Highly Stable [MAMBF6-N(O/H2O)N(LIGAND)2(SOLVENT)X]n Metal Organic Frameworks

Of Science and Technology, Thuwal, 23955-6900 (SA).

Belmabhout, Youssef; 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900 (SA).

ShekhaH, Osama; 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900 (SA).

Bhatt, Prashant M.; 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900 (SA).

Cadcau, Amandine; 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900 (SA).

Agent: Armitage, Benjamin C.; Billion and Armitage, 7401 Metro Blvd, Suite 425, Minneapolis, Minnesota 55439 (US).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))
HIGHLY STABLE [MAMBF6-N(O/H2O)N(LIGAND)2(SOLVENT)X]N METAL ORGANIC FRAMEWORKS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/144,156, filed 7 April 2015, which application is incorporated herein by reference.

BACKGROUND

[0002] Today there is an increasing global desire to reduce greenhouse gas emissions and develop clean alternative vehicle fuels. Methane (CH4), the primary component of natural gas (NG), is of particular interest as it is abundant and has lower carbon dioxide (CO2) emission and more efficient combustion than other hydrocarbons due its high H/C ratio. Biogases, including landfill gas, are also seen as promising renewable energy resources, but, like NG, they contain significant amounts of water, CO2, and hydrogen sulfide (H2S) which must be removed before being transported, stored, and burned as a fuel. For example, NG must contain less than 1-2% CO2 and 4 ppm H2S to meet fuel gas specifications for pipeline transportation. Within many industries, gas dehydration and removal of CO2 and H2S remain some of the most intensive and challenging separations, in part due to the intolerance of many technologies to water and H2S.

[0003] Available technologies for refining NG and other biogases are often costly, multi-stage processes. Amine scrubbing is a common liquid phase system used to remove acid gases such as CO2 and H2S from NG. However, stagnant historical operating efficiencies, and the excessive oxidative degradation, evaporation, and the corrosive nature of the alkanolamine aqueous solutions create a myriad of performance, safety, and environmental concerns. Solid, porous material systems, such as zeolite and metal organic frameworks (MOFs), offer more environmentally friendly alternatives for CO2 capture, but require cumbersome, multi-stage processes. For example, zeolite has single-species selectivity for CO2 and cyclic adsorption performance in the presence of moisture that require prior dehydration and H2S removal stages. MOFs, similarly, can be designed for CO2 capture, but most MOF structures reported so far exhibit prohibitively low stability for water and H2S.

[0004] MOFs generally include porous crystals which are assembled from modular molecular building blocks, and provide a wide array of advantageous material properties,
including high surface area, porosity, stability, and sorption potential. While the available building block options, and combinations thereof, are virtually limitless, such potential highlights the statistical difficulty in identifying and assembling MOFs with desired and particularized material properties.

SUMMARY

[0005] In general, this disclosure describes porous metal organic frameworks (MOFs). This disclosure describes a new platform of MOF materials with outstanding stability with intrinsic properties that could be potentially suitable for the capture and removal of gases and/or vapors from fluids. In particular, this disclosure provides MOFs with outstanding stability to water and H2S. It should be noted that the embodiments of this disclosure are further generally applicable to many fields including gas molecule separation, gas storage, catalysis, sensors, drug delivery, rare gas separation, and proton conductivity.

[0006] In one embodiment, a MOF can be characterized by the formula MaMbF6-n(O/H2O)n(Ligand)2(solvent)x, wherein Ma comprises elements selected from periodic groups IB, IIA, IIB, IIIA, IVA, IVB, VIB, VIIB, and VIIIA, Mb comprises elements selected from periodic groups IIIA, IIIB, IVB, VB, VIB, and VIIIA, Ligand comprises an organic, poly-functional, N- donor ligand, and n is at least equal to 1.

[0007] In one embodiment, a method of synthesizing a MOF comprises combining reactants sufficient to form a mixture, reacting the mixture over a period of time sufficient to form a reacted mixture, and processing the reacted mixture to provide a metal organic framework.

[0008] The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings illustrate non-limiting example embodiments of the invention.

[0010] FIG. 1A illustrates a schematic of an inorganic chain, according to one or more embodiments of this disclosure.

[0011] FIG. 1B illustrates a schematic view of a metal organic framework, according to one or more embodiments of this disclosure.
[0012] FIG. 2 illustrates a method of fabricating a metal organic framework, according to one or more embodiments of the disclosure.

[0013] FIG. 3A illustrates powder X-ray diffraction data of a metal organic framework, according to one or more embodiments of this disclosure.

[0014] FIG. 3B illustrates powder X-ray diffraction data of a metal organic framework, according to one or more embodiments of this disclosure.

[0015] FIG. 4A illustrates a restricted pore aperture of an NbOFFIVE-1-Ni MOF, according to one or more embodiments of this disclosure.

[0016] FIG. 4B illustrates an expanded pore aperture of an NbOFFIVE-1-Ni MOF, according to one or more embodiments of this disclosure.

DETAILED DESCRIPTION

[0017] The present invention is described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide an understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.

[0018] As used herein, “fluids” can refer to a gas, liquid, or combination thereof. A gas or liquid can include one or more components. For example, a fluid can include a gas stream comprising CO$_2$, H$_2$S and water vapor.

[0019] As used herein, “refining” refers to removing one or more unwanted components or separating one or more components from remaining components of a composition, such as a fluid. For example, refining can include removing a fraction of H$_2$S from a fluid, such as natural gas.

[0020] As used herein, “poly-functional” refers to the characteristic of having more than
one reactive or binding sites. For example, a poly-functional ligand can attach to a metal ion in multiple ways, bridge multiple metal ions, or combinations thereof. Specifically, pyrazine is a poly-functional ligand.

[0021] As used herein, “water” or “H2O” can include solid, liquid, or vapor phases.

[0022] Gas storage and separation using porous materials has experienced significant development in recent years in various industrial applications related to energy, environment, and medicine. Among porous materials, metal organic frameworks (MOFs) are a versatile and promising class of crystalline solid state materials which allow porosity and functionality to be tailored towards various applications. MOF crystal chemistry uses a molecular building block (MBB) approach that offers potential to construct MOFs where desired structural and geometrical information are incorporated into the building blocks prior to the assembly process.

[0023] Generally, MOFs comprise a network of nodes and ligands, wherein a node has a connectivity capability at three or more functional sites, and a ligand has a connectivity capability at two functional sites each of which connect to a node. Nodes are typically metal ions or metal containing clusters, and, in some instances, ligands with node connectivity capability at three or more functional sites can also be characterized as nodes. In some instances, ligands can include two functional sites capable of each connecting to a node, and one or more additional functional sites which do not connect to nodes within a particular framework. A MBB can comprise a metal-based node and an organic ligand which extrapolate to form a coordination network. Such coordination networks have advantageous crystalline and porous characteristics affecting structural integrity and interaction with foreign species (e.g., gases). The particular combination of nodes and ligands within a framework will dictate the framework topology and functionality. While essentially limitless combinations of nodes and ligands exist, to date, very few MOF materials are H2S stable which consequently preclude their use in separation of gases containing even traces of H2S.

[0024] As disclosed in co-owned U.S. Application No.: 62/044,928, a series of isoreticular MOFs with periodically arrayed hexafluorosilicate (SiF6) pillars, called SIFSIX-2-Cu-i and SIFSIX-3-Zn, SIFSIX-3-Cu and SIFSIX-3-Ni showed particularly high CO2 selectivity and capture. These properties in SIFSIX-3-M materials suggest broad applications from ppm level CO2 removal to bulk CO2 separation. However, with the exception of SIFSIX-3-Ni, the SIFSIX-3-M materials were not tolerant to H2S. And although these materials exhibit high structural stability in the presence of CO2, extensive exposure of all SIFSIX-3-M materials to moisture detrimentally induces a phase change and the formation of new 2D stable materials.
These 2D materials exhibit relatively unaltered selectivity but diminished CO₂ uptake. This indicates that the SIFSIX-3-M materials series is not sufficiently robust to handle CO₂ and H₂S capture in most critical applications throughout the oil and gas and renewable fuels industries, especially in applications which bring the materials into contact with moisture and H₂S.

[0025] Provided herein are novel functionalized MOFs suitable for a myriad of applications, which exhibit high water vapor and H₂S tolerance and stability over thousands of cycles. For example, efficiency of H₂S and CO₂ separation is enhanced, in part, by the stability of these MOFs in the presence of water and H₂S. These MOFs eliminate the safety, efficiency, and environmental concerns associated with amine scrubbing techniques while providing high stability in the presence of water and H₂S. The benefits of this innovative approach include the following: (i) no environmental and safety hazards germane to amine scrubbing, (ii) no preliminary separate desulfurization is necessary, (iii) no separate gas drying is needed, and (iv) no compression-decompression/cooling of NG is required. Further, the MOFs provided herein offer exceptional thermal and mechanical stability, particularly during adsorption/desorption.

[0026] MOFs, as provided herein, comprise one or more MBBs. Generally, a MBB, or a network of MBBs, can be represented by the formula [(node)ₙ(ligand)ₙ(solvent)ₙ]ₙ, wherein n represents the number of molecular building blocks. Solvent represents a guest molecule occupying pores within the MOF, for example as a result of MOF synthesis, and can be evacuated after synthesis to provide a MOF with unoccupied pores. Accordingly, the value of c can vary down to zero, without changing the definitional framework of the MOF. Therefore, in many instances, MOFs as provided herein can be defined as [(node)ₙ(ligand)ₙ]ₙ, without reference to a solvent or guest molecule component.

[0027] In some embodiments herein, MOFs can be characterized by the formula [MₙₘBₖF₆₋ₙ(O/H₂O)ₙ(Ligand)ₙ(solvent)ₙ]ₙ. In some embodiments, solvent can include a chemical species present after fabrication of the MOF. In some embodiments, solvent can include a functionalizing guest molecule, such as water, dimethylformamide (DMF), diethylformamide (DEF), and alcohols, among others. Some embodiments herein comprise a porous, uninhabited MOF characterized by the formula [(node)ₙ(ligand)ₙ]ₙ, wherein node comprises, generally, MₙₘBₖF₆₋ₙ(O/H₂O)ₙ. In some embodiments, MₙₘBₖOₙ₋ₖ(O/H₂O)ₙ. In some embodiments, MₙₘBₖOₙ₋₆
groups IIIA, IIIB, IVB, VB, VIB, or VIII.

[0028] In some embodiments, Ma can comprise one of the following cations: Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Zr2+, Fe2+, Ca2+, Ba2+, Pb2+, Pt2+, Pd 2+, Ru2+, Rh2+, Cd2+, Mg2+, Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ru2+, Ru3+ and Co3. In some embodiments, Mb can be one of the following Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ti3+, V3+, V5+, Sc3+, In3+, Nb5+, Y3+. In some embodiments, Ma can comprise one of the following cations: Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Zr2+, Fe2+, Ca2+, Ba2+, Pb2+, Pt2+, Pd 2+, Ru2+, Rh2+, Cd2+, Mg2+, Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ru2+, Ru3+ and Co3. Mb can be one of the following Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ti3+, V3+, V5+, Sc3+, In3+, Nb5+, Y3+. In such embodiments, the ligand can be any bi-functional N-donor linkers based on monocyclic or polycyclic group (aromatic or not).

[0029] In some embodiments, a ligand can comprise a polydentate, or poly-functional ligand, such as a bi-functional ligand, a tri-functional ligand, or ligands with four or more functional sites. In some embodiments, a ligand can comprise an N-donor linker. In some embodiments a ligand can comprise a poly-functional ligand. In some embodiments, a ligand can comprise a plurality of N-donor functional groups. In some embodiments, a ligand can comprise a monocyclic or polycyclic group structure, wherein the cyclic groups can be aromatic or non-aromatic. In some embodiments, a ligand can comprise a nitrogen-containing monocyclic or polycyclic group structure. In some embodiments, a ligand can comprise a nitrogen-containing heterocyclic ligand, including pyridine, pyrazine, pyrimidine, pyridazine, triazine, thiazole, oxazole, pyrrole, imidazole, pyrazole, triazole, oxadiazole, thiadiazole, quinoline, benzoxazole, benzimidazole, and tautomers thereof.

[0030] Some embodiments of suitable MOFs can be represented by the following general formula:

\[[M_nM_bFe_{6-n}(O/H_2O)_n(Ligand)_m(solvent)_p] \], wherein M_n can be one of the following cations: Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Zr2+, Fe2+, Ca2+, Ba2+, Pb2+, Pt2+, Pd 2+, Ru2+, Rh2+, Cd2+, Mg2+, Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ru2+, Ru3+ and Co3; M_b can be one of the following Al+3, Fe+2, Fe+3, Cr2+, Cr3+, Ti3+, V3+, V5+, Sc3+, In3+, Nb5+, Y3+; and the ligand can be any bi-functional N- donor linkers based on monocyclic or polycyclic group, aromatic or not.

[0031] One MOF synthesis strategy provided herein comprises linking inorganic chains using appropriate N-donor based linkers to deliberately generate channels along one crystallographic direction. The inorganic chains are built up from the trans-connection between
M₈N₄F₂ and M₈F₆(H₂O)₂ octahedra or between M₈N₄F₂ and M₈F₆(H₂O) octahedra or between M₈N₄F₂ octahedra and M₈F₆(O) octahedra. Figure 1A illustrates an example of an inorganic chain, built up from M₈N₄F₂ and M₈F₆(H₂O) octahedra. The resulted inorganic chains are linked to each other using bi-functional N-donor organic ligands, thereby generating channels with different sizes and shapes depending on the nature of the organic linker. Figure 1B illustrates a schematic view of one embodiment of a MOF comprising a NiNbF₅O(pyrazine)₂ structure, viewed along the c-axis.

[0032] The novel series of MOFs structures disclosed herein can be designed with a variety of pore sizes and/or open-metal sites which afford tunable properties for a variety of applications, particularly due to a high stability in the presence of water vapor and H₂S. Tuning, in some embodiments, can include modification of the organic and/or inorganic components of the MOF. For example, in some embodiments, lighter metal-based clusters can be used to lower the framework density and increase the relative wt. % of captured CO₂ and/or H₂S. Further, the MOF platforms as provided herein allow for an unprecedented high degree of tuning control at the molecular level, allowing the size and shape of channels within a MOF architecture to be rigorously controlled and adapted to specific separation of numerous gases, even beyond water vapor and H₂S.

[0033] The utility of MOFs such as those provided herein are highly dependent upon the framework’s structural features such as structural strength, density, functionality, pore aperture dimensions, pore dimensions, the ratio of pore aperture dimensions to pore dimensions, pore accessibility, and the presence of a plurality of pore dimensions and/or pore aperture dimensions (e.g., a poly-porous MOF). Because the MOFs provided herein are highly tunable, the potential for utility is vast.

[0034] The originality of this new class of crystalline porous materials is based, in part, on the fact that the shape of cavities, (i.e. square or rectangle based channels), is controlled from a structural point of view using appropriate cations and organic linkers. The novel MOF architectures disclosed herein offer a novel improvement on some MOF architectures by replacing silicon components with other metals, such as Al³⁺, Fe²⁺, Fe³⁺, V³⁺, V⁴⁺, V⁵⁺, Nb⁵⁺, to afford highly stable materials with or without open metals sites. In some embodiments, the use of specific cations, such as Al⁺³, Fe⁺², Fe⁺³, Cr²⁺, Cr³⁺, Ti³⁺, V³⁺, V⁵⁺, Sc³⁺, In³⁺, Y³⁺, in Mb site positions can introduce open-metal sites within the channels that enhance properties of stability, for example.

[0035] In some embodiments, a representative
[MₐM₉F₆-n(O/H₂O)ₙ(Ligand)ₙ(solvent)ₙ], MOF structure can include a Ni Mₐ constituent, an M₉ constituent group selected from one of Al, Fe, V, or Nb, and a Ligand comprising a pyrazine constituent group. All such embodiments offer high affinity and stability to water vapor and H₂S, unlike the Cu and Zn-based analogues of SIFSIX-3-M materials made with Si. In some embodiments a MOF characterized by the formula

\[[MₐM₉F₆-n(O/H₂O)ₙ(Ligand)ₙ(solvent)ₙ], \]

wherein Mₐ equals Ni, M₉ equals Al, Fe, V or Nb, and ligand equals pyrazine, the pore size (channel size) of the resulting MOF can be about 3.3 Å to about 3.8 Å, or about 2.8 Å to about 4.8 Å. In some embodiments, the channels are square/rectangular. In the same or in an alternative embodiment, a MOF can have a specific surface area of about 250 m²/g to about 500 m²/g. In either of the same MOFs or in an alternative embodiment, a MOF can have a pore volume of about 0.1 cm³/g to about 0.25 cm³/g. In a different embodiment, a more elongated ligand can provide an analogous MOF with much higher porosity.

[0036] In some embodiments, M₉ and/or a ligand can be selected to hinder or allow rotation of a ligand. Altering the nature, shape, and dimensions of the (M₉OF₃)ⁿ⁺ pillars employed in [MₐM₉F₆-n(O/H₂O)ₙ(Ligand)ₙ(solvent)ₙ], MOFs can selectively hinder the free rotation of ligands and thus dictate the maximum and/or minimum opening of the pore aperture size. This approach offers potential to dial-in/command the passing-blocking of specific probe molecules. In some embodiments M₉ and/or a ligand are selected to allow no rotation of a ligand. In some embodiments M₉ and/or a ligand are selected to allow full rotation of a ligand.

[0037] In some embodiments, M₉ and/or a ligand are selected to allow partial rotation of a ligand.

[0038] In some embodiments, M₉ and/or a ligand can be selected to hinder or allow rotation of a pillar. Altering the nature, shape, and dimensions of the (M₉OF₃)ⁿ⁺ pillars employed in [MₐM₉F₆-n(O/H₂O)ₙ(Ligand)ₙ(solvent)ₙ], MOFs can selectively hinder the free rotation of pillars and thus dictate the maximum and/or minimum opening of the pore aperture size. This approach offers potential to dial-in/command the passing-blocking of specific probe molecules. In some embodiments M₉ and/or a ligand are selected to allow no rotation of a pillar. In some embodiments M₉ and/or a ligand are selected to allow full rotation of a pillar. In some embodiments M₉ and/or a ligand are selected to allow partial rotation of a pillar.
the pore aperture size. This approach offers potential to dial-in/command the passing-blocking of specific probe molecules. In some embodiments M₈ and/or a ligand are selected to allow no rotation of a ligand and a pillar. In some embodiments M₈ and/or a ligand are selected to allow full rotation of a ligand and a pillar. In some embodiments M₈ and/or a ligand are selected to allow partial rotation of a ligand and a pillar.

[0039] A specific MOF characterized by the formula [M₈M₈F₆
₆(O/H₂O)ₓ(Ligand)y(solvent)z], is NbOFFIVE-1-Ni, wherein M₈ comprises Ni and M₈ comprises Nb. This MOF includes a (NbOF₅)²⁻ inorganic pillar which, due to the larger Nb⁺⁵, has a longer Nb-F bond length (1.905(1) Å) as compared to the Si-F bond length (1.681(1) Å) of the SIFSIX MOF's described above. The increased Nb-F bond length reduces the distance between the pendant fluorine in the channel, and the relatively increased nucleophile behavior of (NbOF₅)²⁻ provides increased stability in the presence of water. Pyrazine is a suitable ligand for the NbOFFIVE-1-Ni MOF, among others as described herein. NbOFFIVE-1-Ni is a pillared sql-MOF based on (NbOF₅)²⁻ pillars that connect a 2D square grid of Ni-(pyrazine)₂.

The quadrangular-pillared sql-MOF can be viewed as a 3D MOF wherein each NiOF(pyrazine)₄ node serves as 6-connected node connected by (NbOF₅)²⁻ pillars through fluorine/oxygen atoms giving rise to a pcu topology. It must be noted that the assignment of one oxygen and one fluorine atom in apical position within the pillar has been previously demonstrated in similar materials and confirmed with supporting techniques. The overall framework consists of square shaped open channels having slightly smaller diameters of about 3.175(1) Å (taking account of van der Walls radii) comparatively to the analogue material SIFSIX-3-Cu (3.980(1) Å).

[0040] A specific MOF characterized by the formula [M₈M₈F₆
₆(O/H₂O)ₓ(Ligand)y(solvent)z], is AlFFIVEH₂O-1-Ni, wherein M₈ comprises Ni and M₈ comprises Al. When utilizing a pyrazine ligand, this MOF can be characterized by the specific formula NiAlF₅(H₂O)(pyr)₂ 2H₂O, although other ligands described herein can be suitable. Another specific MOF characterized by the formula [M₈M₈F₆₋₆(O/H₂O)ₓ(Ligand)y(solvent)z], is FeFFIVEH₂O-1-Ni, wherein M₈ comprises Ni and M₈ comprises Fe. When utilizing a pyrazine ligand, this MOF can be characterized by the specific formula NiFeF₅(H₂O)(pyr)₂ 4H₂O, although other ligands described herein can be suitable. AlFFIVEH₂O-1-Ni and FeFFIVEH₂O-1-Ni are isomorphs, and take advantage of the periodically arrayed fluorine combined with the adequate one dimensional channel size. In contrast to the Si of SIFSIX MOFs described above, the introduction of open metal sites within the framework is concomitant with the utilization of
an appropriate metal with the required oxidation state that allows the presence of a water molecule within the metal coordination sphere. Aluminum and Iron cations were used such that the MOF would adopt an octahedral fluorinated environment and lead to open metal sites after coordinated water removal via proper activation. Each isomorph utilizing pyrazine as a ligand exhibits a primitive cubic (pcu) topology resulting from the pillaring of metal-pyrazine 2D square-grid moieties with (MF₃H₂O)²⁺ (M= Al³⁺ or Fe³⁺) inorganic pillars. [Consider including Figure 1 from NiAl Natmater 8march to show MOF structure] [0041] Although AlFIVEH₂O-1-Ni and FeFIVEH₂O-1-Ni are isomorphs to the SiFSIX MOFs described above, the replacement of Si(IV) by Al(III) or Fe(III) is impossible using similar methods for synthesizing SIFSIX materials which utilize NiSiF₆ as a cation source. Because no equivalent starting material for Al(III) and Fe(III) exist, new experimental reactions conditions as described in Examples 2-4 were developed in order to hydrothermally synthesize these two novel fluorinated MOFs in highly acidic solution.

Some such MOFs can be fabricated using a solvo(hydro)thermal synthetic procedure. As shown in Fig. 2, a method for fabricating 200 a MOF 230 can include combining 205 reactants. Reactants can include one or more of a fluorhydric acid solution 206 with a Ni²⁺ source 207, a second metal source 208, and a solvent 209 to form a mixture 210. A Ni²⁺ source 207 can include one or more of nickel nitrate, hydrated nickel nitrate, nickel chloride, hydrated nickel chloride, nickel fluoride, hydrated nickel fluoride, nickel oxide, or hydrated nickel oxide. The second metal source 208 can include an Al³⁺ source, an Fe⁺² source, an Fe⁺³ source, a Cr²⁺ source, a Cr³⁺ source, a Ti³⁺ source, a V³⁺ source, a V⁵⁺ source, a Sc³⁺ source, an In³⁺ source, a Nb⁵⁺ source, a Y³⁺ source, for example. These metals can be in the form of nitrates, hydrated nitrates, chlorides, hydrated chlorides, fluorides, hydrated fluorides, oxides, hydrated oxides, and combinations thereof. The solvent 209 can include one or more of H₂O, DMF, and DEF. The method for fabricating 200 can further comprise allowing the mixture 210 to react 215, sufficient to form a reacted mixture 220. Reacting 215 can include one or more of contacting the fluorhydric acid solution 206, the Ni²⁺ source 207, the second metal source 208, and the solvent 209, stirring or agitating the mixture 210, or heating the mixture 210. Heating the mixture 210 can comprise heating to a temperature between about 80 °C to about 200 °C. The reacted mixture 220 can be further processed 225 to provide a fabricated MOF 230. Processing 220 can include one or more of filtering the reacted mixture 220, rinsing the reacted mixture 220 with water, removing excess reactants from the reacted mixture 220. In some embodiments, guest molecules are optionally evacuated from a fabricated MOF 230. Guest
molecules can include solvent guest molecules, or derivatives thereof.

In one embodiment, a representative [M₈M₈F₆₋₇(O/H₂O)_n(Ligand)ₙ(solvent)ₙ]₂ MOF structure can include a Ni Ma constituent, a Nb Mb constituent group, and a ligand comprising a pyrazine constituent group. Fig. 3A illustrates powder X-ray diffraction data of this MOF, characterized by the formula NiNb₅F₅O(pyrazine)₉(solvent)₉, confirming the high stability of the MOF in the presence of water. Fig. 3B illustrates powder X-ray diffraction data of this MOF, confirming the high stability of the MOF in the presence of H₂S.

In some embodiments, one or more MOFs described herein are suitable for applications involving gas/vapor/solvent dehydration. The particular outstanding properties of [M₈M₈F₆₋₇(O/H₂O)_n(Ligand)ₙ(solvent)ₙ]₂, as compared to SIFSIX-3-M (Cu, Zn, Ni) materials, as well as others known in the art, in terms of stability to moisture, H₂O uptake and affinity make these series of novel MOFs suitable for many industrial application where various degrees of humidity need to be removed. Furthermore, these materials are advantageous in that exposure to moisture in non-process settings (e.g., transport, installation, maintenance, etc.) will not affect performance. For example, MOFs, with and without metal sites, characterized by the formula [M₈M₈F₆₋₇(O/H₂O)_n(Ligand)ₙ(solvent)ₙ]₂, exhibit a number advantageous of CO₂ properties (e.g., gas uptake, gas selectivity, kinetics) at various humidity conditions (e.g., up to ca. 100 % relative humidity.)

These and other results can be expected in similar other embodiments, with or without metal open sites, such as MOF structure characterized by the formula NiMbF₅O(pyrazine)₂, wherein Mb can be one of the following Al⁺⁺, Fe⁺⁺, Fe⁺⁺⁺, Cr₂⁺⁺, Cr₃⁺⁺, Ti³⁺⁺, V³⁺⁺, V⁵⁺⁺, Sc³⁺⁺, In³⁺⁺, Nb⁵⁺⁺, Y³⁺⁺. These and other results can be expected in similar other embodiments, with or without metal open sites, such as MOF structure characterized by the formula M₈₅N₈₅F₅O(pyrazine)₂, wherein Ma can be one of the following cations: Cu²⁺⁺, Zn²⁺⁺, Co²⁺⁺, Ni²⁺⁺, Mn²⁺⁺, Zr²⁺⁺, Fe²⁺⁺, Ca²⁺⁺, Ba²⁺⁺, Pd²⁺⁺, Pt²⁺⁺, Pd²⁺⁺, Ru²⁺⁺, Rh²⁺⁺, Cd²⁺⁺, Mg⁺⁺², Al⁺⁺, Fe⁺⁺, Fe⁺⁺⁺, Cr³⁺⁺, Cr⁻⁻, Ru²⁺⁺, Ru⁻⁻⁻⁻.

EXAMPLE 1: Aperture size modification

Alterning the nature, shape, and dimensions of the pillars employed in [M₈M₈F₆₋₇(O/H₂O)_n(Ligand)ₙ(solvent)ₙ]₂ MOFs can selectively hinder the free rotation of ligands and thus dictate the maximum and/or minimum opening of the pore aperture size. This approach
offers potential to dial-in/command the passing-blocking of specific probe molecules. The
(NbOF₅)²⁻ pillaring inorganic building block of NbOFFIVE-1-Ni utilizing a pyrazine ligand
demonstrates this approach. Analysis of the NbOFFIVE-1-Ni structure (collected at 100K)
revealed the plausible smallest pore window opening associated with the relatively hindered
rotation of the (NbOF₅)²⁻ pillars and the presence of hydrogen bond interactions. As a result, the
hydrogen atoms of the pyrazine linkers circumference the resultant rectangular aperture size of
2.838(1) Å, as shown in Figure 4A, prohibiting the diffusion of any molecule other than water.
In order to gain a better insight on the plausible rotation and tilting of the pyrazine linker and
subsequently derive a relative maximum opening of the window, providing a gate limit for the
largest molecule to pass through, the same structure was collected and analysed at room
temperature. Noticeably, at room temperature, the pyrazine molecules are perceived to freely
rotate along the N...N axis, while the (NbOF₅)²⁻ pillars rotate along the 4-fold axis, as shown in
Figure 4B. The concurrent pyrazine and pillars (NbOF₅)²⁻ mobility afforded a maximum
window aperture size of 4.752(1) Å.

EXAMPLE 2: Synthesis of NbOFFIVE-1-Ni

[0047] A NbOFFIVE-1-Ni MOF was synthesized via a solvothermal reaction utilizing a
hydrofluoric acid solution of a mixture of Ni(NO₃)₂·6H₂O, Nb₂O₅, and pyrazine. The reaction
yielded violet, square shaped crystals of NiNbOF₅(pyrroline)₂·2H₂O which are referred to as
NbOFFIVE-1-Ni. Single crystal X-ray diffraction of a single NbOFFIVE-1-Ni crystal at 100K
revealed that the MOF crystallized in tetragonal space group I4/mcm with unit cell parameters a
= b = 9.8884(4) Å and c = 15.783(1) Å. High thermal stability of the material was confirmed
by variable-temperature PXRD performed in the range of 25 °C to 400 °C, establishing that the
material retains its crystallinity over the temperature range. The water stability of the material
was also confirmed via in-situ variable-humidity PXRD up to 95% humidity. Moreover,
 excellent tolerance to hydrogen sulfide, a feature that is rarely proven for MOFs, was
demonstrated by PXRD after exposure to H₂S and by collecting adsorption isotherms of H₂S.
Nitrogen adsorption isotherm at 77K performed on activated material indicated that
NbOFFIVE-1-Ni is not porous to N₂. Consequently, adsorption investigation was carried out
using smaller probe molecule than N₂, such as CO₂ (at 273 K) to verify the porous nature of
material. The BET specific surface area and pore volume as determined from CO₂ adsorption at
273 K is 280 m²/g and 0.095 cm³/g, respectively.
EXAMPLE 3: Synthesis of AlFFIVEH₂O-1-Ni

[0048] An AlFFIVEH₂O-1-Ni MOF characterized by the formula NiAlF₅(H₂O)(pyr)₂·2H₂O was synthesized by mixing pyrazine (0.3844g, 4.8mmol, Aldrich), Ni(NO₃)₂ (0.1745g, 0.6nmol, Acros), Al(NO₃)₃ (0.225g, 0.6mmol) and HFₐq 48% (0.255ml, 6mmol) and dispersing the mixture in deionized water in a 100ml Teflon liner. The mixture was placed in an autoclave, and the autoclave was then sealed and heated to 85°C for 24h. After cooling down, the resulting blue-violet square shape crystals, suitable for single crystal structure determination, were separated by filtration, washed with ethanol and dried in air. N= 13.76% (theo. 14.19%), C= 21.73% (theo. 24.33%), H= 3.16% (theo. 3.57%). AlFFIVEH₂O-1-Ni was activated at 95 °C for one night under high vacuum (3milliTorr) before every sorption measurements. All reagents were used as received from commercial suppliers without further purification.

[0049] Single-crystal diffraction experiments revealed that the MOF crystallized in tetragonal space group I4/mcm. High thermal stability of the material was confirmed by variable-temperature PXRD performed up to 400 °C, establishing that the material retains its crystallinity over a broad temperature range. The water stability of the material was also confirmed via in-situ variable-humidity PXRD up to 95% humidity relative to calculated theoretical values.

[0050] Crystallographic studies revealed the presence of (AlF₅(H₂O))²⁻ inorganic building blocks within the framework acting as pillars. In addition to water molecules connected to aluminium, thermogravimetric analysis confirmed the presence of water molecules located within the channels. The investigation of the electron density within the cavities revealed two crystallographic independent water molecules present within the cavities of AlFFIVEH₂O-1-Ni. A hydrogen bond network between fluorine atoms of pillars and water guest molecules was revealed, with the symmetrically generated water molecules connected to each other and to fluorine atoms belonging to the pillars. It must be noted that water molecules from the pillar are also part of the network.

EXAMPLE 4: Synthesis of FeFFIVEH₂O-1-Ni

[0051] An FeFFIVEH₂O-1-Ni MOF characterized by the formula NiFeF₅(H₂O)(pyr)₂·4H₂O was synthesized by mixing pyrazine (0.3844g, 4.8mmol, Aldrich), Ni(NO₃)₂ (0.1745g, 0.6nmol, Acros), Fe(NO₃)₃ (0.2323g, 0.6mmol) and HFₐq 48% (0.255ml, 6mmol,) and dispersing the mixture in deionized water (3ml) in a 100ml Teflon liner. The
mixture was placed in an autoclave, and the autoclave was then sealed and heated to 85°C for 24h. After cooling down, the resulting blue square shape crystals, suitable for single crystal structure determination, were separated by filtration, washed with ethanol and dried in air. Notice that sometimes only light blue powder is obtained. Elemental analysis: N= 11.79% (theo. 12.19%), C= 20.24% (theo. 20.90%), H= 3.53% (theo. 3.95%), O= 17.13% (theo. 17.40%). FeFFIVEH₂O-1-Ni was activated at 95 °C for one night under high vacuum (3milliTorr) before every sorption measurements. All reagents were used as received from commercial suppliers without further purification.

Single-crystal diffraction experiments revealed that the MOF crystallized in tetragonal space group P4/nbm. High thermal stability of the material was confirmed by variable-temperature PXRD performed up to 250 °C, establishing that the material retains its crystallinity over a broad temperature range. The water stability of the material was also confirmed via in-situ variable-humidity PXRD up to 95% humidity relative to calculated theoretical values.

Crystallographic studies revealed the presence of (FeF₅(H₂O))²⁻ inorganic building blocks within the framework acting as pillars. In addition to water molecules connected to iron, thermogravimetric analysis confirmed the presence of water molecules located within the channels. The investigation of the electron density within the cavities revealed four water molecules present within the cavities of FeFFIVEH₂O-1-Ni. A hydrogen bond network between fluorine atoms of pillars and water guest molecules was revealed with the four water molecules forming a cluster having a tetrahedral shape. It must be noted that water molecules from the pillar are also part of the network.
WHAT IS CLAIMED IS:

1. A metal organic framework characterized by the formula $[\text{Ma}_a\text{ Mb}_b\text{ F}_6]$, wherein Ma comprises elements selected from periodic groups IB, IIA, IIB, IIIA, IVA, IVB, VIB, VIIB, and VIII, Mb comprises elements selected from periodic groups IIIA, IIIB, IVB, VB, VIB, and VIII, Ligand comprises an organic, poly-functional, N-donor ligand, and z is at least equal to 1.

2. The metal organic framework of claim 1, wherein the ligand comprises a monocyclic or polycyclic group structure.

3. The metal organic framework of claim 1, wherein the ligand comprises pyridine, pyrazine, pyrimidine, pyrazidine, triazine, thiazole, oxazole, pyrrole, imidazole, pyrazole, triazole, oxadiazole, thiadiazole, quinoline, benzoazole, or benzimidazole.

4. The metal organic framework of claim 1, wherein the ligand comprises pyrazine.

5. The metal organic framework of claim 1, wherein Ma comprises Cu$^{2+}$, Zn$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Mn$^{2+}$, Zr$^{2+}$, Fe$^{2+}$, Ca$^{2+}$, Ba$^{2+}$, Pb$^{2+}$, Pt$^{2+}$, Pd $^{2+}$, Ru$^{2+}$, Rh$^{2+}$, Cd$^{2+}$, Mg$^{2+}$, Al$^{3+}$, Fe$^{3+}$, Fe$^{3+}$, Cr$^{2+}$, Cr$^{3+}$, Ru$^{2+}$, Ru$^{3+}$ or Co$^{3+}$.

6. The metal organic framework of claim 1, wherein Mb comprises Al$^{3+}$, Fe$^{2+}$, Fe$^{3+}$, Cr$^{2+}$, Cr$^{3+}$, Ti$^{3+}$, V$^{3+}$, V$^{5+}$, Sc$^{3+}$, In$^{3+}$, Nb$^{5+}$, or Y$^{3+}$.

7. The metal organic framework of claim 1, wherein Ma comprises Ni$^{2+}$.

8. The metal organic framework of claim 7, wherein Mb comprises Al$^{3+}$, Fe$^{2+}$, Fe$^{3+}$, V$^{3+}$, V$^{5+}$, or Nb$^{5+}$.

9. The metal organic framework of claim 1, wherein x equals 2.

10. The metal organic framework of claim 1, wherein y equals 0.
11. The metal organic framework of claim 1, further including pores, wherein the pores comprise a pore size of about 3.3 Å to about 3.8 Å.

12. The metal organic framework of claim 1, further comprising a specific surface area of about 250 m²/g to about 500 m²/g.

13. The metal organic framework of claim 1, further comprising a pore volume of about 0.1 cm³/g to about 0.25 cm³/g.

14. A method of fabricating a metal organic framework, the method comprising: combining a fluorhydric acid solution, a first metal source, a second metal source, and a solvent, sufficient to form a mixture; reacting the mixture over a period of time sufficient to form a reacted mixture; processing the reacted mixture to provide a metal organic framework.

15. The method of claim 14, wherein the first metal source comprises a Ni²⁺ source.

16. The method of claim 14, wherein the second metal source comprises an Al³⁺ source, an Fe²⁺ source, an Fe³⁺ source, a Cr²⁺ source, a Cr³⁺ source, a Ti³⁺ source, a V³⁺ source, a V⁵⁺ source, a Sc³⁺ source, an In³⁺ source, a Nb⁵⁺ source, or a Y³⁺ source.

17. The method of claim 14, wherein the solvent comprises one or more of water, dimethylformamide, and diethylformamide.

18. The method of claim 14, wherein reacting the mixture comprises heating the mixture to a temperature between about 80 °C to about 200 °C.

19. The method of claim 14, wherein processing the reacted mixture comprises one or more of filtering, rinsing with water, and removing excess reactants.

20. The method of claim 14, further comprising evacuating guest molecules from the metal organic framework.
FIG 3A

FIG 3B
FIG 4A

FIG 4B
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>ADD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B01J20/22</td>
<td>B01J20/28</td>
</tr>
<tr>
<td>B01J20/30</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B01J B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - *A* document defining the general state of the art which is not considered to be of particular relevance
 - *E* earlier application or patent but published on or after the international filing date
 - *L* document which may throw doubts on priority claim(s) or which is relied on to establish publication date of another document or other special reason (as specified)
 - *O* document referring to an oral disclosure, use, exhibition or other means
 - *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken in conjunction with one or more other such documents, such combination being obvious to a person skilled in the art
- *S* document member of the same patent family

Date of the actual completion of the international search: 17 June 2016

Date of mailing of the international search report: 27/06/2016

Name and mailing address of the ISA/European Patent Office, P.B. 5816 Patentlaan 2 NL-2280 HV Rijswijk Tel. (31-70) 340-2040, Fax (31-70) 340-3046

Authorized officer: Mc Donnell, Shane
INTERNATIONAL SEARCH REPORT

Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

> see additional sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.

Form PCT ASA/210 (continuation of first sheet (2)) (April 2009)
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-20

1. A metal organic framework characterized by the formula [MaMbf6-n(O/H2O)]w(ligand)x(solvent)y]z, wherein Ma comprises elements selected from periodic groups IB, IIA, IIB, IIIA, IVA, IVB, VIB, VIIB, and VIII, Mb comprises elements selected from periodic groups IIIA, IIIB, IVB, VB, VIB, and VIII, Ligand comprises an organic, polyfunctional, N-donor ligand, and z is at least equal to 1.

14. A method of fabricating a metal organic framework, the method comprising:
combining a fluorhydric acid solution, a first metal source, a second metal source, and a solvent, sufficient to form a mixture;
reacting the mixture over a period of time sufficient to form a reacted mixture;
processing the reacted mixture to provide a metal organic framework

1.1. claims: 1-13

1. A metal organic framework characterized by the formula [MaMbf6-n(O/H2O)]w(ligand)x(solvent)y]z, wherein Ma comprises elements selected from periodic groups IB, IIA, IIB, IIIA, IVA, IVB, VIB, VIIB, and VIII, Mb comprises elements selected from periodic groups IIIA, IIIB, IVB, VB, VIB, and VIII, Ligand comprises an organic, polyfunctional, N-donor ligand, and z is at least equal to 1.

1.2. claims: 14-20

14. A method of fabricating a metal organic framework, the method comprising:
combining a fluorhydric acid solution, a first metal source, a second metal source, and a solvent, sufficient to form a mixture;
reacting the mixture over a period of time sufficient to form a reacted mixture;
processing the reacted mixture to provide a metal organic framework.

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PAN YANG ET AL: "Hydrothermal synthesis and characterization of a series of luminescent Zn(ii) and Cd(ii) coordination polymers with the new versatile multidentate ligand 1,3-di-(1,2,4-triazol-4-yl)benzene", CRYSTENGCOMM, vol. 15, no. 40, 31 January 2013 (2013-01-31), page 8097, XP055212795, DOI: 10.1039/c3ce40946e Page 8100. -----</td>
<td>1-13</td>
</tr>
</tbody>
</table>