Analysis of Transient Electromagnetic Interactions on Nanodevices Using a Quantum-corrected Integral Equation Approach

Ismail Enes Uysal, Hüseyin Arda Ülki, and Hakan Bağcı
Division of Computer, Electrical, and Mathematical Sciences and Engineering
King Abdullah University of Science and Technology (KAUST)
email: ismail.uysal@kaust.edu.sa

PROBLEM DESCRIPTION
Simulation of transient fields on plasmonic nanostructures with sub-nanometer gaps. Quantum tunneling is accounted for using an auxiliary tunnel[1].

PROPOSED SOLUTION
Formulate and implement a time domain Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) [2] integral equation solver

Advantages:
• Time domain, broad band analysis
• Requires only surface discretization (instead of the volumetric discretization of the whole computation domain)
• Implicitly satisfies the radiation condition

Challenges:
• Computation of the Green function of dispersive media
• Temporal convolutions due to Green function of dispersive media

IMPACT
Potential to replace low-order accurate finite difference time domain (FDTD) methods

PMCHWT FORMULATION
Consider the generic problem

\[\mathbf{H}_{\text{inc}} (\mathbf{r}, t) = \mathbf{J}_{\text{inc}} (\mathbf{r}, t) \]

\[\mathbf{E}_{\text{inc}} (\mathbf{r}, t) = \mathbf{M}_{\text{inc}} (\mathbf{r}, t) \]

\[\mathbf{V}_m : \text{Volume} \]
\[\varepsilon_0 : \text{Permittivity} \]
\[\mu_0 : \text{Permeability} \]
\[\gamma_i : \text{Surface} \]
\[\hat{n}_{\gamma_i} : \text{Unit normal vector} \]
\[\mathbf{J}_i : \text{Electric current density} \]
\[\mathbf{M}_i : \text{Magnetic current density} \]

Scattered and incident fields are related to each other by boundary conditions to yield PMCHWT equation

\[\hat{n}_{\gamma_i} \times \left(\nabla \mathbf{E}_{\text{inc}} - \nabla \mathbf{E}_{\text{sca}} \right)_j = - \hat{n}_{\gamma_i} \times \left(\nabla \mathbf{H}_{\text{inc}} - \nabla \mathbf{H}_{\text{sca}} \right)_k \]

Scattered fields are written in terms of equivalent surface current densities

\[\mathbf{E}_{\text{sca}} (\mathbf{r}, t) = \sum_j \left[\mu_0 \mathbf{M}_j (\mathbf{r}, t) + \nabla \mathbf{J}_j (\mathbf{r}, t) \right] \]

\[\mathbf{H}_{\text{sca}} (\mathbf{r}, t) = \sum_k \left[\varepsilon_0 \mathbf{J}_k (\mathbf{r}, t) + \nabla \mathbf{M}_k (\mathbf{r}, t) \right] \]

Green function of the dispersive medium is obtained by fast relaxed vector fitting (FRVF) algorithm [3]

\[G_\gamma (\mathbf{R}, t) = \frac{1}{4\pi} \int_0^{\infty} \frac{e^{-\gamma l}}{\mathbf{R}} \mathbf{R} \left[\delta (\mathbf{R}) + \frac{\partial}{\partial t} \delta (\mathbf{R}) \right] (t_0) + \sum_{\gamma_i} G_\gamma (\mathbf{R}, t_0) e^{-\gamma_i l} \]

\[\mathbf{R} = \frac{t - R}{c_0} \text{is the retarded time and} \quad \mathbf{R} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \text{is the speed of light} \]

\[e_{\text{sca}} (t) = F^{-1} \left[r_0 \delta (\mathbf{R}) + \sum_{\gamma_i} r_0 \delta (\mathbf{R}) e^{-\gamma_i l} \right] \]

MARCHING ON-IN-TIME (MOT) SCHEME
Equivalent surface current densities are approximated by an expansion in terms of temporal and spatial basis functions

\[\mathbf{J}_i (r, t) = \sum_{j=1}^N e_{\text{sca}}^j (t) \mathbf{J}_j (r) \quad \mathbf{M}_i (r, t) = \sum_{k=1}^N e_{\text{sca}}^k (t) \mathbf{M}_k (r) \]

Substituting the expanded currents in scattered fields and testing the resulting equation with Galerkin procedure in space at time step \(t = i\Delta t \) yields MOT matrix system:

\[\mathbf{Z}_i \mathbf{J}_i = \mathbf{V}_i - \sum_{i=1}^{i-1} \mathbf{Z}_i \mathbf{J}_j \]

DOUBLE TEMPORAL CONVOLUTION
After discretization, double convolution is written as

\[F_{\gamma} (t) = \gamma (t) + T (t - j\Delta t) \]

\[F_{\gamma} (t) = Q (t) + T (t - j\Delta t) \]

Expand the first convolution with some interpolation functions

\[\mathbf{F}_{\gamma} (t) = \gamma (t) + T (t - j\Delta t) \]

\[\mathbf{F}_{\gamma} (t) = Q (t) + T (t - j\Delta t) \]

Double convolution is discretized as

\[\gamma (t) + T (t - j\Delta t) \]

\[\gamma (t) + T (t - j\Delta t) \]

NUMERICAL EXAMPLE
Sodium dimer with a cylindrical tunnel. Radius of one sphere is 2.17 nm and radius and length of tunnel are 0.25 nm and 2.65 nm. Permittivity values are taken from [1].

\[\mathbf{E}_{\text{inc}} (\mathbf{r}, t) = \mathbf{E}_{\text{sca}} (\mathbf{r}, t) \quad \text{g} (t) = \cos (2\pi f_0 t) \exp (-t^2 / 2\tau^2) \]

\[f_0 = f_{\text{inc}} = 500 \text{ THz} \quad \tau = 3 / (2\pi f_{\text{inc}}) \quad \Delta t = 0.0063 s \quad N = 4000 \quad N_{\text{eq}} = 608 \]

REFERENCES