
m

γ̄
+ s2

«

· k · γn:N

«)

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

exp
“

−m
γ̄
·k·γn:N

”
(z2−k·γn:N )(N−n)·m−1

((N−n)·m−1)!

× exp
“

−m
γ̄
·(z2 − k·γn:N )

”

U (z2 − k·γn:N ) ,

for j = 0

exp
“

−m
γ̄
· k·γn:N

” h
djg(z2−k·γn:N )

dz2
j

+
j−1P

k′=0

g(k′) (0) δ(j−k′−1) (z2 − k·γn:N )

#

U (z2 − k·γn:N ) ,

for j > 0
(16)

where

g(t) =
t(N−n)·m−1 exp (−at)

((N − n) · m − 1)!
, (17)

or equivalently for n > m, the inverse LT term in (15)

can be obtained as

L−1
s2

(

s2
j

„
m

γ̄
+ s2

«−(N−n)·m

exp

„

−

„
m

γ̄
+ s2

«

· k · γn:N

«)

= exp

„

−
m

γ̄
· k · γn:N

«

(z2 − k · γn:N)(N−n)·m−j−1

× 1F̃1

„

(N − n)m, (N − n) m− j,−
m

γ̄
(z2 − k · γn:N)

«

× U (z2 − k · γn:N) .
(18)

IV. CLOSED-FORM EXPRESSIONS FOR KEY JOINT

STATISTICS FOR FRS

In this section, we investigate the following key joint

statistics for outage performance evaluation: fY,W1(·, ·),
FY +W1 (·), and FWn

(·) for 2 ≤ n ≤ L in Sec. II.
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A. Two-dimensional Joint PDF of Two Adjacent Partial

Sums of Ordered RVs, fY,W1
(x, y)

In this case, the target 2-dimensional joint PDF of Y =
Nc−Ns
∑

i=1

γi:N1 and W1 =
Nc
∑

i=Nc−Ns+1

γi:N1 can be obtained

with the 4-dimensional joint PDF of Z1 =
Nc−Ns−1

∑

i=1
γi:N1 ,

Z2 =γNc−Ns:N1 , Z3 =
Nc−1
∑

i=Nc−Ns+1

γi:N1 , and Z4 =γNc:N1 ,

where the order statistics of N1 resolvable paths can be

viewed as

Y
z }| {
γ1:N1

, · · · , γNc−Ns−1:N1
| {z }

Z1

, γNc−Ns:N1
| {z }

Z2

,

W1
z }| {
γNc−Ns+1:N1

, · · · , γNc−1:N1
| {z }

Z3

, γNc:N1
| {z }

Z4

, γNc+1:N1
, · · · , γN1 :N1

.

(19)

In (19), Z1, Z2, Z3, and Z4 have the following con-

ditions, such that Z4 < Z2, Z1 > (Nc − Ns − 1)Z2

and (Ns − 1)Z4 < Z3 < (Ns − 1)Z2. Based on these

conditions and with the help of a function of a marginal

PDF, the joint PDF of Y and W1, fY,W1 , can be obtained

by integrating out z2 and z4 as

fY,W1
(x, y)

=

Z y
Ns

0

Z x
Nc−Ns

y
Ns

fZ1,Z2 ,Z3,Z4
(x−z2, z2, y−z4 , z4) dz2dz4.

(20)

Here, by adopting the unified MGF approach proposed

in [18], we obtain the 4-dimensional joint PDF in (20),

fZ1,Z2,Z3,Z4 (z1, z2, z3, z4), for i.i.d. Nakagami-m fad-

ing assumption after applying (6), (7), (8), and (5) to

the generic 2-dimensional PDF form in [18, eq. (42)] as

given in (21) at the end of page. Then, we substitute

(21) into (20) and then, after re-arranging and some

simplification, (20) can be expressed as shown in (22).

Following the detailed derivations in Appendix C, we

can obtain the closed-form expressions of the double

integral term in (22) as follows,

i) For h = Ns − 1,

„
m

γ̄
(Ns−1)

«−α−1„m

γ̄
k

«−β−1

γ

„

β+1,
m

γ̄
·

k

Ns

y

«

×

2

4γ

„

α+1,
m

γ̄
·

Ns−1

Nc−Ns

x

«

−γ

„

α+1,
m

γ̄
·
Ns−1

Ns

y

«
3

5.

(23)

ii) For 0 ≤ h ≤ Ns − 2,

„
m

γ̄
(Ns−1)

«−α−1„m

γ̄
k

«−β−1
2

4



1−U

„
x

Nc−Ns

−
y

Ns−(h+1)

«ff

× γ

„

β + 1,
m

γ̄
ka

«

γ

„

α+1,
m

γ̄
·

Ns−1

Nc−Ns

x

«

−1

ff

−γ

„

β + 1,
m

γ̄
·

k

Ns

y

«

γ

„

α + 1,
m

γ̄
·
Ns − 1

Ns

y

«

− 1

ff
3

5

+

αX

t1=0

t1X

t2=0

“t1

t2

” (−1)t1−t2α!

t1!

„
m

γ̄
(Ns − 1)

«t1−α−1

×
yt2 (h + 1)t1−t2

(Ns − (h + 1))t1
exp

„

−
m

γ̄
·

Ns − 1

Ns − (h + 1)
y

«

×


m

γ̄

„

k−
(Ns−1) (h+1)

Ns−(h+1)

«ff−β−t1+t2−1

×

2

4



1−U

„
x

Nc−Ns

−
y

Ns − (h + 1)

«ff

× γ

„

β + t1 − t2 + 1,
m

γ̄

„

k −
(Ns − 1) (h + 1)

Ns − (h + 1)

«

a

«

−γ

„

β+t1−t2+1,
m

γ̄
·

1

Ns

„

k −
(Ns − 1) (h + 1)

Ns − (h + 1)

«

y

«
3

5,

(24)

where γ (·, ·) is the lower incomplete gamma function

[40, eq. (8.352.1)].

B. One-dimensional CDF of the Nc/N1-GSC Output

SNR, FY +W1 (x)

For convenience, we let Z′=Y+W1 . Then, the target

CDF of Z′ =
Nc
∑

i=1
γi:N1 with the 2-dimensional joint PDF

of Z1 =
Nc−1
∑

i=1

γi:N1 and Z2 =γNc:N1 can be obtained as

FY +W1
(x) =

Z x

0

Z z

Nc

0
fZ1,Z2

(z − z2, z2) dz2dz. (25)

Here, by applying a similar approach used in (11) and

(21), and adopting the generic form in [18, eq. (44)]

with (5) and the related common core functions given in

(6) and (7), we can obtain the target 2-dimensional joint

PDF, fZ1,Z2 (z1, z2), in (26) at the end of page for the

i.i.d. Nakagami-m fading assumption.

Substituting (26) into (25) and then, with the help

of [31, eqs. (8.352.6), (3.381.1)] and then after some

re-arranging and some mathematical simplification, (25)

can be expressed as provided in (27).

C. One-dimensional CDF of the Sums of the Ns

Strongest Paths from Each Target BS, FWn
(x)

In this case, by applying a function of a marginal PDF

with the 2-dimensional joint PDF of Z′

1 =
Ns−1
∑

i=1
γi:Nn

and

Z′

2 =γNs:Nn
, the target one-dimensional CDF of Wn =

Ns
∑

i=1
γi:Nn

can be derived as

FWn (x) =

Z x

0

Z z

Ns

0

fZ′
1,Z′

2

`

z − z
′
2, z

′
2

´

dz
′
2dz. (28)

The closed-form expression of (28) can be easily ob-

tained by replacing Nc and N1 with Ns and Nn in

(27), respectively. The closed-form result of the integral

form in (22) can be obtained by separately considering

i) h=Ns−1 and ii) 0≤ h≤Ns−2 as shown in (23) and

(24), respectively.
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V. DISCUSSIONS AND CONCLUSIONS

In this work, we provided new exact closed-form order

statistics of partial sums of Gamma random variables

by deriving the closed-form results of common core

functions specialized for Nakagami fading. In addition,

we analyzed the outage performance of FRS proposed

in [26] operating over Nakagami-m fading channels as

a feasible application example.

If the closed-form results of the joint statistics, espe-

cially in order statistics, are not available, the numerical

estimation of multi-fold integral expressions (e.g., the

N -fold integrals given in (9)) are required. However,

estimating them accurately as N increases is difficult

even with conventional mathematical tools. When the

N is large, estimating the analytical results is almost

impossible. However, with closed-form results derived

here, probabilistic analysis is numerically possible with

conventional mathematical tools. Note that the closed-

form expressions seems to be complicated and they

can be further summarized in a functionalized shape.

However, to demonstrate how we obtained the derived

results and the feasibility of applying the derived results

to an application, we maintain them in a minimally

simplified form. With these results, the user can directly

change/apply the obtained results in the form desired

by the user. The closed-form expressions may appear to

be complicated, but the numerical results can be easily

obtained. On the other hand, it is almost impossible

to obtain numerical results physically with conventional

mathematical tools due to estimation difficulties.

Further, as a validation of our analytical formula for

the outage probability, in Fig. 1, we cross-verified the

analytical results and the simulation results obtained via

Monte-Carlo simulation. Fig. 1 showed that the derived

analytical results match the simulation results. As a

result, we believe that we can accurately predict the

performance with them.

Note that closed-form results on ordered statistics of

partial sums of ordered random variables over Nakagami

fading remained in an open problem, even with integer

fading parameter values. Note also that although derived

closed-form results limited to integer fading parameter

values, they can still covers most cases of interest

in practice. Therefore, in the view of contribution to

ordered statistics, these new statistical results can provide

the potential solution of both other ordered statistics in

the presence of Nakagami fading in advanced wireless

communications research and any other research topics

based on Gamma distributions.
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APPENDICES

APPENDIX A

DERIVATION OF CLOSED-FORM EXPRESSIONS OF

THREE COMMON CORE FUNCTIONS

In Sec. III, with (5), we can write the mixture of

a CDF and an MGF for the i.i.d. Nakagami fading

assumption as

c (γ,−si)=

„

m

γ̄

«m
1

Γ(m)

Z γ

0

γ
m−1exp

„

−

„

m

γ̄
+si

«

x

«

dx.

(29)

Then, with the help of [31, eq. (3.381.1) and eq.

(8.352.1)], the closed-form result of (29) can be obtained

as

c (γ,−si)

=

„
m

γ̄

«m 1

Γ(m)

„
m

γ̄
+ si

«−m

γ

„

m,

„
m

γ̄
+ si

«

γ

«

or
=

„
m

γ̄

«m„m

γ̄
+ si

«−m

×

2

6
41− exp

„

−

„
m

γ̄
+ si

«

γ

«m−1X

l=0

h“
m
γ̄

+ si

”

γ
il

l!

3

7
5 .

(30)

With the summand expression in (30), by applying

the binomial theorem, the n-th power of c (γ,−si) for

arbitrary n can be obtained as

[c (γ,−si)]
n

=

„
m

γ̄

«nm„m

γ̄
+si

«−nm

×
nX

k=0

“n

k

”

(−1)kexp

„

−

„
m

γ̄
+si

«

kγ

«
2

6
4

m−1X

l=0

“
m
γ̄

+si

”l
γl

l!

3

7
5

k

.

(31)

Here, with the help of the multinomial theorem, we

obtain the following relationship:

2

6
4

m−1X

l=0

“
m
γ̄

+si

”l
γl

l!

3

7
5

k

=
X

n1,n1 ,··· ,nm≥0
n1+n1+···+nm=k

“ k

n1, n1, · · · , nm

”

M
n1
0 M

n2
1 · · ·Mnm

m−1,

(32)

where Ml =
[(

m
γ̄

+si

)

γ
]l

/l! and some mathematical

manipulations give us

Mn1
0 Mn2

1 · · ·Mnm
m−1 =

γN(m)

m−1
Q

l=0

(l!)nl+1

N(m)
X

j=0

 

N(m)

j

!

„

m

γ̄

«N(m)−j

si
j ,

(33)
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where N (m) =
∑m−1

l=0 l · nl+1 . Thus, after successive

substitution from (33) to (31), we can get (6).

Similarly, with the help of [31, eq. (3.381.3) and

eq. (8.352.2)] and then by applying the binomial the-

orem, the closed-form expressions of the n-th power

of e(γ,−si) and µ(γa, γb,−si) for arbitrary n can be

obtained as shown in (7) and (8), respectively.

APPENDIX B

INVERSE LT PAIR AND RELATED USEFUL FUNCTION

The following inverse LT is useful for the derivation

of final PDF closed-form expressions from MGF expres-

sions in Sec. III

L−1
s



sm

(a + s)n exp (−b (a + s))

ff

. (34)

Here, let F (s)= sm

(a+s)n , then, L−1
s {F (s)}=f(t) and we

can obtain the following inverse LT pair for b > 0:

L−1
s {F (s) exp (−b (a + s))}

L.T
←→ exp (−ba) f (t − b) U (t− b) .

(35)

In (35), let G(s) = 1
(a+s)n and L−1

s {G(s)}= g(t), then

F (s) = smG (s) and we can obtain the inverse LT

pair of F (s) by applying classical inverse LT pairs and

properties as

F (s)=smG(s)
L.T
←→ f (t)=

dmg (t)

dtm
+

m−1X

k=0

g(k) (0) δ(m−k−1) (t),

(36)

where g (t)=
tn−1exp(−at)

(n−1)!
. Therefore, the inverse LT pair

in (34) can be obtained as

L−1
s {smG (s) exp (−b (a + s))}

L.T
←→ exp(−ba)

"

dmg (t−b)

dtm
+

m−1X

k=0

g(k)(0)δ(m−k−1)(t−b)

#

U (t−b) .

(37)

Here, for m>0,
∑m−1

k=0g
(k)(0)δ(m−k−1)(t−b)U(t−b)≈0.

Thus, (37) can be finally simplified as

L−1
s {smG (s) exp (−b (a + s))}

L.T
←→ exp(−ba)

dmg (t − b)

dtm
U (t− b) .

(38)

With (38), we still need to derive the m-th derivative of

g (t). In this paper, we assume that g(t) =
exp(−a·t)tn−1

(n−1)!

and we derive the derivative of g (t) for a special case

and then we can extend this result to the general case.

More specifically, after i) differentiating g(t) based on

the product rule one time, two times, and three times

and then ii) rearranging and simplifying them, the first,

second, and third derivative of g (t) can be written,

respectively, as

g
′ (t)=

exp(−a·t)

(n−1)!
(−1)

`

a·tn−1 − (n−1) t
n−2´

, (39)

g′′ (t) =
exp(−a·t)

(n− 1)!
(−1)2

`
a2 ·tn−1 − 2a (n− 1) tn−2

+(n− 1) (n − 2) tn−3
´
,

(40)

and

g′′′ (t)=
exp(−a·t)

(n−1)!
(−1)3

`
a3 ·tn−1 − 3a2 (n−1) tn−2

+3a (n−1)(n−2)tn−3−(n−1) (n−2)(n−3) tn−4
´
.

(41)

As a result, from (39)-(41), we can now obtain the m-th

derivative of g (t) for arbitrary m as

g(m)(t)=
Xm

k=0
(−1)k+m

“m

k

”

am−k

Qk
l=0 (n−l)

n!
tn−1−kexp (−at) .

(42)

APPENDIX C

DERIVATION OF THE CLOSED-FORM EXPRESSION OF

(22)

To obtain the closed-form expression of (22), we need

to calculate the following double integral term
Z y

Ns

0

Z x
Nc−Ns

y
Ns

z2
αz4

β exp

„

−
m

γ̄
(Ns−1) z2

«

exp

„

−
m

γ̄
kz4

«

U (z2−z4)

×U (x−(Nc−Ns) z2)U (y−((h+1) z4+(Ns−(h+1)) z2)) dz2dz4.
(43)

Based on the given conditions associated with pa-

rameters z2 and z4, we need to consider two different

shaded regions shown in Fig. 2. More specifically, the

overall intersection region depends on the intersection

point between z2 = − h+1
Ns−(h+1)

· z4 + y
Ns−(h+1)

(for

0 ≤ h ≤ Ns − 1) and the z2-axis. For case i),

the z2-coordinate term for the intersection point of

z2 = − h+1
Ns−(h+1)

· z4 + y
Ns−(h+1)

and z2-axis (i.e.,

cz2 = y
Ns−(h+1) , where cz2 represents the z2-axis value

of the intersection.) is located between
y

Ns
and x

Nc−Ns
.

Therefore, the intersection becomes the shaded region

filled with a blue line under z2 = − h+1
Ns−(h+1)

· z4 +
y

Ns−(h+1) . For case ii), the z2-coordinate term for the

intersection point is located over x
Nc−Ns

on the z2-axis.

Therefore, the intersection region becomes the shaded

region filled with a red line under both z2 = x
Nc−Ns

and z2 = − h+1
Ns−(h+1) · z4 + y

Ns−(h+1) . Specifically,

for z4 < ez4 (where ez4 represents the z4-axis value

of the intersection point between z2 = x
Nc−Ns

and

z2 = − h+1
Ns−(h+1) ·z4 + y

Ns−(h+1) and ez4 = y
(h+1) −

Ns−(h+1)
(Nc−Ns) x), the intersection becomes the shaded region

under z2 = x
Nc−Ns

. Otherwise, the intersection becomes

the shaded region under z2 = − h+1
Ns−(h+1)

·z4+
y

Ns−(h+1)
.

Note that these two cases are dominated by the relation-

ship among parameters (Nc and Ns).

Based on the above observations, the valid integration

for case i) is 0 ≤ z4 ≤ y
Ns

and
y

Ns
≤ z2 ≤ − h+1

Ns−(h+1) ·

z4 + y
Ns−(h+1)

. For case ii), we need to consider the

following two cases: a) h = Ns − 1 and b) 0 ≤ h ≤
Ns − 2. As a result, for case ii)-a), the valid integration

is 0 ≤ z4 ≤ y
Ns

and y
Ns

≤ z2 ≤ x
Nc−Ns

. Otherwise,

based on the above observations, we need to consider

two regions separately. More specifically, for the shaded
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region under z2 = x
Nc−Ns

, the valid integration region

is 0 ≤ z4 ≤ ez4 and
y

Ns
≤ z2 ≤ x

Nc−Ns
. Otherwise,

the valid integration is ez4 ≤ z4 ≤ y
Ns

and y
Ns

≤ z2 ≤

− h+1
Ns−(h+1)

·z4 + y
Ns−(h+1)

.

As a result, we can rewrite (43) as

a) For h = Ns − 1,

Z y
Ns

0
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„
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m
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m
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kz4

«

dz2dz4.

(44)

b) For 0 ≤ h < Ns − 1,

U

„
x
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−
y

Ns−(h+1)

«

×

Z y
Ns

0

Z
−

h+1
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·z4

+
y
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y
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αz4

βexp
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−
m
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«

exp

„

−
m

γ̄
kz4

«

dz2dz4

+

»

1−U

„
x

Nc−Ns

−
y

Ns−(h+1)

«–

×

(Z ez4

0

Z x
Nc−Ns

y
Ns

z2
αz4

βexp

„

−
m

γ̄
(Ns−1) z2

«

exp

„

−
m

γ̄
kz4

«

dz2dz4

+

Z y
Ns

ez4

Z
−

h+1
Ns−(h+1)

z4

+
y

Ns−(h+1)

y
Ns

z2
αz4

βexp

„

−
m

γ̄
(Ns−1)z2

«

exp

„

−
m

γ̄
kz4

«

dz2dz4

9
>=

>;

.

(45)

With (44) and (45), we need to determine four double-

integral terms over z2 and z4. For the double-integral

term in (44) and the second double-integral term in (45),

we can simply obtain the closed-form expression by

simply adopting [31, eq. (3.381.1)] for each integration

over z2 and z4 separately as shown in (23) and (24).

For the first and third double-integral terms in (45),

we can obtain the closed-form expression of the inner

integral term as the function of the exponential and the

incomplete Gamma function, γ (·, ·) [31, eq. (3.381.1)].

By rearranging the incomplete Gamma function as the

summation form with the help of [31, eq. (8.352.6)]

and then applying [31, eq. (3.381.1)], we can obtain the

closed-form expression as given in (24).
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