Problem Description

- **Goal**: Sparse electromagnetic imaging for strong scatterers using nonlinear sparse optimization.
- **Applications**: See-through-wall imaging, molecular detection, breast imaging, hydrocarbon reservoir exploration.
- **Challenges**: Nonlinearity, ill-conditioning, noisy measurements.
- **Solution**: Newton, Born solvers, smooth and sparse regularizers, total variation.
- **Proposed solution**: Nonlinear iterative shrinkage algorithm, thresholded nonlinear Landweber iterations.

2D electromagnetic equations

- At receiver locations, $r_i = 1, \ldots, M$
- At source locations, $s_j = 1, \ldots, N$

Formulation

- **Discretization**
 \[E^m(r) = \sum_{i=1}^{M} E(r_i) \delta(r - r_i) \]
- **Basis function**
 \[E(r) = \sum_{i=1}^{M} E(r_i) \delta(r - r_i) \]
- **Nonlinear sparse optimization**
 \[f = \min_{\gamma} \left\{ \frac{1}{2} \| f - E^m \|_2^2 + \gamma \| f \|_1^2 \right\} \]
 \[f = \min_{\gamma} \left\{ \frac{1}{2} \| f - E^m \|_2^2 + \gamma \| f \|_1^2 \right\} \]

Numerical Results

- **Circular layered permittivity profile**
 - # Receivers: 32
 - # Transmitters: 8
 - Dimension: 7 m
 - N_{2D}: 2500
 - Sparseress: 9.9%
 - N_{3D}: 100
 - γ: 0.008

- **Square layered permittivity profile**
 - # Receivers: 32
 - # Transmitters: 8
 - Dimension: 8 m
 - N_{2D}: 3025
 - Sparseress: 9.92%
 - N_{3D}: 75
 - γ: 0.008

- **Fresnel experiment**
 - # Receivers: 40
 - # Transmitters: 12
 - Dimension: 0.2 m
 - N_{2D}: 2500
 - Sparseress: 9.92%
 - N_{3D}: 200
 - γ: 0.009

References