Mean-field Ensemble Kalman Filter

Kody Law¹, Tembini², Raul Tempone³

¹ CEMSE Division, King Abdullah University of Science and Technology, ² CEMSE Division, King Abdullah University of Science and Technology, ³ NYU Abu Dhabi.
kody.law@kaust.edu.sa, tembine@gmail.com, raul.tempon@kaust.edu.sa

Abstract

A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for $\kappa > 2\kappa$. The fidelity of approximation of the true distribution is also established using an extension of total variance metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

1. Setting

Let $\mathbb{K} : \mathbb{R}^d \rightarrow \mathbb{P}(\mathbb{R}^d)$. Consider the Markov chain

$$y_j \sim \mathbb{K}(y_{j-1}), \quad j \in \mathbb{N},$$

and a sequence of noise $\{\eta_j\}_{j \in \mathbb{N}}$, where $\eta_j \sim \mathbb{P}(\mathbb{R}^d)$. Define $\eta = \{\eta_j\}_{j \in \mathbb{N}}$. The Gaussian error $\eta \sim \mathbb{P}(\mathbb{R}^d)$, with $\eta \sim \mathbb{N}(0, \Sigma)$. Define \mathcal{L} as follows. For $u \sim \mathcal{L}$, observe $\mathcal{L} = \mathbb{F}(\mathbb{P}(\mathbb{R}^d), \eta \sim \mathbb{P}(\mathbb{R}^d)$, with $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$, and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$. Define \mathcal{L} as follows. For $u \sim \mathcal{L}$, observe $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$, and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$. Define \mathcal{L} as follows. For $u \sim \mathcal{L}$, observe $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$, and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$.

1.1 Filtering distribution

Distribution of y_j is gold standard. Likelihood function is $g(y_j) = \mathcal{L}(y_j | y_{j-1})$, $g(y_j) = \mathcal{L}(y_j | y_{j-1})$.

Optimal filter by

$$E(y_j | y_0, y_1, \ldots, y_{j-1}) = \sum_{j=0}^{\infty} \mathcal{L}(y_j | y_{j-1}),$$

$g(y_0) = \mathcal{L}(y_0 | y_{-1})$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$, and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$.

1.2 Optimal Linear Filtering

$$m_j(y_j) = \text{argmin}_{m_j(y_j)} \mathcal{L}(y_j | y_{j-1}),$$

Optimizing with respect to \mathcal{L}, and \mathcal{L} gives

$$m_j(y_j) = \text{argmin}_{m_j(y_j)} \mathcal{L}(y_j | y_{j-1}),$$

$g(y_0) = \mathcal{L}(y_0 | y_{-1})$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$, and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d)$, $\eta \sim \mathbb{P}(\mathbb{R}^d)$.

2. EnKF

2.1 Finite mean EnKF

$$F = \mathbb{F}(y_j, y_{j-1}),$$

$$C_j = \mathbb{E}(y_j | y_{j-1}) \otimes \mathbb{E}(y_{j-1} | y_{j-2})$$

Analysis

$$K_j = \mathbb{E}(y_j - y_{j-1} | y_{j-1}) \otimes \mathbb{E}(y_{j-1} | y_{j-2}),$$

Prediction

$$\hat{y}_{j+1} = y_{j+1} + K_j \eta_{j+1},$$

Here η_j are i.i.d. draws from $\mathcal{N}(0, \Sigma)$.

2.2 Finite ensemble EnKF

$$\hat{y}_{j+1} \sim \mathbb{F}(y_{j+1}, y_{j-1}),$$

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

Prediction

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

Analysis

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

$$\hat{y}_{j+1} = y_{j+1} + \sum_{i=1}^{N} \eta_{j+1} \otimes (\eta_{j+1} - \eta_{j+1}),$$

3. Fokker-Planck Filters

3.1 FPF Algorithms

$$\partial_t \rho = \mathcal{L}(\mathbb{F}(x(t)))$$

Density governed by Fokker-Planck equation

$$\partial_t \rho = \mathcal{L}(\mathbb{F}(x(t)))$$

3.2 EnKF Converges to MFEnKF

Let $\pi \in \mathbb{P}(\mathbb{R}^d)$ and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d), \eta \sim \mathbb{P}(\mathbb{R}^d)$. Define

$$\rho \sim \mathcal{L}(\mathbb{P}(\mathbb{R}^d), \eta \sim \mathbb{P}(\mathbb{R}^d)$$

Now define

$$d(\pi, \rho) = ||\pi - \rho||.$$ (4)

• π_j filtering density.
• π_j the mean-field EnKF density.
• $\pi_j \Rightarrow \pi_j$ the deterministic approximation (EnKF).
• $\pi_j \Rightarrow \pi_j$ the standard Monte-Carlo EnKF.

THEOREM 1: It is true that $\pi_j \Rightarrow \pi_j \Rightarrow \pi_j \Rightarrow \pi_j$. Proof: See [1], Sec. 4.3.1, for extension of [2].

4. MFEnKF is not the Posterior

Assume (i) $\pi \in \mathbb{P}(\mathbb{R}^d)$ and $\mathcal{L} = \mathcal{L}(\mathbb{P}(\mathbb{R}^d), \eta \sim \mathbb{P}(\mathbb{R}^d)$. And (ii) for time k, $\pi_{k|k-1} = \pi_{k|k-1} = \pi_{k|k-1}$ and $\pi_{k|k-1} = \pi_{k|k-1} = \pi_{k|k-1}$.

THEOREM 2: Given observation increment π, under assumptions above, as $\lambda \rightarrow 0$ and $N \rightarrow \infty$,

$$d(\pi_j, \rho) \approx \mathcal{O}(N^{-1/2} + \lambda^2)$$

where $\lambda = 0$ if π is linear and $\lambda = 1$ if π is nonlinear.

Figure 1: $F(u) = \text{ax}(1-u^2)^2$ with $u = \text{ax}(1-u^2)^2$,

Full FPF

• Discretize the density at t over space.
• Evolve with accurate time-stepper to time $t + 1$.
• Update π_j by $\pi_j = \mathcal{L}(\pi_j)$.

Figure 2: $F(u) = \text{ax}(1-u^2)^2$, Error of FPF MFEnKF-G2 vs. EnKF.

Figure 3: Nonlinear case, RMSE of mean with respect to the true (unconditioned) signal.

Figure 4: Nonlinear case, RMSE of covariance with respect to the true posterior covariance.

Acknowledgements

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST), K. J.H. Law, H. Tembini and R. Tempone are members of the KAUST SRI Center for Uncertainty Quantification.

References