
Symbolic Detection of Permutation and Parity Symmetries

of Evolution Equations

Thesis by

Moataz Mohamad Alghamdi

In Partial Fulfillment of the Requirements

For the Degree of

Masters of Science

King Abdullah University of Science and Technology

Thuwal, Kingdom of Saudi Arabia

June, 2017

2

EXAMINATION COMMITTEE PAGE

The thesis of Moataz Mohamad Alghamdi is approved by the examination committee

Committee Chairperson: Professor Diogo Gomes

Committee Members: Professor Shuyu Sun, Professor Raul Tempone

3

©June, 2017

Moataz Mohamad Alghamdi

All Rights Reserved

4

ABSTRACT

Symbolic Detection of Permutation and Parity Symmetries of

Evolution Equations

Moataz Alghamdi

We introduce a symbolic computational approach to detecting all permutation

and parity symmetries in any general evolution equation, and to generating associ-

ated invariant polynomials, from given monomials, under the action of these symme-

tries. Traditionally, discrete point symmetries of differential equations are systemi-

cally found by solving complicated nonlinear systems of partial differential equations;

in the presence of Lie symmetries, the process can be simplified further. Here, we

show how to find parity- and permutation-type discrete symmetries purely based

on algebraic calculations. Furthermore, we show that such symmetries always form

groups, thereby allowing for the generation of new group-invariant conserved quan-

tities from known conserved quantities. This work also contains an implementation

of the said results in Mathematica. In addition, it includes, as a motivation for this

work, an investigation of the connection between variational symmetries, described

by local Lie groups, and conserved quantities in Hamiltonian systems.

5

TABLE OF CONTENTS

Examination Committee Page 2

Copyright 3

Abstract 4

List of Abbreviations 7

1 Introduction 8

2 Mathematical Background 12

2.1 Symplectic geometry . 12

2.1.1 Symplectic manifolds . 12

2.1.2 Function spaces as phase spaces 14

2.2 Groups . 16

2.2.1 Subgroups . 16

2.2.2 Direct products . 17

2.2.3 Group actions . 17

2.2.4 Examples . 18

2.3 Invariance and conservation laws . 20

2.3.1 Symmetries . 20

2.3.2 Conservation laws . 22

3 Symmetries and Conservation laws in Hamiltonian Systems 24

3.1 Newtonian mechanics . 24

3.1.1 Symplectic vector spaces . 24

3.1.2 The second law of motion . 29

3.2 The Schrödinger equation . 31

4 The Symbolic Computational Approach 37

4.1 Overview . 37

4.1.1 The master polynomial . 38

6

4.1.2 The symmetrization process 40

4.2 Analysis of specific symbolic algorithms 42

4.2.1 Algorithm I . 44

4.2.2 Algorithm II . 47

4.2.3 An illustration . 51

References 56

Appendices 57

A.1 Differentiable Manifolds . 57

A.2 Tensors . 58

B.1 Mathematica code . 60

7

LIST OF ABBREVIATIONS

PDE Partial Differential Equation

PDEPV Permutations of Dependent Variables

PINDV Permutations of Independent Variables

PADEP Parity Transformations of Dependent Vari-

ables

PAIND Parity Transformations of Independent Vari-

ables

8

Chapter 1

Introduction

A turning point in the study of conservation laws of physical systems was the dis-

covery of their intimate connection to symmetries. Previously, conservation laws

had been only explored on an ad hoc basis. Emmy Noether, however, was first to

propose a systemic procedure for finding conservation laws using symmetries. She

showed that any variational symmetry of the Hamiltonian of a Hamiltonian system

has a corresponding local conservation law; that is, to explore conservation laws of a

Hamiltonian system is to explore the variational symmetries of its Hamiltonian.

This result paved the way for exploiting the well-developed theory of Lie sym-

metries of differential equations: variational symmetries are best described by local

Lie groups. Consequently, there has been a surge in the interest in developing com-

putational packages for this purpose, e.g., DifferentialGeometry (2004), PDEtools,

diffdens2009.m, condens2009.m, and GeM (2009) [7] [8]. These packages consist of

implementations of algorithms for solving linear determining equations in different

computer algebra systems, e.g., Maple and Mathematica. These equations are solved

to find the generators of Lie groups, which are then used to construct the Lie group;

one then uses another algorithm, based on Noether’s theorem, to construct the asso-

ciated conservation laws.

Noether theorem, however, only works for a small class of PDEs: PDEs admitting

a variational principle whose Fréchet derivative is self-adjoint [6]. Hence, developing

more general methods for finding conservation laws for other types of PDEs has been

of great interest: some work was devoted to improving on Noether’s theorem, e.g.,

9

see Bessel-Hagen (1921) and Boyer (1967); others worked on developing more general

results such as the matching and direct methods. Each of these methods works for a

particular class of PDEs.

In this thesis, we are interested in developing an algorithm for identifying new

conserved quantities through the use of discrete symmetries. We work with general

evolution equations of the (standard) form:

∂tu1 = f1(ui, xj, ∂jui)

∂tu2 = f2(ui, xj, ∂jui)

∂tu3 = f3(ui, xj, ∂jui)

...

∂tun = fn(ui, xj, ∂jui)

(1.1)

where i = 1, ..., k and j = 1, ...,m.

Discrete point symmetries are important for practical reasons. For example, they

are used to increase the efficiency of numerical methods for solving differential equa-

tions; and are central to the development of many theories in physics such as quantum

field theories. Given that the Lie symmetries of a system of differential equation exist,

it is known how to generate all discrete symmetries of the system [9]. Otherwise, one

has to solve a very complicated coupled nonlinear system of determining equations

to identify the discrete symmetries. This is not always possible to do.

Here, we introduce a Mathematica code that generates, based only on algebraic

calculations, a subset of the discrete symmetries of (1.1), namely, parity and permuta-

tion symmetries. A permutation symmetry is any permutation of the independent or

dependent variables of (1.1) that leaves it unchanged. Similarly, a parity symmetry is

any change in the sign of the independent or dependent variables of (1.1) that leaves

it unchanged.

More specifically, our code generates the collection, Sym, of compound symme-

10

tries, defined by applying a permutation then parity transformation or vice versa.

Since permutation and parity transformations do not always commute, one has to

adapt an order convention for Sym.

Given a convention, we show that Sym forms a group. Groups are mathemati-

cal structures characterized, among others, by the closure of its elements under the

associated operation. This property makes possible the generation of invariant quan-

tities under such structures. Based on this result, we introduce a code that produces

Sym-invariant polynomials, given any monomial. Indeed, these polynomials are con-

served if the given monomial is conserved; this is because any symmetry of (1.1) maps

conserved quantities to conserved quantities. We call this process symmetrization.

This thesis is structured in the following way. In chapter 2, we gather important

mathematical results essential for this work. We assume the reader has knowledge of

manifolds, differential forms, and vector fields. However, we introduce a quick intro-

duction to these topics in Appendix A. In chapter 3, we review how Noether’s theorem

is used to connect variational symmetries to conserved quantities in Hamiltonian sys-

tems: this chapter contains only analytical methods. In chapter 4, we present our

main results. This includes an algorithm for producing the group Sym, and another

for producing the symmetrization of any list of monomials.

In this work, Rd and Cd stand for the real and complex d-th dimensional coordinate

spaces, respectively. Other notations are always clearly defined as they are introduced.

However, we clarify possible vagueness with the notations used for Schwartz and

infinitely differentiable functions, denoted respectively by S and C∞.

When these functions are defined on Rd, we simply write S(Rd) and C∞(Rd).

However, we sometimes work the nonrelativistic spacetime R×Rd. In such cases, we

want to be able to state a subdomain on which the property of the function applies,

whether it is the time variable, space variables or both. To do this, we attach the

following subscripts to the notation of the function class: the subscript x is used for

11

space variables Rd and t for the time variable R. We also use loc to indicate that

the property applies only locally. For example, C∞t,locSx(R × Rd) indicates that the

function is Schwartz (or rapidly decaying) with respect to space variables only, and

that it is infinitely differentiable with respect to time locally.

12

Chapter 2

Mathematical Background

We lay the groundwork for this thesis by introducing fundamental concepts from

symplectic geometry and group theory.

2.1 Symplectic geometry

In the Hamiltonian formulation of classical mechanics, a physical system is defined on

a phase space that is equipped with a symplectic structure. The field concerned with

such structures is called symplectic geometry. Here, we review relevant definitions

and theorems from this field that we use in this work. We focus our attention on two

phase spaces: differentiable manifolds and the space of square-integrable functions

L2. We introduce the symplectic structure of the former here, but we limit our

discussion of the latter to basic definitions; we introduce a particular symplectic

structure associated with the phase space L2 later when discussing the Schrödinger

equation in chapter 3.

2.1.1 Symplectic manifolds

The main goal of this section is to develop the notion of a symplectic manifold. We

start our discussion with the following definition.

Definition 2.1.1. A symplectic form is a closed nondegenerate 2-form.

Given a symplectic form, we define a symplectic manifold as follows.

13

Definition 2.1.2. Let M be a differentiable manifold and w be a symplectic form.

A symplectic manifold is a pair (M,w), the manifold M equipped with a symplectic

form w.

Next, we associate vector fields to scalar fields on (M,w) as follows.

Proposition 2.1.3. On (M,w), we uniquely define the Hamiltonian vector field of a

smooth scalar field H, denoted by XH , using the relation:

w(XH , .) = dH(.). (2.1)

where dH is the exterior derivative of the scalar field H.

An important binary operation on scalar fields defined on (M,w) is the Poisson

bracket.

Definition 2.1.4. Let M be a manifold and F,G ∈ C∞(M → R). The Poisson

bracket {F,G} is a binary operation with the following properties

• Bilinearity

{F +G,H} = {F,H}+ {G,H} and {F,H +G} = {F,H}+ {F,G} ;

• Skew-symmetry

{F,G} = −{G,F} ;

• Jacobi identity

{F, {H,G}}+ {G, {F,H}}+ {H, {G,F}} ;

• Leibniz rule

{FG,H} = F {G,H}+ {F,H}G.

14

We relate Poisson brackets to symplectic forms as follows.

Definition 2.1.5. On a symplectic manifold (M,w), we define the Poisson bracket

associated with w as:

{F,G} (z) := w(z)(XF (z), XG(z)), (2.2)

where F,G ∈ C∞(M → R) with XF and XG being their corresponding Hamiltonian

vector fields.

We introduce next a fundamental result to Hamiltonian mechanics.

Corollary 2.1.6. Let P be a Poisson manifold. Then,

Ḟ = {F,H} for any smooth F : P → R.

where the relation only holds on the integral curves of XH

Remark 2.1.7. We assume here that all scalar fields are not explicitly dependent

on time.

Now, we introduce the definition of the Poisson bracket in canonical coordinates.

2.1.2 Function spaces as phase spaces

Here, we consider an important example of an infinite-dimensional phase space:

L2(Rd;C) (or L2(Rd → C)).

L2 space

Definition 2.1.8. We say u ∈ L2(Rd;C) if and only if

L2(Rd;C) =

u :

∫
Rd

|u(x)|2dx <∞

 .

15

This function space comes equipped with the following inner product

〈u, v〉 =

∫
Rd

u(x)v(x)dx.

Definition 2.1.9. (Expectation values) Let A be a linear operator. The expectation

value of A for a function u(x) is

Eu(A) = 〈Au, u〉.

For our purposes, we restrict the domain of A, D(A), to the following space:

Schwartz space

Definition 2.1.10. A function is u is Schwartz, if for all α, β ∈ Nn,

sup
x∈Rn

|xβ∂αf(x)| <∞.

We say that u ∈ S(Rn;C).

Remark 2.1.11. The set of smooth functions of compact support, C∞c (Rn;C), is

dense in S(Rn;C). This, in turn, means that S(Rn;C) is dense in L2(Rn;C); this is

because C∞c (Rn;C) is dense in L2(Rn;C). This property allows for a simpler treatment

of the Schrödinger equation.

We end this section with the following definition.

Definition 2.1.12. (Bounded operators) An operatorA bounded if ||A|| = sup|u|=1 |Au|

is finite.

16

2.2 Groups

We shift our attention to discussing another important mathematical structure: the

group. We use this mathematical structure in Chapter 4 to develop our algorithms.

Definition 2.2.1. A set of elements G equipped with a binary operation * form an

algebraic structure known as the group if it satisfies the following properties:

• Property 1 Closure:

If g, f ∈ G, then g ∗ f ∈ G ;

• Property 2 Identity:

Any group contains a unique element e such that for any g ∈ G, we have

e ∗ g = g ∗ e = g. We call this element the identity element;

• Property 3 Inverse:

For every g ∈ G, there exists a unique element k ∈ G such that k∗g = g∗k = e.

We commonly write k = g−1;

• Property 4 Associativity:

If g, f, h ∈ G, then g ∗ (f ∗ h) = (g ∗ f) ∗ h.

Remark 2.2.2. We can classify groups in terms of their order, the number of their

elements. Under this classification, groups can be either finite or infinite.

2.2.1 Subgroups

We introduce the definition of a subgroup H of a group G.

Definition 2.2.3. Let G be a group, with an internal operation ∗, and H be a

non-empty subset of G. H is a subgroup of G (H < G) if it satisfies

17

• Closure:

If h, f ∈ H, then h ∗ f ∈ H ;

• Inverse:

If h ∈ H, then h−1 ∈ H.

Definition 2.2.4. Let G be a group and let T = {t1, t2, ..., tk} ⊆ G. The subgroup

generated by T , denoted by 〈T 〉, is the intersection of all subgroups H ⊆ G such that

T ⊆ H. Alternatively, define T−1 =
{
t−11 , t−12 , ..., t−1k

}
. Then, we write

〈T 〉 =
{
a1 ∗ a2 ∗ ... ∗ an : n ∈ N and ai ∈ T−1 ∪ T

}
.

We call the elements of T the generators of 〈T 〉.

Example 2.2.5. Let g ∈ G. If 〈g〉 = G, then G is called a cyclic group. In other

words, any cyclic group G is generated by a single element g.

2.2.2 Direct products

Definition 2.2.6. Let {Gi}i = 1, 2, ..., N be a collection of groups. The direct prod-

uct of {Gi} is the cartesian product G1×...×GN . That is, the collection of all ordered

N-tuples (g1, ..., gN) such that g1 ∈ G1, ..., gN ∈ GN .. Furthermore, the associated

binary operation on the direct product is defined as:

(g1, ..., gN)(h1, ..., hN) = (g1h1, ..., gNhN).

Remark 2.2.7. The direct product always forms a group.

2.2.3 Group actions

Definition 2.2.8. Let G be a group and X be a set. A group action is a map

α : G×X → X that satisfies

18

• α(e, x) = x for all x ∈ X;

• α(g, α(f, x)) = α(gf, x) for all x ∈ X and f, g ∈ G.

2.2.4 Examples

The symmetric group Sn

Next, we discuss an important example of finite groups: the symmetric group. We

start our discussion with an important, general remark about finite groups that we

use repeatedly in chapter 4.

Remark 2.2.9. Let G be a finite group of order |G| and g ∈ G. Then, gn = e for

some natural number n ≤ |G|.

Now, we introduce the main definition.

Definition 2.2.10. The symmetric group of order n!, Sn, is the set of all permutations

of any n-element set A. Let A be indexed by {1, 2, ..., n} . Then we write formally,

Sn = {σ : {1, 2, ..., n} → {1, 2, ..., n} : σ is bijective.} .

Remark 2.2.11. The following notation is commonly used to represent any element

of Sn (
1 2 ... n

σ(1) σ(2) ... σ(n)

)

Example 2.2.12. The element of S3 defined by the bijection,

σ(1) = 1

σ(2) = 3

σ(3) = 2

19

can be denoted by (
1 2 3

1 3 2

)

Definition 2.2.13. A compact way of describing a permutation is the cyclic no-

tation. To describe any permutation σ, we write it in the following form:

σ = (k1, k2, ..., kr).

Here, {k1, k2, ..., kr} ⊂ {1, 2, ..., n} for some r 6 n such that:

σ(ki) = ki+1 1 6 i 6 r − 1

σ(kr) = k1

σ(k) = k Otherwise

Example 2.2.14. The element in example 2.2.12 can be written as σ = (23).

Remark 2.2.15. Given a finite set X, the permutations of elements of X define

a group whose action on X is permutations themselves. The group action is then

naturally defined; we usually don’t distinguish between the group and its action in

such cases. However, not all groups have a naturally defined action. In such cases,

the distinction becomes clear.

Lie Groups

We can impose on any group additional mathematical structures. For example, we can

impose a topological structure. This type of group is called a topological group. We

are not interested in rigorously developing the notion of topological groups. However,

we mention here an important example: the Lie group.

A Lie group is an n-dimensional smooth and real manifold that also satisfies, under

some binary operation, the properties of a group. Here, we present a specific type of

20

Lie group that is of interest to us, namely, the one-parameter unitary group.

Definition 2.2.16. (One-parameter unitary groups) A one-parameter unitary group

A(t) is a set of bounded linear operators satisfying:

• |A(t)u| = |u| (unitary operators);

• A(0) = id;

• A(t+ s) = A(t)A(s).

We define the infinitesimal generator H of such a group in the following way:

Hu = lim
t→0

i~
t

(A(t)u− u),

D(H) =
{
u ∈ L2(Rd;C) : Hu exists

}
.

Example 2.2.17. The one-parameter unitary group of time translations U(t) de-

fined by U(t)u0(x) = u(x, t) has the infinitesimal generator i~ d
dt

if u0(x) ∈ L2(Rd;C).

Then, i~ d
dt
u(x, t) = Hu. This is known as the Schrodinger equation (associated

with the Hamiltonian H). Its solution can be written as u(x, t) = e−iHt/~u(x, 0).

2.3 Invariance and conservation laws

A central theme in this work is the connection between invariance and conservation

laws. Here, we introduce concepts that we use to investigate this connection in chapter

3 and 4, namely, symmetries and conservation laws.

2.3.1 Symmetries

Definition 2.3.1. Symmetries are transformations that leave the object they act on

unchanged.

21

Remark 2.3.2. This definition is very general. We introduce more specific defini-

tions as needed.

A useful set of transformations can be defined based on the nature of the domain

on which they act. In this sense, we can classify symmetries as continuous or discrete.

Continuous symmetries are transformations that are functions of continuous pa-

rameters. That is, they are associated with a continuous change of the shape of the

object they act on. Similarly, we say that discrete symmetries are functions of pa-

rameters that are discrete, thereby changing the object they act on in discrete units.

Examples of symmetries include, but not limited to,

• Rotations

A rotational symmetry is any transformation of an object around a fixed point

that leaves the object unchanged. Famously, the circle has a rotational con-

tinuous symmetry about its center at any angle. An equilateral triangle has

a rotational discrete symmetry about its center: rotations of 60, 120 and 180

degrees. We call the number of possible degrees the order of the rotational

symmetry. Thus, a circle has a symmetry of order ∞ while an equilateral

triangle’s symmetry is of order 3.

• Scalings

A scale symmetry is a transformation which rescales the object it acts on in

such a way it leaves it unchanged. For example, if u(x, t) is a classical solution

to a certain PDE, then a transformation

u(x, t)→ λku(λnx, λmt).

is a scale symmetry if it is a solution to the PDE for some given k,n,m.

• Translations

22

A translational symmetry is any translation that leaves a system invariant.

An example can be seen in classical Hamiltonian systems. Such systems are

invariant under translations in time. Formally, one would say

u(x, t)→ u(x, t+ ∆t).

is always a solution to any Hamiltonian system if and only if u(x,t) is a solution.

Some symmetries are necessarily non-continuous transformations. Reflections of

objects or permutations of the independent/dependent variables of a dynamical sys-

tem are examples of such category.

• Reflections

Reflectional symmetry is closely related to rotational symmetry. A reflectional

symmetry is a distance-preserving mapping across a hyperplane, a line for ex-

ample, that doesn’t change the shape of the object it acted on. An example of

such symmetry is that of a reflection of a circle across any line passing through

its center.

Remark 2.3.3. Every rotation can be thought of as a set consecutive reflec-

tions.

• Permutations

Let D be the ordered set of variables of a system of PDEs. A permutation

symmetry is a permutation of D that leave the system unchanged. We elaborate

on this type of symmetries in chapter 4.

2.3.2 Conservation laws

In time-dependent systems of PDEs, a conserved quantity is a function f(t) of the

dependent variables such that its time derivative is zero. Commonly, f(t) is an integral

23

of some density function, u(x,t), over a region V . That is, f(t) =
∫
V

u(x, t)dx. In such

cases, one can show that there exists a local conservation law associated with this

quantity. Mathematically, local conservation laws are written in the following form:

∂tu(x, t) = ∇ · J,

where J is a function representing the flux of u(x, t). This form is known as the

differential form of continuity equations.

24

Chapter 3

Symmetries and Conservation laws in Hamiltonian Systems

In this chapter, we investigate symmetries and conservation laws using analytical

methods. We apply the the theory presented in chapter 2 to two types of systems:

a classical particle in a scalar potential field and a free quantum particle. These

systems are described using Newton’s laws and the free Schrödinger. We use the

Hamiltonian formulation to derive our results. The central goal of this chapter is to

introduce Noether’s theorem, and how it is used to connect continuous symmetries

to conservation laws.

3.1 Newtonian mechanics

We discuss here the case of a single point particle of mass m moving in a potential

field V . A natural setting for such systems is finite-dimensional real symplectic vector

spaces. We define first such vector spaces. Then, we use this mathematical struc-

ture to reproduce Newton’s second law, a conservation law for linear momentum in

conservative systems.

3.1.1 Symplectic vector spaces

We assume the reader is familiar with the definition of real, n-dimensional vector

spaces, commonly denoted by Rn, which is also a manifold. We know from chapter

2 that a symplectic manifold is a pair (M,w). Since we work with Rn, we introduce

a special definition of symplectic forms on real, finite dimensional vector spaces. We

25

choose the notation B instead of w to denote them.

Definition 3.1.1. Let K be a field of scalars and E be an n-dimensional real vector

space. A symplectic form B is a mapping B : E × E → K with the following

properties,

• Bilinear:

A bilinear form is linear in both arguments separately, over the field of scalars

K.

• Anti-symmetric:

For u, v ∈ E, we have B(u, v) = −B(v, u).

• Non-degenerate:

For every nonzero u ∈ E, there exists a vector v such that B(u, v) 6= 0. Alter-

natively, if B(u, v) = 0 for all v ∈ E, then u = 0.

Remark 3.1.2. This definition is a special case of definition 2.1.1.

We are now ready to present the definition of symplectic vector spaces,

Definition 3.1.3. A symplectic vector space is a finite-dimensional vector space E,

over K, equipped with a symplectic form B. We use the notation (E,B) to denote

this vector space.

Next, we define important operations on symplectic vector spaces vector spaces,

• 1) The symplectic gradient:

Definition 3.1.4. The symplectic gradient of a function P ∈ C1
loc(E → R) is

the endomorphism ∇BP ∈ C0
loc(E → E) defined such that:

d

dε
P (u+ εv)|ε=0 = B(∇BP (u), v). (3.1)

26

Claim 1. This gradient is unique due the non-degeneracy of the symplectic

form.

Proof. Assume, to the contrary, that there exists another gradient ∇BP that

satisfies the relation above. Then,

B(∇BP, v) = B(∇BP , v).

By the bilinearity, it follows that:

B(∇BP −∇BP , v) = 0.

The uniqueness follows then from the nondegenracy of B

∇BP −∇BP = 0 =⇒ ∇BP = ∇BP .

Remark 3.1.5. Equation (3.1) is a special case of equation (2.1). That is,

the symplectic gradient of P , ∇BP , is the Hamiltonian vector field XP defined

within this context.

• 2) The Poisson bracket

Definition 3.1.6. The Poisson bracket is an operation defined on any P,Q ∈

C1
loc(E → R) as follows:

{P,Q} (u) = B(∇BP (u),∇BQ(u)). (3.2)

• 3) The Hamiltonian

27

Definition 3.1.7. A function H ∈ C2
loc(E → R) is called a Hamiltonian.

Remark 3.1.8. This Hamiltonian is a fundamental quantity in the Hamiltonian

formulation of mechanics; it is the total energy of a Hamiltonian system.

Using the Hamiltonian, we define the Hamiltonian flow.

Definition 3.1.9. The Hamiltonian flow of a Hamiltonian H is given by the integral

curves of the ODE

∂u(t)

∂t
= ∇BH(u(t)). (3.3)

Finally, we introduce a specific version of Noether’s theorem to symplectic vector

spaces.

Theorem 3.1.10. (Noether’s theorem) Assume that u, v are classical solutions of

the Hamiltonian flows of two Hamiltonians H, P , respectively. Then, the following

statements are equivalent:

• H and P Poisson commute. That is, {P,H} = {H,P} = 0;

• P (u(t)) is constant ;

• H(v(t)) is constant.

Before we prove the theorem, we introduce the following lemma

Lemma 3.1.11. Let P , H, u and v be defined as in theorem 3.1.10. Then,

∂P (u(t))

∂t
= {P,H} .

Similarly,

∂H(v(t))

∂t
= {H,P} .

Proof. (of lemma 3.1.11)

28

By equations 3.1, 3.2 and 3.3, we have

dP (u(t))
dt

= dP
du1

du1
dt

+ ...+ dP
dun

dun
dt

= d
dε
P (u+ εdu

dt
)|ε=0

= B(∇BP (u), du
dt

) = B(∇BP (u),∇BH(u)) = {P,H} .
dH(v(t))

dt
= dH

dv1

dv1
dt

+ ...+ dH
dvn

dvn
dt

= d
dε
H(v + εdv

dt
)|ε=0

= B(∇BH(v), dv
dt

) = B(∇BH(v),∇BP (v)) = {H,P} .

Proof. (of theorem 3.1.10) The proof is obvious using lemma 3.1.11 except for the the

statement:

{P,H} = 0 ⇐⇒ {P,H} = {H,P} .

The proof for this is as follows. If {P,H} = {H,P}, then by definition (3.2)

B(∇BP (u),∇BH(u)) = B(∇BH(u),∇BP (u)). By the antisymmetry of B, it follows

that B(∇BP (u),∇BH(u)) = −B(∇BP (u),∇BH(u)). Thus, B(∇BP (u),∇BH(u)) =

{P,H} = {H,P} = 0. The other direction is trivial.

A different interpretation of Noether’s theorem is given by the next proposition

Proposition 3.1.12. Denote by αP (t) the flow maps of P and assume they are

globally defined, e.g., when ∇2P is bounded. Then, P is a conserved quantity for

equation (3.3) if and only if H is invariant under the action of the flow maps αP (t).

Proof. If H is invariant under the action of αP (t), then H(v(t)) is constant. Then

it follows, by theorem (3.1.10), that P (u(t)) is conserved. Similarly, if P (u(t)) is

conserved, then H(v(t)) is conserved.

Remark 3.1.13. The flow maps αP (t), defined as in (3.1.12), have the following

properties: S(0)=Id and S(t+t’)=S(t)S(t’). The condition that ∇2P is bounded

ensures that αP (t) is defined for any t ∈ R; it is then easy to check that they form a

group. Furthermore, αP (t) are diffeomorphisms.

29

Example 3.1.14. Consider the Hamiltonian P (z) = 1
4
|z|4 with the associated (com-

plex scalar) Hamiltonian ODE

ż = i|z|2z.

The flow maps αP (t) act on the complex plane by rotating every point in circular

fashion; this is because the general solution is z(t) = z(0)ei(z(0))
2t. Thus, the quantity

H(z) = |z|2 is invariant by the action of αP (t). It follows by proposition (3.1.12) that

P is conserved by the Hamiltonian flow of H.

3.1.2 The second law of motion

We now show how to recover Newton’s second law for a point particle of mass m in

a potential field V . We first introduce the following vector space.

E = Rn × Rn = {(~q, ~p) = (q1, ..., qn, p1, ..., pn) : qi, pi ∈ R, 1 6 i 6 n} . (3.4)

Remark 3.1.15. This is the cotangent bundle of Rn.

On E, we introduce the canonical definitions:

• The symplectic form

B((q1, ..., qn, p1, ..., pn), (q′1, ..., q
′
n, p
′
1, ..., p

′
n)) =

n∑
i=1

qip
′
i − q′ipi.

• The symplectic gradient

For H,P ∈ C1
loc(E → R), the symplectic gradient is as follows

∇BH =

(
∂H

∂p1
, ...,

∂H

∂pn
,
−∂H
∂q1

, ...,
−∂H
∂qn

)
.

30

• The Poisson Bracket

{P,H} =
n∑
i=1

∂H

∂pi

∂P

∂qi
− ∂H

∂qi

∂P

∂pi
.

Remark 3.1.16. This choice of this specific vector space as well as the above oper-

ations is driven by our knowledge the Lagrangian formalism of mechanics. We omit

discussing this issue here. However, we note that the qi’s and the pi’s are commonly

referred to as generalized coordinates and momenta of the particle, respectively.

Now, for a generic Hamiltonian H, we have the following flow of H,

∂

∂t
(q1, ..., qn, p1, ..., pn) =

(
∂H

∂p1
, ...,

∂H

∂pn
,
−∂H
∂q1

, ...,
−∂H
∂qn

)
. (3.5)

Remark 3.1.17. The system of ODEs (3.5) is commonly known as Hamilton’s

equations

If we define our Hamiltonian to be,

H =
1

2m
|~p|2 + V (~q),

where V (q) ∈ C2
loc(Rn → R). Then it follows that

 m ∂
∂t
~q(t) = ~p(t)

∂
∂t
~p(t) = −∇V (~q(t)).

(3.6)

Remark 3.1.18. The first equation is the definition of the momentum while the

second equation is Newton’s Second Law for conservative systems.

Finally, we discuss some applications of Noether’s theorem. It is clear that the

Hamiltonian H Poisson commutes with itself. Thus, the quantity H(q, p) is conserved

along the integral curves of the Hamiltonian flow. This is a statement of the conser-

31

vation of energy since the Hamiltonian represents the total energy of the particle.

If we set V (q) = V , we have a Hamiltonian H that is invariant under spatial

translations. In this case, we see that the total momentum |p| Poisson commutes

with H. This is a statement of the conversation of momentum. Similarly, if V (q) is

invariant under rotations, H becomes invariant under rotational translations. Here,

the angular momentum L = q × p poisson commutes with H, thereby implying the

conservation of angular momentum.

3.2 The Schrödinger equation

An example of a Hamiltonian PDE is the Schrödinger equation. This equation is

fundamental to our understanding of the quantum world. Its importance, however,

goes beyond quantum mechanics. The Schrödinger equation belongs to a class of

PDEs known as constant-coefficient linear dispersive (CCLD) PDEs. This class of

PDEs has application to several fields such as geometry, spectral theory and number

theory [1]. Here, we focus on the conservation laws and symmetries of the Schrödinger

equation in the hope of gaining a general understanding on how conservation laws

and symmetries arise in Hamiltonian PDEs. We start with a quick introduction to

CCLD PDEs.

Definition 3.2.1. Let L be the operator defined as,

Lu(x) =
∑
|α|≤k

cα∂
α
xu(x).

Given u0(x) = u(0, x), a constant-coefficient linear dispersive PDE has the following

form:

∂tu(t, x) = Lu(t, x), (3.7)

where u : R× Rd → V, V a vector space.

32

Remark 3.2.2. The operator ∂αx is defined in the standard way for classical solutions

and L is skew-adjoint. Also, let End(V) indicates the space of all linear transfor-

mation from V to V. Then, cα ∈ End(V) are coefficients that define the dispersion

relation h(k1, ..., kd) =
∑
|α|≤k i

|α|−1cαk
α1
1 ...k

αd
d . This is done by letting L = ih(D)

where D = 1
i
∇.

Now, we are ready to present the Schrödinger equation

Definition 3.2.3. (The Schrödinger equation) Let ∆ be the Laplacian. Setting

L = i~
2m

∆, we retrieve the free Schrödinger equation,

∂tu =
i~
2m

∆u.

Remark 3.2.4. Here, u : R× Rd → V is a complex vector field and the dispersion

relation is h(k1, ..., kd) = − ~
2m

∑d
i=1 k

2
i . Also, the operator H = ~

2m
∆ is commonly

referred to as the Hamiltonian operator for a free quantum particle.

Proposition 3.2.5. Let L2(Rd;C) be equipped with a symplectic form B(u, v) =

−2
∫
Rd

Im(u(x)v(x))dx. Then, the Schrodinger equation is the Hamiltonian flow asso-

ciated with the densely defined Hamiltonian P (u) = ~
2m

∫
Rd

|∇u|2dx.

33

Proof.

d

dε
P (u+ εv)|ε=0 =

~
2m

∫
Rd

du

dxi

dv

dxi
+
dv

dxi

du

dxi

=
−~
2m

∫
Rd

d2u

dx2i
v + v

d2u

dx2i

=
−~
2m

∫
Rd

2Im(iv
d2u

dx2i
)

= −2

∫
Rd

Im(− i~
2m

d2u

dx2i
v)

= B(v,
−i~
2m

d2u

dx2i
) = B(

i~
2m

d2u

dx2i
, v).

Thus, the associated Hamiltonian flow is:

∂tu =
i~
2m

∆u. (3.8)

To learn about the conservation laws in the Schrödinger equation, we introduce

the Heisenberg equation. This equation describes the dynamics of a quantum free

particle in terms of Lie brackets.

Proposition 3.2.6. (Heisenberg equation) Let u ∈ C∞t Sx(R × Rd) be a classical

solution of equation (3.8) and A be a time-independent continuous linear operator

S(Rd)→ S(Rd). Then,

d

dt
〈Au(t), u(t)〉 = 〈 i

~
[H,A]u(t), u(t)〉,

where [H,A] = HA− AH, the Lie Bracket.

Remark 3.2.7. The Heisenberg equation is the quantum analogous to lemma (3.1.11);

34

the connection between Poisson and Lie brackets can be established using semiclas-

sical analysis tools.

We omit the proof for proposition (3.2.6) as it is beyond the scope of this work.

Instead, we introduce Noether’s theorem for the free Schrödinger equation.

Theorem 3.2.8. (Noether’s theorem) Let A be defined as in proposition (3.2.6) such

that [H,A] = [A,H] = 0. Then, A is a conserved quantity and D(A) is invariant

under the action of the unitary group U(t) = e−itH/~. That is,

〈Au(t), u(t)〉 = 〈Au(0), u(0)〉;

u(t) = e−itH/~u(0) ∈ D(A)

Proof. The first statement follows directly from proposition (3.2.6). The proof for

the second statement is beyond the scope of this work.

Remark 3.2.9. e−iHt/~ is a one-parameter, t, Lie group.

Let u ∈ C∞t,locSx(R×Rd). Then, the Schrödinger equation has following symmetries

and conservation laws:

• Space and time symmetries

(Invariance under time translations)

u(x, t)→ u(x, t− t0).

The generator the one-parameter group of time translations is the Hamilto-

nian operator H. Clearly, H commutes with itself. Thus, 〈Hu(t), u(t)〉 =∫
Rd

u(x, t)Hu(x, t)dx = ~
2m

∫
Rd

|∇u(x, t)|2dx is conserved.

35

(Invariance under spatial translations)

u(x, t)→ u(x− x0, t).

The generator for the one-parameter group of translations is pj = 1
i
∇j. Indeed,

[H, pj] = 0, and thus
∫
Rd

u(x, t)pju(x, t)dx =
∫
Rd

Im(u(x, t) d
dxj
u(x, t))dx is con-

served. Consequently, the vector-valued function ~P = (p1, ..., pd) is conserved.

Furthermore, u(t) = e−itHu(0) ∈ D(pj) = C∞t Sx(R× Rd)

• Phase rotation symmetry

u(x, t)→ eiθu(x, t).

The related conserved quantity is
∫
Rd

|u(x, t)|2dx.

• Galilean symmetry

Let u ∈ C2
loc(R×Rd → V) (a complex field). Then, an interesting symmetry of

the Schrodinger equation is

u(x, t)→ ũ(x, t) = e
imxv

~ e
imt|v|2

2~ u(x− vt, t).

with v ∈ Rd and ũ ∈ C2
loc(R× Rd → C). The related conserved quantity is the

normalized center of mass
∫
Rd

x|u(x, t)|2dx− t ~P .

The Schrödinger equation also has the following discrete symmetries.

• Time-reversal symmetry

The Schrödinger equation is invariant under an inversion of time and space

coordinates. That is, it has the symmetry,

u(x, t) = u(−x,−t).

36

• Scaling symmetry

The transformation

u(x, t)→ u

(
t

λ2
,
x

λ

)
.

is a symmetry of the Schrödinger equation. In general, if P : Rd → C is a

homogeneous kth degree polynomial and L = P (∇), then equation (3.7) has

the symmetry

u(x, t)→ u

(
t

λk
,
x

λ

)
.

37

Chapter 4

The Symbolic Computational Approach

The primary focus of this work is to introduce symbolic computational methods for

detecting parity and permutation symmetries as well as for generating new conserved

quantities from known conserved quantities. Symbolic computations are algebraic

manipulations of expressions. In this chapter, we introduce the mechanics of such

computations as well as algorithms for specific cases. This includes necessary math-

ematical proofs and Mathematica codes.

4.1 Overview

Recall from previous chapters that Noether’s theorem allows us to use groups to

identify conserved quantities in PDE systems admitting a variational principle. More

specifically, each Hamiltonian defines a Lie group of time-evolution operators acting

on phase space, defining the Hamiltonian flow; then the invariance of a quantity

under the action of this group implies its conservation. Given a symplectic structure,

checking for conserved quantities can be done through binary operations such as

Poisson and Lie brackets.

For general evolution equations, these results don’t always hold. Indeed, we don’t

necessarily have a Hamiltonian flow with an associated Lie group. However, it is

always true that a symmetry of a system of differential equations maps a conserved

quantity to another conserved quantity. Hence, one can generate new conserved

quantities from known ones using any symmetry. Here, we focus only on generating

38

conserved quantities using groups of symmetries. We call this process symmetriza-

tion. This allows us to use elements from group theory to construct more complex

algorithms as we shall see in this chapter. Before we examine the concept of sym-

metrization closely, we introduce an important tool: the master polynomial.

4.1.1 The master polynomial

Assume P and G are a conserved quantity and a group of symmetries, respectively,

for the following (standard) system:

∂tu1 = f1(ui, xj, ∂jui)

∂tu2 = f2(ui, xj, ∂jui)

∂tu3 = f3(ui, xj, ∂jui)

...

∂tun = fn(ui, xj, ∂jui).

(4.1)

where i = 1, ..., k and j = 1, ...,m.

We can generate a new conserved quantity P ′ as follows. We apply each symmetry

in G to P , and then sum up all these elements. Thus, P ′ can be a finite or infinite

sum, depending on the size of G. Because there is no general theory for systems of

the form (4.1), it is not obvious whether this sum is well-defined. Here, we show that

it is indeed well-defined using the concept of a master polynomial.

The master polynomial is a formal series of all possible monomials in the dependent

variables of the system and derivatives thereof. Then, this polynomial includes all

possible choices for P ′. It then suffices to show that the master polynomial is well-

defined. Specifically, we want to show that the sum can be indexed by a countable

set.

For a system of differential equations with k independent variables ~x = (x1, ..., xk)

39

and m dependent variables ~u = (u1(t, x1, ..., xk), ..., um(t, x1, ..., xk)), we consider the

two sets:

• The set {hj}j=1,2... with the ith element defined as

hi = ua101 (∂1u1)
a11 ...(∂ku1)

a1k ...uam0
m (∂1um)am1 ...(∂kum)amk ,

for some ~ai = (a10, ..., a1k, a20...a2k..., am0, ...amk) with aij ∈ N ∪ {0}

• The set {cj}j=1,2... of unknown constants.

Claim 2. {hj} is countable.

Proof. Every element of {hj} is associated with an element from the set K containing

the vectors ~a = (a10, ..., a1k, a20...a2k..., am0, ...amk). The set K is countable. This is

just an extension of the result that integers are countable to arbitrary (mk)-tuples of

nonnegative integers.

Remark 4.1.1. The set {hj} is the set of all possible monomials in the dependent

variables and their derivatives. For example, (u1)
2(d1u1)

3 is the element associated

with the vector ~ai = (2, 3, 0, ..., 0).

Definition 4.1.2. The master polynomial is the formal series

f =
∑
j∈N

cjhj. (4.2)

This polynomial is determined by the two sets {hj}j=1,2... and {cj}j=1,2....

Remark 4.1.3. Claim 2 justifies our choice of indexing the set {hj} by the natural

numbers, that is, it justifies the formal series.

40

4.1.2 The symmetrization process

An introductory example

Example 4.1.4. Consider the following system:

vt = u

ut = −v.
(4.3)

An apparent symmetry of this system is the following:

(u, v)→ (v,−u).

It is easy to check that this symmetry together with the identity symmetry form a

group. Now, consider the polynomial defined by {hj}j=1,2 = {u2} and {hj}j=2,3,4,... =

0. That is,

f(u, v) = c1u
2.

Applying the two symmetries in the previous group, and summing produces the poly-

nomial

f(u, v) = c1(u
2 + v2).

Differentiating with respect to time gives

f t = c1(2uut + 2vvt) = c1(−2uv + 2vu) = 0.

Thus, we managed to deduce that f(u, v) is a conserved quantity. Indeed, we can

double-check this result by solving equation (4.3) directly. The solution is:

u = A cos(t+ θ0) and v = A sin(t+ θ0).

41

whose trajectory moves on a circle of origin zero with a fixed radius, the conserved

quantity.

Note that the choice of u2 is deliberate. We could have worked instead with the

polynomial

f(u, v, ut, vt) = c1u
2 + c2v

2 + c3utvt + c4u
2
t .

However, this choice would not have helped us with extracting additional information

about the conserved quantities in the system. This suggests that our understanding

of the nature of the system is essential in the construction of a useful truncated master

polynomial. Indeed, with additional information, we can approach the problem in a

more focused and structured way.

Symmetrization of monomials

Assume now we have, for our system of PDEs, a group G of its discrete symmetries.

Then, we define the symmetrization of any element as follows

Definition 4.1.5. Let G be a group of discrete symmetries for a system of PDEs.

A symmetrization of an element x ∈ {hj}j=1,2... with respect to G is the sum βG(x)

associated with the group action β(g, x); it is defined as:

βG(x) =
1

|G|
∑
g∈G

β(g, x).

This defines a possible truncated master polynomial.

The process of finding possible conserved quantities then is as follows. We identify

a group G of discrete symmetries for the system. Then, we choose an element x ∈

{hj}j=1,2... to create a candidate conserved quantity βG(x). To check if it is conserved,

we simply differentiate with respect to time. Indeed, we know it is conserved if the

element x is conserved.

42

To make use of this method, one has to identify first at least one or more groups

of discrete symmetries. However, symmetries are not always obvious to spot. We

devote the next section to discussing specific methods to finding such groups.

4.2 Analysis of specific symbolic algorithms

We focus our attention here on specific discrete symmetries that we can deal explicitly

with; specifically, we introduce symbolic algorithms to compute permutation and

parity symmetries in systems of PDEs.

Permutation symmetries

Consider a system of PDEs given in the standard form given by (4.1). We are in-

terested in examining how shuffling around the variables of this system affects the

system itself. We start with some necessary definitions

Definition 4.2.1. A permutation is a map

(u1, .., uk, x1, ..., xm)→ P (u1, .., uk, x1, ..., xm)

that rearranges the variables in a new order. P is called the permutation operator.

We wish to distinguish between a permutation operator acting on the dependent

variables and one acting on the independent ones. We denote the first with Pd and

the latter with PI . Compactly, we write Pr with r ∈ {I, d}

Now, we are in a position to define a permutation symmetry.

Definition 4.2.2. A permutation symmetry is a map

(u1, .., uk, x1, ..., xm)→ P s
r (u1, .., uk, x1, ..., xm)

such that the system (4.1) is left unchanged up to a reordering of the equations.

43

Theorem 4.2.3. Let (r, t) ∈ {(I,m), (d, k)} be fixed. Also, let Xd = {u1, ..., uk},

XI = {x1, ..., xm} and St be the symmetric group of order t. The set of maps Pr of

(4.1) are naturally defined by the group action αr : St ×Xr → Xr. Similarly, the set

of maps P s
r of (1.1) are naturally defined by the group action αsr : Or × Xr → Xr,

where OI < Sm and Od < Sk.

Proof. We want to prove the claim that Or < St. Note that any permutation sym-

metry is a permutation transformation. It then suffices to show that elements of Or

have the two properties: (1) They are closed under the naturally defined operation;

(2) and for each permutation o ∈ Or, o
−1 ∈ Or.

Statement (1) is true because the application of two different permutations, each

of which leaving the system (1.1) unchanged, leaves it unchanged. Statement (2)

follows because Or is finite, and thus it must be that ok = Id for some k ∈ N, thereby

implying that ook−1 = Id, and consequently that ok−1 = o−1. Therefore, by statement

(1), we have o−1 ∈ Or.

Next, we define permutation-invariant systems.

Definition 4.2.4. A system is permutation-invariant if all the possible k+m permu-

tations are permutation symmetries of that system. In other words, it is permutation-

invariant if |Gd|+ |GI | = k +m.

Now, we explore the problem of symbolically identifying permutation symmetries

systems of standard form. If we assume the number of variables to be small enough,

which is a statement dependent on the computational power available, we can use

the following algorithm to identify the permutation symmetries. We begin with an

algorithm that identifies the group Gd.

44

4.2.1 Algorithm I

As it is going to be the case throughout this thesis, all codes will be Mathematica

codes. The first code is as follows:

F[expres_ ,depVars_ ,IndVars_]:=

Module[{perms,p},

perms = Permutations@depVars;

ApplyPerm[perm_]:=

Map[#/.MapThread[#1-> #2&, {depVars, perm}]&, expres];

p = Select[perms, Length@Union[ApplyPerm[#],

expres]===Length@expres&];

Length[p]===Length[depVars]!

]

The function F has three variables. The variable expres is a list of the PDEs in

the systems. The variables depV ars and IndV ars are lists of the dependent variables

and independent variables, respectively. Note that the system has to be rewritten in

the same format as in (4.1) before inputting the variables.

Example 4.2.5. As an example, consider the system

u̇− u+ v = 0

v̇ + u− v = 0.

We see that the non-trivial and trivial permutations P1(u, v) = (u, v) and P2(u, v) =

(v, u) are all permutation symmetries. Furthermore, |S2| = 2. When we run the code

above and then run the following line

F [{D[v[t], t] - v + u, D[u[t], t] - u + v}, {u, v}, {t}]

45

The code outputs True to confirm that the system is permutation-invariant. A False

output would indicate otherwise. We then run the following line

PermutationGroup[Map[FindPermutation, p]]//GroupGenerators

In light of Theorem (4.2.3), this line of the code outputs the generators of the asso-

ciated symmetric group, S|Gd|. In this example, it happens that all of the elements

in the group are generators. Thus, we see that the code outputs the two cycles, the

identity () and (12).

Parity symmetries

A second interesting type of symmetries is parity symmetries. These symmetries

exist in abundance in Hamiltonian systems. In this section, we introduce the relevant

background as well as algorithms that generate such symmetries.

Definition 4.2.6. A parity transformation is a map

(u1, .., uk, x1, ..., xm)→ Q(z)(u1, .., uk, x1, ..., xm)

that flips the sign of z where z ⊂ {u1, .., uk, x1, ..., xm}.

Proposition 4.2.7. Parity transformations Q(z) acting on (u1, .., uk, x1, ..., xm) have

two important properties. Let z = {a1, ..., an} ⊂ {u1, .., uk, x1, ..., xm}, where n 6

k +m. Then,

• Q(z) = Q(a1)Q(a2)...Q(an).

• The number of all possible parity transformations acting on (a1, ..., an) is 2n.

Proof. The first statement is obvious from the definition of a parity transformation.

The proof for the second statement is as follows. Let {a1, ..., an} ⊂ {u1, .., uk, x1, ..., xm}.

For each ai ∈ {a1, ..., an} we can either flip its sign or leave it unchanged. Hence, the

number of parity transformations is 2n.

46

Example 4.2.8. Consider a system of PDEs with the variables (u, v, w, t, x, y, z).

Then, an example of a parity map,

(u, v, w, x, y, z)→ Q(u, v, y)(u, v, w, x, y, z) = Q(u)Q(v)Q(y)(u, v, w, x, y, z)

= (−u, v,−w, x,−y, z).

A parity symmetry is defined as follows.

Definition 4.2.9. A parity symmetry is a parity transformation

(u1, .., uk, x1, ..., xm)→ Qs(z)(u1, .., uk, x1, ..., xm)

which leaves the system (1.1) unchanged up to a reordering of the equations.

Theorem 4.2.10. Let z = {a1, ..., an} ⊂ {u1, .., uk, x1, ..., xm}. The set of all possible

parity transformations Q(z), Gparity,z, forms a group. Furthermore, the set of all

parity symmetries Qs, Hparity,z, forms a subgroup of it. That is, Hparity,z < Gparity,z.

Proof. Fix z = {a1, ..., an}. First, we check if Gparity,z obeys the group properties. It

is clear from the definition and proposition (4.2.7) that they are closed and associative

under the naturally defined operation. Also, the identity element is Q(φ), where φ

is the empty set. Finally, the inverse of any element is itself. Thus, Gparity,z satisfies

the properties of a group.

Second, we check if Hparity,z < Gparity,z. Any parity symmetry is a parity trans-

formation. Thus, Hparity,z ⊂ Gparity,z. Now, assume that h, f are parity symmetries.

Then, hf is a parity symmetry. This follows because each element of Hparity,z leaves

the system (1.1) unchanged, and so applying the two in a row must also leave it

unchanged. Hence, Hparity,z is closed under the natural operation. Finally, for any

h ∈ Hparity,z, h
−1 = h ∈ Hparity,z. Therefore, Hparity,z < Gparity,z.

Remark 4.2.11. We can set z to be either the set of independent or dependent

47

variables. Thus, the result applies to either of the two separately. In this case, we

write Gparity,d, Hparity,d for z = {u1, .., uk}, and Gparity,I , Hparity,I for z = {x1, ..., xm}.

This will prove useful when constructing the next algorithm.

4.2.2 Algorithm II

We introduce a second algorithm that calculates the following:

• The set of collections of independent/dependent symmetries and independen-

t/dependent parity symmetries for a given system of PDEs. We call it Sym.

• The sum βG(x) in (definition 4.1.5) for any quantity.

Remark 4.2.12. Given a system of PDEs, four possible transformations can be per-

formed on its set of variables at once, given by the operators: PI , Pd, QI , Qd. We notice

that these operators don’t always commute. For example, (213)I(12)I(u, v, x, y, z) =

(u, v, x, z, y) 6= (12)I(213)I(u, v, x, y, z) = (u, v, y, z, x) However, they always com-

mute when r1 6= r2. This suggests that we can consider transformations of indepen-

dent and dependent variables separately.

Based on the previous remark, one must adopt a convention as to which order the

transformations are applied; this is necessary for making sense of the set Sym. Now,

we have for each set of variables, independent or dependent, two possible conventions.

Then, there are four different possible conventions in total to interpret each element

of the set Sym. As we will see, we must have two slightly different versions of the

following algorithm.

Let’s consider first the following version of the code. We include the other version

in appendix B. Here, we assume applying permutations comes before parities.

Before we discuss the details of the code, we have to address the following issue. In

theorems 4.2.3 and 4.2.2, we saw that Or < St and Hparity,z < Gparity,z. Now, let’s call

the set of all collections of independent/dependent transformations and independent

48

parity transformations Totalset. Given our convention, the set Totalset then is St ×

Gparity,r where (r, t) ∈ {(I,m), (d, k)}; and each is is a group. It is then necessary to

show that the set Sym is a subgroup of Totalset. We introduce next the proof.

Theorem 4.2.13. Sym < Totalset.

Proof. If s, t ∈ Sym, then st ∈ Sym. This is because both of them will leave the

system unchanged; applying both in a row then also leaves the system unchanged.

Thus, Sym is closed. Next, we show that for any s ∈ Sym, s−1 ∈ Sym. Sym is

finite, and thus we have sk = Id for some k ∈ N. It follows then, by the closure of

Sym that s−1 = sk−1 ∈ Sym. Therefore, Sym is a subgroup of Totalset.

Remark 4.2.14. The result applies for all four possible conventions. It is easy to

modify the proof above for each convention by simply accounting for the order of the

direct product.

Now, we are ready to introduce our code. First, we set up the data.

MKF := Function[#1, #2] &

PDE = {};

DepVarsI = {};

IndVarsI = {};

System2symmetrize = {};

PDE is a the list {f1, f2, ..., fn} associated with our PDE system (written in the

standard form 4.1); System2symmetrize is a list of the quantities to be symmetrized;

and MKF is a function that generates functions.

Next, we want to create a function that checks whether a certain element of

Totalset is a symmetry; its output, thus, is either True or False. We call this

function PDEInv. Here, we represent an element Totalset by the tuple

(PDEPV, PINDV, PADEP, PAIND).

49

These are permutation transformations of dependent (PDEPV) and independent

(PINDV) variables and to parity transformations of dependent (PADEP) and in-

dependent (PAIND) variables.

PDEInv[PPDE_, extraminus_, PDEPV_, PINDV_, PADEP_, PAIND_] :=

Module[{p0, p1, p2, p3, p4, g, jj},

g[p0_] := 1;

g[p0_] := -1 /;

MemberQ[Map[List, PADEP], Flatten[Position[DepVarsI, p0]]];

p4 = MapAt[Minus, Permute[IndVarsI, PINDV], Map[List, PAIND]];

p3 = MKF[Permute[IndVarsI, PINDV],

g[#] # @@ MapAt[Minus, Permute[IndVarsI, PINDV],

Map[List, PAIND]]] & /@ Permute[DepVarsI, PDEPV];

p2 = MKF[Join[DepVarsI , IndVarsI], PDE] @@ Join[p3, p4];

p1 = Permute[p2, PPDE];

jj = MKF[Permute[IndVarsI, PINDV], # @@ IndVarsI] & /@ DepVarsI;

MapAt[Minus, MKF[DepVarsI, p1] @@ jj, Map[List, extraminus]] ===

PDE

]

Now, our task is to evaluate this function at all elements of Totalset. Note that

PDEInv is a function of six variables while each element of Totalset contains four

variables. However, the first two variable, PPDE and extraminus are introduced to

account for a possible reshuffling of an otherwise identical system (after applying the

transformation). Hence, it is done for technical reasons and carries no information

about the symmetry itself.

To do the evaluations, we use the following code. It produces the set Totalset;

then, it produces the set Sym, which is the set of compound symmetries (according

50

to our convention) for the system:

f1(ui, xj, ∂jui) = 0

f2(ui, xj, ∂jui) = 0

f3(ui, xj, ∂jui) = 0

...

fn(ui, xj, ∂jui) = 0.

where i = 1, ..., k and j = 1, ...,m.

Checklist = {PDEInv @@ #, #} & /@

Tuples[{Permutations[Range[Length[PDE]]],

Subsets[Range[Length[PDE]]],

Permutations[Range[Length[DepVarsI]]],

Permutations[Range[Length[IndVarsI]]],

Subsets[Range[Length[DepVarsI]]],

Subsets[Range[Length[IndVarsI]]]}];

Collection = Part[#, 2] & /@ Select[Checklist, #[[1]] == True &];

Sym = Part[#, {3, 4, 5, 6}] & /@ Collection

Finally, we are interested in finding the sum βG(x) for every element in the list

System2symmetrize. The following code generates the list Symmetrized, which is

a list of desired sums βG(x).

ggg[PPDE_, extraminus_, PDEPV_, PINDV_, PADEP_, PAIND_] :=

Module[{p0, p2, p3, p4, g, jj},

g[p0_] := 1;

g[p0_] := -1 /;

MemberQ[Map[List, PADEP], Flatten[Position[DepVarsI, p0]]];

51

p4 = MapAt[Minus, Permute[IndVarsI, PINDV], Map[List, PAIND]];

p3 = MKF[Permute[IndVarsI, PINDV],

g[#] # @@ MapAt[Minus, Permute[IndVarsI, PINDV],

Map[List, PAIND]]] & /@ Permute[DepVarsI, PDEPV];

p2 = MKF[Join[DepVarsI , IndVarsI], System2symmetrize] @@

Join[p3, p4];

jj = MKF[Permute[IndVarsI, PINDV], # @@ IndVarsI] & /@ DepVarsI;

MKF[DepVarsI, p2] @@ jj

]

Symmetrized = 1/Length[Sym] * Total[ggg @@ # & /@ Sym, 1]

4.2.3 An illustration

We illustrate the usage of the previous code with the following examples:

Example 4.2.15. We want to use the code to generate all permutation and parity

symmetries for the following PDE system, given that we apply parity transformations

first.

 ut = x3yvu2x

vt = xy3uv2y.
(4.4)

Also, we want to symmetrize the following set of quantities under the generated

group of symmetries, Sym.

{u2u2x, v2v2x, u2v, u, v}.

We set up the data as follows:

MKF := Function[#1, #2] &

52

PDE = {x^3 y v[x, y] D[u[x, y], {x, 1}]^2,

x y^3 u[x, y] D[v[x, y], {y, 1}]^2};

DepVarsI = {u, v};

IndVarsI = {x, y};

System2symmetrize = {u[x, y]^2 D[u[x, y], {x, 1}]^2,

v[x, y]^2 D[v[x, y], {x, 1}]^2, u[x, y]^2 v[x, y], u[x, y], v[x, y]};

We then run the rest of the code. We get the following set Sym:

{{{1, 2}, {1, 2}, {}, {}}, {{1, 2}, {1, 2}, {}, {1, 2}}, {{1, 2}, {1,

2}, {1, 2}, {1}}, {{1, 2}, {1, 2}, {1, 2}, {2}}, {{1, 2}, {1,

2}, {1}, {1}}, {{1, 2}, {1, 2}, {1}, {2}}, {{1, 2}, {1,

2}, {2}, {}}, {{1, 2}, {1, 2}, {2}, {1, 2}}, {{1, 2}, {1,

2}, {1}, {}}, {{1, 2}, {1, 2}, {1}, {1, 2}}, {{1, 2}, {1,

2}, {2}, {1}}, {{1, 2}, {1, 2}, {2}, {2}}, {{1, 2}, {1,

2}, {}, {1}}, {{1, 2}, {1, 2}, {}, {2}}, {{1, 2}, {1, 2}, {1,

2}, {}}, {{1, 2}, {1, 2}, {1, 2}, {1, 2}}, {{2, 1}, {2,

1}, {}, {}}, {{2, 1}, {2, 1}, {}, {1, 2}}, {{2, 1}, {2, 1}, {1,

2}, {1}}, {{2, 1}, {2, 1}, {1, 2}, {2}}, {{2, 1}, {2,

1}, {1}, {1}}, {{2, 1}, {2, 1}, {1}, {2}}, {{2, 1}, {2,

1}, {2}, {}}, {{2, 1}, {2, 1}, {2}, {1, 2}}, {{2, 1}, {2,

1}, {1}, {}}, {{2, 1}, {2, 1}, {1}, {1, 2}}, {{2, 1}, {2,

1}, {2}, {1}}, {{2, 1}, {2, 1}, {2}, {2}}, {{2, 1}, {2,

1}, {}, {1}}, {{2, 1}, {2, 1}, {}, {2}}, {{2, 1}, {2, 1}, {1,

2}, {}}, {{2, 1}, {2, 1}, {1, 2}, {1, 2}}}

Sym is a list of sublists, each representing a symmetry. Each symmetry, in turn,

is a list of four sublists itself; to show how these four sublists are to be interpreted,

we examine the following symmetry.

53

{{1, 2}, {1, 2}, {1, 2}, {1}}

The first two elements {1, 2}, {1, 2} are permutations of the dependent and indepen-

dent variables, respectively. A permutation of n variables in general is written as

{P (1), P (2), ..., P (i), ...P (n)}, where 1 ≤ P (i) ≤ n represents the new position of

the ith element. Thus, in our example, all of these permutations represent identity

permutations.

The last two elements {1, 2}, {1} represent parity transformations of the depen-

dent and independent variables, respectively. Here, they represent multiplying the

first and second elements of DepV arsI as well as the first element of IndV arsI,

namely the variables {u, v, x}, by −1.

Remark 4.2.16. Note that the previous set Sym is not for the system (4.4). It is,

rather for the system  x3yvu2x = 0

xy3uv2y = 0.

The set Sym for (4.4) is a subset of the one above. Specifically, it is the subset that

leave the dependent variables, {u, v}, invariant. Our code doesn’t attempt to find

such a subset directly. This is because we want it to work for any general set of

polynomials. However, one can easily find the subset by generating a different set

Sym for the system PDE = {u[x, y], v[x, y]}; and then by finding the intersection of

the two Sym sets.

Next, we run the last part of the code to symmetrize each quantity in the list

under the set Sym. In other words, we generate the set Symmetrized for

{u2u2x, v2v2x, u2v, u, v}

54

The output is as follows:

{ 1/32[16 u[x, y, z]^2 D[u[x, y, z], {x, 1}]^2+

16 v[x, y, z]^2 D[v[x, y, z], {x, 1}]^2,0,0,0}

Thus, the symmetrization of u2u2x and v2v2x is the same, namely, 1
2
[u2u2x + v2v2x]; and

the symmetrization for the other elements is 0. The interesting part here is that we

found that two different elements of our list are the same under the action of a group

of discrete symmetries.

Example 4.2.17. Let’s consider the Hirota-Satsuma system of PDEs used in the

study of shallow water waves.

ut = 1
2
uxxx + 3uux − 6vvx,

vt = −vxxx − 3uvx.
(4.5)

We also want to symmetrize the following list:

{u2u2x, uv, u, v}

The set-up part of the code looks like:

MKF := Function[#1, #2] &

PDE = {1/2 D[u[x], {x, 3}] + 3 u[x] D[u[x], {x, 1}] -

6 v[x] D[v[x], {x, 1}], -D[v[x], {x, 3}] - 3 u[x] D[v[x], {x, 1}]};

DepVarsI = {u, v};

IndVarsI = {x};

System2symmetrize = {u[x]^2 D[u[x], {x, 1}]^2, v[x] u[x], v[x],

u[x] };

Then, we run the code to get the following set Sym:

55

{{{1, 2}, {1}, {}, {}}, {{1, 2}, {1}, {2}, {1}}, {{1,

2}, {1}, {2}, {}}, {{1, 2}, {1}, {}, {1}}}

Furthermore, the set Symmetrized for {u2u2x, uv, u, v} is:

{u[x]^2 D[u[x],{x,1}]^2, 0, u[x], 0}

Remark 4.2.18. Here, an interesting result is that both u2u2x and u are fixed under

the action of the group.

56

REFERENCES

[1] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, The Amer-

ican Mathematical Society, 2006.

[2] D. Holm, T. Schmah, and C. Stoica, Geometric Mechanics and Symmetry: from

Finite to Infinite Dimensions, Oxford University Press, 2009.

[3] G. Teschl, Mathematical Methods in Quantum Mechanics, 2nd ed. The American

Mathematical Society, 2014.

[4] M. Sepansk, Algebra, The American Mathematical Society, 2010.

[5] P. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide,

Cambridge University Press, 2000.

[6] G. Bluman, “Connections Between Symmetries and Conservation Laws,” SIGMA,

vol. 1., no. 011., p. 16, October. 2005.

[7] D. Poole and W. Hereman, “Symbolic computation of conservation laws for non-

linear partial differential equations in multiple space dimensions,” Journal of Sym-

bolic Computation, vol. 46., no. 12., p. 1355-1377, December. 2011.

[8] W. Hereman, “Review of Symbolic Software for Lie Symmetry Analysis,” Journal

of Mathematical and Computer Modelling, vol. 25., no. 8-9., p. 115-132, April-May.

1997.

[9] P. Hydon, “How to construct the discrete symmetries of partial differential equa-

tions,” European Journal of Applied Mathematics, vol. 11., p. 515?527, May. 2000.

57

APPENDICES

A Appendix I

A.1 Differentiable Manifolds

Here, we introduce the concept of a smooth manifold. We start with the definition

of an atlas.

Definition A.1.1. Let U be a subset of an abstract set M . A coordinate chart is

one-to-one mapping γ: U → Rn such that γ(U) is an open subset of Rn

Remark A.1.2. The set U is called a coordinate patch. The components of γ(U) are

called local coordinates. Finally, the inverse mapping γ−1(U) is called parametriza-

tion.

Definition A.1.3. Two coordinate charts γ1: U1 → Rn and γ2: U2 → Rn are mutu-

ally compatible if the map γ2oγ
−1
1 , whose domain is γ1(U1 ∩U2), is a diffeomorphism

with a smooth inverse. These mapping are called transition maps (or change-of-

coordinates transformations)

Definition A.1.4. An n-dimensional atlas for a set M is a family of mutually com-

patible n-dimensional coordinate charts covering M . Two atlases are equivalent if all

of their charts are mutually compatible; we call this equivalence relation R.

Now, we are ready to define differential structures on manifolds.

58

Definition A.1.5. A smooth structure (or differential structure) is an equivalence

class of atlases for M modulo R. Any atlas in this class is said to determine the

smooth structure.

Finally, we introduce the definition of a smooth manifold.

Definition A.1.6. A smooth manifold is a set M with a smooth structure.

A.2 Tensors

There are two types of tensors: covariant and contravariant. We define both types as

follows:

Definition A.2.1. A covariant k-tensor on a finite-dimensional, real vector space V

is a multilinear mapping

T : V × ...× V → R

where V being multiplied k times.

Similarly,

Definition A.2.2. A contravariant k-tensor on a finite-dimensional, real vector space

V is a multilinear mapping

T : V ∗ × ...× V ∗ → R

where V ∗ is the dual space of V . It is also being multiplied k times.

Remark A.2.3. We can extend the domain of tensors from linear spaces to any

manifold Q. We do this by defining tensors on the tangent space based at a point q,

TqQ. For example, a covariant k-tensor on the tangent space of TqQ a configuration

space Q is the mapping:

T : TqQ× ...× TqQ→ R

59

where V being multiplied k times.

Definition A.2.4. A covariant tensor field on a manifold M is a family of smoothly

varying rank-k tensors [T(z)]. Here, T(z) is defined on the tangent space TzM

Definition A.2.5. (Differential n-forms) A differential n-form is a skew-symmetric

covariant tensor field of rank n.

Now, we are ready to introduce differential 1-forms and vector fields.

Definition A.2.6. (Differential 1-forms) A differential 1-form on a manifold M is a

map

θ : M → T ∗M

such that θ(z) ∈ T ∗zM , the cotangent space at z, for any z ∈M

Properties:

• (θ1 + θ2)(z) = θ1(z) + θ2(z)

• (kθ)(z) = k(z)θ(z) where k : M → R (a scalar field)

Definition A.2.7. (Vector fields) A vector field on a manifold M is a map

X : M → TM

such that X(z) ∈ TzM , the tangent space at z, for any z ∈M

Properties:

• (X1 +X2)(z) = X1(z) +X2(z)

• (kX)(z) = k(z)X(z) where k : M → R (a scalar field)

60

B Appendix II

B.1 Mathematica code

In this appendix, we include the second version of our code.

The first function

PDEInv[PPDE_, extraminus_, PDEPV_, PINDV_, PADEP_, PAIND_] :=

Module[{p0, p1, p2, p3, p4, g, jj}, g[p0_] := 1;

g[p0_] := -1 /;

MemberQ[Map[List, PADEP], Flatten[Position[DepVarsI, p0]]];

p4 = Permute[MapAt[Minus, IndVarsI, Map[List, PAIND]], PINDV];

p3 = MKF[Permute[IndVarsI, PINDV],

g[#] # @@ Permute[MapAt[Minus, IndVarsI, Map[List, PAIND]],

PINDV]] & /@ Permute[DepVarsI, PDEPV];

p2 = MKF[Join[DepVarsI , IndVarsI], PDE] @@ Join[p3, p4];

p1 = Permute[p2, PPDE];

jj = MKF[Permute[IndVarsI, PINDV], # @@ IndVarsI] & /@ DepVarsI;

MapAt[Minus, MKF[DepVarsI, p1] @@ jj, Map[List, extraminus]] ===

PDE

]

The second function

ggg[PPDE_, extraminus_, PDEPV_, PINDV_, PADEP_, PAIND_] :=

61

Module[{p0, p2, p3, p4, g, jj},

g[p0_] := 1;

g[p0_] := -1 /;

MemberQ[Map[List, PADEP], Flatten[Position[DepVarsI, p0]]];

p4 = Permute[MapAt[Minus, IndVarsI, Map[List, PAIND]], PINDV];

p3 = MKF[Permute[IndVarsI, PINDV],

g[#] # @@ Permute[MapAt[Minus, IndVarsI, Map[List, PAIND]],

PINDV]] & /@ Permute[DepVarsI, PDEPV];

p2 = MKF[Join[DepVarsI , IndVarsI], PDE] @@ Join[p3, p4];

jj = MKF[Permute[IndVarsI, PINDV], # @@ IndVarsI] & /@ DepVarsI;

MKF[DepVarsI, p2] @@ jj

]

	Examination Committee Page
	Copyright
	Abstract
	List of Abbreviations
	Introduction
	Mathematical Background
	Symplectic geometry
	Symplectic manifolds
	Function spaces as phase spaces

	Groups
	Subgroups
	Direct products
	Group actions
	Examples

	Invariance and conservation laws
	Symmetries
	Conservation laws

	Symmetries and Conservation laws in Hamiltonian Systems
	Newtonian mechanics
	Symplectic vector spaces
	The second law of motion

	The Schrödinger equation

	The Symbolic Computational Approach
	Overview
	The master polynomial
	The symmetrization process

	Analysis of specific symbolic algorithms
	Algorithm I
	Algorithm II
	An illustration

	References
	Appendices
	Differentiable Manifolds
	Tensors
	Mathematica code

