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Abstract—The capacity of MIMO intensity modulation chan-
nels is studied. The nonnegativity of the transmit signal (intensity)
poses a challenge on the precoding of the transmit signal,
which limits the applicability of classical schemes in this type
of channels. To resolve this issue, capacity lower bounds are
developed by using precoding-free schemes. This is achieved by
channel inversion or QR decomposition to convert the MIMO
channel to a set of parallel channels. The achievable rate of
a DC-offset SVD based scheme is also derived as a benchmark.
Then, a capacity upper bound is derived and is shown to coincide
with the achievable rate of the QR decomposition based scheme
at high SNR, consequently characterizing the high-SNR capacity
of the channel. The high-SNR gap between capacity and the
achievable rates of the channel inversion and the DC-offset SVD
based schemes is also characterized. Finally, the ergodic capacity
of the channel is also briefly discussed.

I. INTRODUCTION

Intensity-modulation is a simple transmission technique
which uses the signal intensity to transmit information from
a source to a destination. Its practical simplicity is appeal-
ing especially when it comes to optical-wireless commu-
nications (OWC), where it is considered an effective low-
complexity/cost technique. In this context, the information
bearing signal is the optical intensity, and the receiver employs
a photo-diode for detection.

This intensity-modulation direct-detection (IM-DD) scheme
has attracted increasing research interest recently due to the
revival of OWC [1], and the increasing interest in visible-light
communication (VLC) [2]. Many aspects of OWC has been
studied recently, for both outdoors and indoors applications.
One such aspect is multi-aperture OWC, where multiple light
sources are used at the transmitter and/or multiple detectors are
used at the receiver, which forms a multi-input multi-output
(MIMO) system. For example, the utility of MIMO in fading
channels has been explored in [3], [4], the performance of the
V-BLAST architecture in MIMO OWC was studied in [5], [6],
and transmission techniques and channel models for indoors
MIMO OWC have been investigated in [7], [8]. These works
mostly focus on error rate and outage performance.

Another equally important performance metric is the chan-
nel capacity, which specifies the highest rate of reliable in-
formation transmission over a channel. Although the capacity
of MIMO OWC modeled as a MIMO Poisson channel was
studied in [9], [10], the capacity of the Gaussian IM-DD model
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was not, to the best of our knowledge. The Gaussian IM-
DD channel is an additive channel with independent Gaussian
noise, and models OWC when electrical and background
noises dominate the signal dependent noise. The main dif-
ference between MIMO IM-DD Gaussian channels and radio-
frequency (RF) Gaussian channels is in the input constraints,
manifested in non-negativity and average constraints in OWC
as opposed to power constraints in RF.

Due to this main difference, the elegant singular-value
decomposition (SVD) scheme used to transform RF MIMO
channels to parallel channels is not directly applicable in
MIMO IM-DD channels. The reason is that precoding using
the right singular vectors of the IM-DD channel matrix might
lead to negative signals. This complication can be overcome
by applying a DC offset [11], [12], conveniently leading to a
positive signal, although simultaneously imposing a constraint
on the codeword symbols. This restriction can be avoided
by refraining from precoding at the transmitter and relying
on post-coding at the receiver instead. Examples are channel
inversion [7] and QR decomposition [13].

In this paper, we study the capacity of MIMO IM-DD
Gaussian channels with a total average optical intensity con-
straint. This can model VLC systems with multiple light
fixtures and multiple detectors [8] with a constraint on the
total light intensity due to lighting requirements e.g., or an
RGB (red/green/blue) color-shift keying system [14]. We first
derive the achievable rates of channel inversion, QR decom-
position, and DC-offset SVD based schemes. Then, to asses
the performance of those schemes, we derive a capacity upper
bound.

As intuition suggests, QR decomposition outperforms chan-
nel inversion, since the latter amplifies noise. It also outper-
forms the DC-offset SVD based scheme. We further show
that a combination of QR decomposition, equal intensity
allocation, and an exponential input distribution achieves the
capacity of the channel at high SNR, thus characterizing the
high SNR asymptotic capacity of the channel. Then, we derive
the high-SNR capacity-gap of the channel inversion and the
DC-offset SVD based schemes, for which we show that this
gap is always positive. In the absence of channel-state infor-
mation (CSI) at the transmitter, and under an equal intensity
allocation constraint, we also demonstrate numerically that the
QR decomposition based scheme achieves the ergodic capacity
of the channel.

II. MODEL

Consider an OWC system comprising N transmit and N re-
ceive apertures, employing IM-DD. Denote the light intensity
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Fig. 1: An optical wireless communication system with two
transmit apertures and two detectors: xi ≥ 0 is the optical
intensity, hi,j ≥ 0 is a channel gain, and zi is Gaussian noise.

of the ith transmitter by xi, and the received signal at the jth
receiver by yj . The received vector y = (y1, · · · , yN )T can
be expressed in terms of the input vector x = (x1, · · · , xN )T

as (Fig. 1)

y = Hx + z, (1)

z = (z1, · · · , zN )T is a vector of independent Gaussian noises
with zero mean and unit variance (N(0, 1)),1 and H ∈ RN×N+

is a matrix with elements hj,i ≥ 0 being the channel gain from
transmitter i to receiver j. We assume that H is invertible; see
e.g. [8], [14].2

The transmit signal xi is a realization of a random variable
Xi which satisfies

Xi ≥ 0, and
N∑
i=1

E[Xi]︸ ︷︷ ︸
Ei

≤ E. (2)

The latter constraint is a total optical intensity constraint, such
as a lighting constraint in a VLC system.3 We denote the vector
of average intensities (E1, · · · ,EN ) by E.

We are interested in the capacity C(H,E) of this channel,
defined as the highest achievable rate R that can be guaranteed
with vanishing probability of error. Throughout the paper, we
assume the availability of CSI at the receiver. The availabil-
ity/quality of CSI at the transmitter depends on the regime of
operation and is to be discussed later.

III. PRELIMINARIES

The results we present on the capacity of this MIMO system
are expressed in terms of the capacity of a SISO system
[15]–[17]. Consider a SISO channel with input x satisfying
E[X] ≤ E and output y = hx + z where z is N(0, 1) and
h ∈ R+. We denote the capacity of this channel by c(h,E),
and lower and upper bounds on this capacity by r(h,E) and
r(h,E), respectively. We use a subscript to distinguish between
different lower bounds. We give some examples next, which
will be used in the sequel.

An achievable rate in this channel is given by

re(h,E) =
1

2
log

(
1 +

eh2E2

2π

)
, (3)

1Input-independent Gaussin noise model [15].
2Note that if H is not invertible, one can always ignore dependent columns

to obtain an invertible reduced channel matrix.
3This is in contrast with the RF Gaussian MIMO channel where Xi, hj,i ∈

C and
∑N

i=1 E[|Xi|2] ≤ P .

achieved using an exponentially distributed X [15]. Another
achievable rate has been given in [16] as

rg(h,E) = max
`>0

I(X;Y ) (4)

where X follows a Geometric distribution P (x) =∑∞
k=0 p(1− p)kδ(x− k`) where p = `

`+E
.

In practice, one is often interested in using a DC-offset input
x = s + t where t = E and −E ≤ s ≤ E with E[S] = 0.
Practical schemes such as on-off keying and M -PAM (pulse-
amplitude modulation) fall under this category. This leads to a
peak-constrained input (peak 2E) for which the following rate
is achievable

ru(h,E) =
1

2
log

(
1 +

2h2E2

πe

)
, (5)

using a uniformely distributed (continuous) X [15].4 Note that
this lower bound is smaller than re(h,E). Nevertheless, it is
useful for DC-offset schemes as we shall see later. One could
also use a discrete uniform distribution (M -PAM) instead of a
continuous one. The achievable rate in this case can be written
as

rp(h,E) = max
M>1

I(X;Y ), (6)

where X = E + S and S follows a uniform distribution on
the M -ary alphabet {−E + i 2E

M−1 |i = 0, . . . ,M − 1}.
Thus, capacity is lower bounded by

c(h,E) ≥ rm(h,E), m ∈ {e, g, u, p}. (7)

We will restrict our attention to these lower bounds henceforth.
A capacity upper bound has been given in [15] as

c(h,E) ≤ r(h,E) = inf
β,δ>0

b(h,E, β, δ), (8)

where b(h,E, β, δ) is given in (9) at the top of the next page.
We will also restrict our attention to this bound since it is
fairly tight, especially at high SNR.

Next, we focus on the MIMO channel, and study its capacity
in terms of the aforementioned bounds.

IV. ACHIEVABLE RATES

Precoding and post-coding are commonly used in MIMO
transmission schemes. In RF MIMO channels, SVD can be
used to design optimal precoders and postcoders. In our case,
the nonnegativity constraint of x poses a challenge against
using this procedure. Namely, if the information bearing
symbols are represented by s ∈ RN and the transmit precoder
is V (i.e., UΣV T is the SVD of H), then V s ∈ RN+ must
be satisfied for any s, posing an additional constraint on its
alphabet (cf. [12]). To alleviate this restriction, one can either
refrain from precoding and rely on post-coding at receiver side,
or apply a DC-offset SVD scheme.

4The achievable rates re(h,E) and ru(h,E) are in fact lower bounds on
the rates that can be achieved using an exponential and a uniform input
distribution, respectively [15].



b(h,E, β, δ) = log

(
βe−

δ2

2

√
2πe

+
Q (δ)√
e

)
+

Q (δ)

2
+
δ2

2
− Q(δ + hE)

2
+
δ + hE

β
+
e−

δ2

2

√
2π

(
1

β
+
δ

2

)
. (9)

A. Precoding Free Schemes

The advantage of these schemes is that they retain the
flexibility in choosing s, and also leads to less CSI re-
quirements at the transmitter. Motivated by this, we use
x = s, where si, i ∈ {1, . . . , N}, is a symbol of a
codeword s

[n]
i = (si(1), . . . , si(n)), the tth symbol of which

is transmitted in time instant t. To decode the N transmitted
streams s[n]i , i ∈ {1, . . . , N}, the receiver uses post-coding by
either channel inversion or QR decomposition to transform the
channel into a set of parallel SISO channels.

1) Channel-Inversion Receiver: In a channel-inversion re-
ceiver, the received signal is multiplied by U = H−1 to obtain
a set of parallel channels. The following statement provides
an achievable rate using this receiver.

Proposition 1: An achievable rate using channel inversion
is given by

R[I]
m (H,E) = max

E∈S

N∑
i=1

rm(‖ui‖−1,Ei), (10)

where m ∈ {e, g},5 uTi is the ith row of U = H−1, and

S =
{
E ∈ RN+ |E1 + . . .+ EN ≤ E

}
. (11)

Proof: Multiplying y by U yields ȳ = x+Uz = x+ z̄.
This leads to a set of parallel channels with correlated noises
since E[z̄z̄T ] = UUT . As a simple treatment, the receiver
ignores this correlation and decodes each xi from ȳi = xi+z̄i,
where z̄i is N(0, ‖ui‖2), and uTi is the ith row of U . This is
equivalent to a SISO channel with channel gain ‖ui‖−1 and
unit noise variance whose capacity is c(‖ui‖−1,Ei), where
Ei is the average intensity allocated to this channel. Using the
capacity lower bound (7), and maximizing with respect to E

concludes the proof.
Under an exponential input distribution (m = e in (10)), the

optimal intensity allocation E satisfies

Ei =
1

2λ
±

√
1

4λ2
− 1

c2i
(12)

where ci = ‖ui‖−1
√

e
2π , and λ > 0 is chosen so that∑N

i=1 Ei = E, and a reliable approximate solution can be
obtained using the simple algorithm in [18]. This allocation
can also be used for m = g. The achievable rate in (10) can
be improved by exploiting the noise correlation to reduce
the noise variance in a successive manner. That is, after
decoding (x1, . . . , xi−1), z̄i is estimated from (ȳ1, . . . , ȳi)
given (x1, . . . , xi−1), the estimate is subtracted from ȳi, and
then xi is decoded. Another way to improve this achievable
rate is using the QR decomposition as described next.

5We exclude ru(h,E) here because it is smaller than re(h,E).

2) QR-Decomposition Receiver: In this case, the receiver
employs a QR-decomposition to reduce the channel into a
more desirable structure, where successive decoding of the N
streams can be easily applied. Let the QR decomposition of
H be

H = QR, (13)

where Q is orthogonal and R is upper triangular. An achiev-
able rate using this scheme is given next.

Proposition 2: An achievable rate using a QR-
decomposition receiver is given by

R[QR]
m (H,E) = max

E∈S

N∑
i=1

rm(|ri,i|,Ei), (14)

where m ∈ {e, g}, ri,i is the (i, i) component of R defined in
(13), and S is defined in (11).

Proof: The received signal can be written as y = QRx+
z. The receiver multiplies y by QT to obtain

ỹ = Rx + z̃, (15)

where z̃ = Qz, whose components are independent N(0, 1).
The receiver starts by decoding xN from ỹN = rN,NxN + z̃N .
This can be done reliably if the rate of the N th stream is
below the capacity of this channel, c(|rN,N |,EN ), where EN
is the average intensity of xN . The receiver then subtracts
the contribution of xN from ỹN−1 and decodes xN−1, which
can be done reliably if the rate of stream N − 1 is below
c(|rN−1,N−1|,EN−1). This proceeds until all N streams have
been decoded. Using the capacity lower bound (7) and opti-
mizing with respect to E leads to the desired result.

The allocation in (12) can be used here as well.

B. DC-offset SVD

In this case, SVD precoding is applied at the transmitter,
and a DC offset is applied to guarantee the nonnegativity of
the transmit signal. Let the SVD of H be written as

H = UΣV T , (16)

where U and V are orthogonal N ×N matrices and Σ is a
diagonal N ×N matrix. The transmit signal is constructed as
x = V s+ t, where t is a DC offset and si is a symbol of the
codeword s

[n]
i satisfying −ai ≤ si ≤ ai and E[Si] = 0. An

achievable rate using this scheme is given next.
Proposition 3: An achievable rate using a DC-offset SVD

transmission scheme is given by

R[SV D]
m (H,E) = max

a∈T

N∑
i=1

rm(σi, ai), (17)



where m ∈ {u, p}, σi is the (i, i) component of Σ defined in
(16), and T is defined as

T =

a ∈ RN+

∣∣∣∣∣∣
N∑
i=1

N∑
j=1

|vi,j |aj ≤ E

 , (18)

with vi,j being the (i, j) component of V .
Proof: Let the average optical intensity of aperture i be

Ei. Since E[Si] = 0, then E[Xi] = ti and hence ti = Ei. To
guarantee nonnegativity, it is required that Ei =

∑N
j=1 |vi,j |aj .

Upon receiving y = Hx + z, the receiver subtracts Ht and
multiplies the result by UT to obtain ŷ = Σs+ẑ where ẑ is a
vector of independent N(0, 1) noises. This is a parallel channel
where ŷi = σisi + ẑi. The achievable rate over channel i is
ru(σi, ai) using a continuous uniform input distribution (5),
or rp(σi, ai) using a discrete uniform input distribution (6).
Thus, the overall achievable rate is given by

∑N
i=1 rm(σi, ai),

m ∈ {u, p}, which is to be maximized with respect to ai
subject to

∑N
i=1

∑N
j=1 |vi,j |aj ≤ E. This concludes the proof.

Note that this scheme requires bounded si so that a DC-
offset suffices to make xi ≥ 0. Thus, the only possible input
in this case is one that satisfies si ∈ [−ai, ai] for some ai > 0,
and hence the restriction to ru(h,E) and rp(h,E).

The main difference between the maximizations in
R[SV D](H,E) and R[QR](H,E) is the feasible set T which
is different from S. The optimal allocation of ai for m = u in
this case can be obtained similar to [18], and is given by

ai =
1

2λνi
±

√
1

4λ2ν2i
− 1

c2i
(19)

where νi =
∑N
j=1 |vj,i|, ci = σi

√
2
πe , and λ > 0 is chosen so

that
∑N
i=1 aiνi = E. An algorithm similar to the one in [18]

(with minor modifications) can be used for finding a reliable
solution. This allocation can be also used for m = p.

To assess the performance of these three schemes, we
develop a capacity upper bound next.

V. CAPACITY UPPER BOUND

To derive a capacity upper bound, we also rely on the QR
decomposition of the channel. The upper bound is given next.

Theorem 1: The capacity of a MIMO IM-DD channel with
an invertible channel matrix H with QR-decomposition QR
is upper bounded by

C(H,E) = max
E∈S

N∑
i=1

r(s
− 1

2
i,i ,Ei) +

1

2
log

(∏N
i=1 si,i
|S|

)
,

where S = R−1R−T , si,i its (i, i) component, and r(·, ·) is
as given in (8).

Proof: Since the orthogonal transformation Q is invert-
ible, the transformed channel (15) has the same capacity as the
original channel. Denoting the random variables representing
x and ỹ by X and Ỹ , this capacity can be written as

C = max
p(x)

I(X; Ỹ ) = max
p(x)

I(X; Ỹ
′
), (20)

where p(x) is the distribution of X ∈ RN+ satisfying∑N
i=1 E[Xi] ≤ E, Ỹ

′
= R−1Ỹ = X + Z̃

′
, and Z̃

′
=

(Z̃ ′1, · · · , Z̃ ′N ) is Gaussian with zero mean and covariance
matrix S = R−1R−T (R is invertible). Note that

I(X; Ỹ
′
) = h(Ỹ

′
)− h(Z̃

′
) ≤

N∑
i=1

h(Ỹ ′i )− h(Z̃
′
), (21)

which follows using the chain rule and since conditioning
reduces entropy. Adding

∑N
i=1(h(Z̃ ′′i ) − h(Z̃ ′i)) = 0 to this

upper bound, where Z̃ ′′i is N(0, si,i), leads to

N∑
i=1

(
h(Ỹ ′i )− h(Z̃ ′i)

)
+

N∑
i=1

h(Z̃ ′′i )− h(Z̃
′
) (22)

Note that
∑N
i=1 h(Z̃ ′′i )− h(Z̃

′
) = 1

2 log
(∏N

i=1 si,i
|S|

)
. Further-

more,
∑N
i=1

(
h(Ỹ ′i )− h(Z̃ ′i)

)
=
∑N
i=1 I(Xi; Ỹ

′
i ). But

max
p(x)

N∑
i=1

I(Xi; Ỹ
′
i ) ≤ max

E∈S

N∑
i=1

max
p(xi)

E[Xi]≤Ei

I(Xi; Ỹ
′
i ). (23)

The inner maximization is the capacity of the channel ỹ′i =
xi+z̃

′
i where xi ≥ 0 and E[Xi] ≤ Ei, which is c(s−1i,i ,Ei). This

in turn is upper bounded by r(s−
1
2

i,i ,Ei) (8), which concludes
the proof.

Next, we compare this upper bound and the lower bounds
in Prop. 1–3.

VI. COMPARISON

In Fig. 2, we plot the capacity upper bound C(H,E)

(Theorem 1) along with the achievable rates R[I]
m (H,E) (Prop.

1), R[QR]
m (H,E) (Prop. 2), and R[SV D]

m (H,E) (Prop. 3), for
the 4× 4 MIMO channel given in [8, eq. (14)] corresponding
to a transmitter with four light fixtures and a receiver with
four detectors. The parameters of the transmit and receive
apertures can be found in [8]. We plot the achievable rates
versus SNR, defined as the ratio E

σ where σ2 is the noise
variance of each receiver, assumed here equal to one. The same
intensity allocation used for continuous distributions (obtained
similar to [18]) is used for the discrete ones.

We highlight some observations in this figure. First the rates
achievable using the precoding free schemes (inversion and
QR) are higher than those achievable using the DC-offset
SVD based scheme. The performance gap between the two
is as large as ≈ 3.6dB at high SNR for this channel. This
owes to the fact that under DC-offset operation, additional
constraints have to be imposed on the channel inputs leading
to loss in achievable rate. Second, QR decomposition is better
than channel inversion, which is consistent with intuition since
channel inversion amplifies noise contrary to QR decomposi-
tion. Finally, we see that the lower bounds achieved using
inversion or QR decomposition and the upper bound are close
at high SNR, with the achievable rate of QR decomposition
being closer than that of channel inversion. It can be further
proved that QR decomposition is optimal at high-SNR as
shown next.



Theorem 2: For a MIMO IM-DD channel with an invertible
channel matrix H , the capacity satisfies

lim
E→∞

[
C(H,E)−R[QR]

e (H,E)
]

= 0. (24)

Furthermore, for large E, C(H,E) ≈ 1
2 log

∣∣∣ eE2

2πN2HHT
∣∣∣.

Proof: We start with the upper bound C(H,E) in The-
orem 1. From [15], we have that r(s−

1
2

i,i ,Ei) converges to
1
2 log

(
eE2
i

2πsi,i

)
as Ei grows. Furthermore, we have from [18]

that the solution of maxE∈S
∑N
i=1 r(s

− 1
2

i,i ,Ei) for large E is

Ei = E
N . Therefore, as E grows, maxE∈S

∑N
i=1 r(s

− 1
2

i,i ,Ei)

converges to
∑N
i=1

1
2 log

(
eE2

2πsi,iN2

)
and the upper bound

C(H,E) converges to
∑N
i=1

1
2 log

(
eE2

2πN2

)
− 1

2 log |S|. Now

|S| = |R|−2 =
∏N
i=1 r

−2
i,i since R is triangular. Thus,

C(H,E) converges to
∑N
i=1

1
2 log

(
er2i,iE

2

2πN2

)
as E grows. But

R
[QR]
e (H,E) ≥

∑N
i=1

1
2 log

(
er2i,iE

2

2πN2

)
since Ei = E/N is

a valid intensity allocation. Thus, the achievable rate using
QR-decomposition, exponentially distributed inputs, and equal
intensity allocation coincides with the upper bound at high
SNR, which proves the first statement. The second statement
follows since

∏N
i=1 r

2
i,i = |HHT |.

The geometric distribution is also optimal in conjunction
with QR decomposition at high SNR.

The high-SNR gap between QR and channel inversion
can be computed as follows. In channel inversion, the high-
SNR achievable rate R

[I]
e (H,E) (similar discussion holds

for R[I]
g (H,E)) converges to maxE∈S

∑N
i=1

1
2 log

(
eE2
i

2π‖ui‖2

)
,

where the maximization is achieved by Ei = E
N [18]. Thus,

the achievable rate at high SNR satisfies

lim
E→∞

[
R[I]

e (H,E)−
N∑
i=1

1

2
log

(
eE2

2π‖ui‖2N2

)]
= 0.

Therefore, the high-SNR gap between QR and inversion is

∆ =

N∑
i=1

1

2
log
(
r2i,i‖ui‖2

)
. (25)

Using simple manipulations, it can be shown
that this gap implies that inversion requires

∆dB = 10 log10

(
N

√∏N
i=1 |ri,i|‖ui‖

)
extra dBs (in

E/σ) to achieve the same rate as QR, at high SNR. In this
exemplary channel, the gap is ≈ 0.9dB.

This gap is always positive. To see this, note that∏N
i=1 r

2
i,i = |HHT | and that

∏N
i=1 ‖ui‖2 ≥ |H

−1H−T | by
Hadamard’s inequality, with equality if and only if H−1H−T

is diagonal. Thus, ∆ ≥ 0. Note that H−1H−T is diagonal if
and only if HTH is diagonal, which means H has orthogonal
columns. Since hi,j ≥ 0, H has orthogonal columns if and
only if it is diagonal, for which the MIMO channel reduces
to a system of parallel channels, see [18].
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Fig. 2: Achievable rates and upper bounds for the MIMO
channel in [8, eq. (14)].

Similarly, the high SNR gap between R
[QR]
e (H,E) and

R
[SV D]
u (H,E) can be shown to be

∆′ =
N

2
log

(
e2

4

)
+

1

2
log

∏N
i=1 r

2
i,i∏N

i=1
σ2
i

ν2
i

 . (26)

This gap is equivalent to ∆′dB = 10 log10

(
e
2
N

√∏N
i=1 ri,i∏N
i=1

σi
νi

)
dB. In this exemplary channel, the gap is ≈ 3.6dB. Similar
to ∆, ∆′ is the smallest when the MIMO channel H has
a diagonal structure, i.e., a system of parallel channels. To
see this, note that

∏N
i=1 r

2
i,i = |HHT | =

∏N
i=1 σ

2
i . Note

also that ν2i =
(∑N

j=1 |vj,i|
)2
≥
∑N
j=1 v

2
j,i = 1 since V

is an orthogonal matrix. Therefore, the smallest gap ∆′ is
N
2 log

(
e2

4

)
which occurs when V is equal to the identity

matrix. But this implies that H = UΣ has orthogonal
columns, and since H has positive components, this can only
be the case if H is diagonal.

It is also interesting to compare the schemes in terms of their
CSI requirements at the transmitter. Both inversion and QR
schemes are superior in this aspect in comparison with the DC-
offset SVD scheme. The achievability of R[I]

m (H,E) in Prop.
1 requires the feedback of N variables (‖ui‖, i = 1, . . . , N )
required for intensity allocation. Similarly, the achievability of
R

[QR]
m (H,E) in Prop. 2 requires the feedback of N variables

(|ri,i|, i = 1, . . . , N ). Moreover, at high SNR, no CSI feedback
is required because equal intensity allocation is optimal in
this regime [18]. However, the achievability of R[SV D]

m (H,E)
requires the feedback of N2 variables since it requires the
knowledge of H at the transmitter (or at least ΣV T ).

Suppose channel state information is not available at the
transmitter. In this case, the DC-offset SVD scheme fails,
while the channel inversion and the QR schemes can still be
used. As an example, consider a MIMO channel which follows
a log-normal fading (weak turbulence [1]) with Rytov variance
1. Suppose that due to the absence of CSI, we constrain the
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Fig. 3: Ergodic rates for a MIMO channel with N = 2 under
log-normal fading.

transmitter to allocate the intensity E equally across the N
apertures. Under this condition, the ergodic achievable rate
using channel inversion becomes

R[I]
m,erg(E) = EH

[
N∑
i=1

rm

(
‖ui‖−1,

E

N

)]
, m ∈ {e, g}, (27)

where uTi is as defined in Prop. 1. Similarly, the ergodic
achievable rate using QR-decomposition becomes

R[QR]
m,erg(E) = EH

[
N∑
i=1

rm

(
|ri,i|,

E

N

)]
, m ∈ {e, g}, (28)

where ri,i is as defined in Prop. 2. An upper bound on the
ergodic capacity is given by

Cerg(E)=EH

[
N∑
i=1

r

(
s
− 1

2
i,i ,

E

N

)
+

1

2
log

(∏N
i=1 si,i
|S|

)]
,(29)

with si,i and S as defined in Theorem 1. Fig. 3 shows these
ergodic rates versus SNR under log-normal fading for a MIMO
channel with N = 2. Note the high-SNR optimality of the QR-
decomposition based scheme, and the sub-optimality of the
channel inversion based scheme. The high SNR gap between
the two is ≈ 2.5dB.

VII. CONCLUSION

We studied several MIMO schemes for IM-DD systems
in terms of their achievable rates. The SVD-based precod-
ing/postcoding scheme - which is optimal in RF MIMO -
must be modified to a DC-offset SVD-based scheme in IM-
DD MIMO, leading to a sub-optimal performance. To avoid
this deterioration, precoding free schemes are favored in IM-
DD MIMO. We have derived achievable rates of channel in-
version and QR-decomposition based schemes. Such schemes
outperform the SVD-based scheme. Furthermore, we have
shown that the QR-based scheme is optimal at high SNR, thus
characterizing the channel’s high-SNR capacity. An advantage

of precoding free schemes is their lower requirement of CSI
at the transmitter compared with the SVD-based scheme,
although some CSI is still required at the transmitter to
perform intensity allocation. If intensity allocation is not
permitted, then precoding free schemes do not need any CSI at
the transmitter, and the QR-based scheme achieves the high-
SNR ergordic capacity of the channel, which is demonstrated
numerically under log-normal fading.
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