We B2 14

Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media

J.W. Oh* (King Abdullah University of Science & Technology), T. Alkhalifah (King Abdullah University of Science & Technology)

Summary

The elastic orthorhombic assumption is one of the most practical Earth models that takes into account the horizontal anisotropic layering and vertical fracture network. In this model, the rotation angle of the vertical planes of symmetry is a crucial parameter needed to increase the convergence of an anisotropic full waveform inversion (FWI) as well as to provide the fracture geometry along azimuthal direction. As an initial step, we investigate the possibility of recovering the azimuth angle via FWI, which may offer high-resolution information. We first utilize our new parameterization with deviation parameters, which provides the opportunity for multi-stage FWI. Based on the radiation patterns and gradient directions of each parameter, we show that the azimuth angle mainly affects the parameters that have azimuth-dependent radiation patterns, so that we can hierarchically build up the subsurface model from isotropic to VTI to azimuthally rotated orthorhombic models with less trade-offs. From the numerical example for a synthetic 3D model, we expect that both a deviation parameter and the azimuth angle can be recovered in the last stage of FWI with minimum trade-offs.
Introduction

Recently, multi-parameter full waveform inversion (FWI) corresponding to more complex physics is becoming a focus of our community (Operto et al., 2013; Alkhalifah and Plessix, 2014; Köhn et al., 2015; Masmoudi and Alkhalifah, 2016). Luckily, the elastic orthorhombic (ORT) medium assumption (Oh and Alkhalifah, 2016) provides enough degrees of freedom necessary to capture phenomena related to reservoir characteristic, like fracturing. However, for orthorhombic media, accurate azimuth angle of symmetric axis is required for FWI to converge properly, and provide high-resolution information of the fracture network. In this study, as an initial step to estimate the azimuth angle of the symmetric axis using FWI, we analyse the gradient directions of each parameter in azimuthally rotated orthorhombic (rORT) media based on the radiation patterns. Finally, we suggest an optimal FWI strategy for rORT media and examine the possibility of inverting for azimuth angle.

Gradient direction in azimuthally rotated orthorhombic media

The elastic wave equation in azimuthally rotated orthorhombic media can be expressed with particle displacements (\(u \)), stress (\(\sigma_j \)), strain (\(\varepsilon_j \)) and source (\(f \)) as follows (Ivanov and Stovas, 2016):

\[
\rho \frac{\partial^2 u}{\partial t^2} = \partial_j \sigma_j + f_i \tag{1} \quad \text{and} \quad \sigma_j = C_{ijkl}^\text{ORT} \varepsilon_{ij} \tag{2}
\]

In this study, the density (\(\rho \)) is fixed at 1 g/cm\(^3\) and is not considered as a FWI parameter. In Voigt notation (\(C_{ijkl}^\text{orth} \rightarrow C_{ij}^\text{ort} \)), the stiffness matrix can be expressed as the rotation of orthorhombic stiffness matrix (\(C_{ij}^\text{ORT}; \) Oh and Alkhalifah, 2016) around the vertical direction (\(z \)) as follows:

\[
C_{ij}^\text{ORT} = M_i C_{ij}^\text{ORT} M_j^T \tag{3}
\]

where

\[
M_i(\phi) = \begin{pmatrix}
\cos^2 \phi & \sin \phi \cos \phi & 0 & 0 & 0 & -\sin 2\phi \\
\sin \phi \cos \phi & \cos^2 \phi & 0 & 0 & 0 & \sin 2\phi \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \phi & \sin \phi & 0 \\
0 & 0 & 0 & 0 & -\sin \phi & \cos \phi \\
\frac{\sin 2\phi}{2} & -\frac{\sin 2\phi}{2} & 0 & 0 & 0 & \cos 2\phi
\end{pmatrix}
\tag{5}
\]

The azimuth angle, \(\phi \), is defined as the angle from \(x \) direction in a counter-clockwise direction. The gradient from the least-squares FWI for an arbitrary parameter, \(p \), can be expressed as

\[
\nabla_p E = u_{p\text{PDW}}^p(\mathbf{m},t) \left[d(t) - u(\mathbf{m},t) \right] \tag{6}
\]

with

\[
\rho \frac{\partial^2 u_{p\text{PDW},i}^p}{\partial t^2} = \partial_j \sigma_{p\text{PDW},i}^p + \partial_j \left(\frac{\partial C_{ijkl}^\text{ORT}}{\partial p} \varepsilon_{ij} \right) \tag{7}
\]

where \(u_{p\text{PDW}} \) is the partial derivative wavefields. The last term in eq. (7) is the virtual source from the model parameter perturbation. The gradient direction for any parameter can be obtained by the linear combination of 13 \(C_{ij} \) parameters as follows (Oh and Alkhalifah, 2016):

\[
\nabla_p E = \sum_{ij} \frac{\partial C_{ij}}{\partial p} \left(\nabla_{ij} E \right) \tag{8}
\]

Optimal parameterization in azimuthally rotated orthorhombic media

For elastic orthorhombic media, Oh and Alkhalifah (2016) suggested the new parameterization, which includes wave velocities (\(v_{p1} \) and \(v_{s1} \)), anisotropic parameters (\(\varepsilon_1, \eta_1 \) and \(\gamma_1 \)) for a vertically transversely isotropic (VTI) background and their deviation parameters (\(\varepsilon_D, \eta_D, \gamma_D \) and \(\delta_3 \)), as below:

\[
\begin{pmatrix}
v_{p1} & v_{s1} & \varepsilon_1 & \eta_1 & \gamma_1 & \varepsilon_D & \eta_D & \gamma_D & \phi
\end{pmatrix}
\tag{9}
\]
This parameterization allows us to build up the subsurface models from isotropic to VTI to ORT media (Oh and Alkhalifah, 2016). Here, we add the azimuth angle of the symmetric axis (\(\phi\)). We first examine the influence of the azimuth angle on the gradient directions. We assume a 4-layers model in Figure 1. The L_2 is our target, which is a strongly rORT layer. We use a homogeneous initial model (L_1) below the water. We assume a pressure source in the middle of the surface and hydrophones on all surface nodal points so that PP waves are dominant in the residual wavefields. Based on this model, we calculate the PP reflection patterns \(R_p\) (Oh and Alkhalifah, 2016) from the horizontal reflector (L_2) when the azimuth angle of the symmetric axis is equal 0 (Figures 2a). We also show the single-shot gradient direction on \(xy\)-plane at the depth of L_2 to examine the azimuthal variations of the gradient direction. As reflected in the radiation patterns, the gradients of the deviation parameters and \(\delta_3\) are azimuthally rotated by the background azimuth angle while the 5 other parameters are not (Figures 2b and 2c) because they have azimuth independent radiation patterns. This indicates that we can still build up the isotropic \((v_{p1} \text{ and } v_{s1})\) and VTI parameters \((\epsilon_1, \eta_1 \text{ and } \gamma_1)\) with minimal influence of azimuth angle. Then, azimuth angle can be inverted with deviation parameters \((\epsilon_D, \eta_D, \gamma_D \text{ and } \delta_3)\).

Figure 1 The geometry of a 4-layers model: L_1 – very weak ORT, L_2 – strong rORT \(\phi=45^\circ\), L_3 – same as L_1. The blue line indicates a source-receiver line. The red, green and yellow dots denote the source, receiver and perturbation point used in Figure 2. The red arrows indicates reflection ray path from the top of L_2, which are assumed to calculate the reflection pattern in Figure 2a.

Figure 2 (a) The PP reflection patterns in terms of the opening angle \(\theta_o\) in Figure 1 and gradient directions on the top of L_2 when (b) \(\phi=0^\circ\) and (c) \(\phi=45^\circ\). The dashed blue lines indicate the fast and slow horizontal axes of initial ORT layer. Notice that \(\phi_{sr}\) is the azimuth angle of the source-receiver line in Figure 1, which is not related to the rotation angle of symmetric axis (\(\phi\)).

Azimuth angle as a FWI parameter

As demonstrated, the new parameterization still has hierarchical features because the influences of azimuth angle are also well separated. However, for marine data (PP dominant), inverting for all 9 ORT parameters is not practical due to strong trade-offs among parameters as shown in Figure 2a. To reduce the trade-offs, Oh and Alkhalifah (2016) suggested hierarchically inverting for only \(v_{p1}, v_{s1}, \epsilon_1\) and \(\epsilon_D\), which we will refer to as the ideal parameters throughout the paper. Figure 3a shows the gradient direction for the ideal parameters on \(xy\)-plane depending on different background azimuth angles. Regardless of azimuth angle, we expect to build up two seismic velocities \((v_{p1} \text{ and } v_{s1})\) and \(\epsilon_1\). From this VTI model, the parameters, \(\epsilon_D\) and \(\phi\), can be recovered as shown in Figure 3b. As we see in Figure 3a, the reflection pattern of the azimuth angle resembles \(\epsilon_D\) (or \(\delta_3\)) in Figure 2a, which means...
that long offset data are also required to invert for the azimuth angle. However, the trade-offs between \(\varepsilon_D \) and \(\phi \) are not strong as the gradient directions show. This is because the sensitivity kernel of \(\phi \) has azimuthal polarity changes caused by the definition of angle that has positive values in a counterclockwise direction but has negative values in the clockwise direction (Masmoudi et al., 2016).

\[
\begin{align*}
\varepsilon_1 & \quad \varepsilon_D \\
\phi & \quad \varepsilon_i
\end{align*}
\]

\[
\begin{align*}
vp & \quad vs \\
L_1 & \quad L_2 \\
L_3 & \quad L_4 \\
L_5 & \quad L_6 \\
L_7 & \quad L_8
\end{align*}
\]

Figure 3 (a) The gradient direction of the ideal parameters and the reflection patterns of the azimuth angle and (b) a schematic diagram illustrating the hierarchical parameter update strategy.

\[
\begin{align*}
\varepsilon_1 & \quad \varepsilon_D \\
\phi & \quad \varepsilon_i
\end{align*}
\]

\[
\begin{align*}
vp & \quad vs \\
L_1 & \quad L_2 \\
L_3 & \quad L_4 \\
L_5 & \quad L_6 \\
L_7 & \quad L_8
\end{align*}
\]

Figure 4 The true model: (a) ORT parameters (Table 1) and the azimuth angles (b and c).

Figure 5 The final inverted model of the ideal parameters and azimuth angle in Case-I.

To support our parameter update strategy in rORT media, we perform the multi-stage FWI (Figure 3b) for a more complex 3D model (Figure 4). The true model has a high velocity mud-filled channel structure (L4) and fractured rORT layer (L6), resembling a reservoir. The true ORT parameters are listed in Table 1. For the azimuth angle in L6, we assume two different structures (Figures 4b and 4c) to examine the potential trade-off of the azimuth angle with other parameters. For the initial models, we use smoothed \(vp_1 \), \(vs_1 \) and \(\varepsilon_1 \) and the other 7 parameters are set to 0. We use 100 pressure sources and 160,000 hydrophones on the surface. In Figures 5 and 6, we note that the ideal parameters can be recovered regardless of true azimuth angle. The \(\phi \) also looks reasonable thanks to the multi-stage FWI implementation, which mitigates the trade off with good \(\varepsilon_D \). From these examples, we conclude that \(\phi \) is invertible if we have good estimates of the background VTI, which can be obtained in the previous stages of our approach.
Conclusions

We investigate the feasibility of using FWI in azimuthally rotated elastic orthorhombic media. By analysing the radiation patterns and the gradient direction of each parameter, we are convinced that a parameterization in which we use deviation parameters provides us with the best functionality to perform FWI in azimuthally rotated orthorhombic media. The numerical examples show that a multi-stage FWI implementation reduces the trade-offs between parameters so that the azimuth angle can be estimated.

Acknowledgements

Research reported in this publication was supported by competitive research funding from King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. For computer time, this research used the resources of the Supercomputing Laboratory in KAUST. We thank the members of Seismic Wave Analysis Group (SWAG) in KAUST for helpful discussions.

References

