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Abstract. A class of preconditioners based on balancing domain decomposition by constraints
methods is introduced in the Portable, Extensible Toolkit for Scientific Computation (PETSc). The
algorithm and the underlying nonoverlapping domain decomposition framework are described with a
specific focus on their current implementation in the library. Available user customizations are also
presented, together with an experimental interface to the finite element tearing and interconnecting
dual-primal methods within PETSc. Large-scale parallel numerical results are provided for the
latest version of the code, which is able to tackle symmetric positive definite problems with highly
heterogeneous distributions of the coefficients. Current limitations and future extensions of the
preconditioner class are also discussed.
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1. Introduction. The aim of this paper is to present a novel class of precon-
ditioners in the Portable, Extensible Toolbox for Scientific Computation (PETSc)
library [10], which are based on the balancing domain decomposition by constraints
(BDDC) algorithm [24]. The BDDC methods belong to the family of nonoverlapping
domain decomposition methods [79] and they were first developed as primal alter-
natives of the finite element tearing and interconnecting dual-primal (FETI-DP) [29]
methods. BDDC and FETI-DP methods have proven to be powerful preconditioners
for finite element discretizations of elliptic partial differential equations (PDEs), with
typical polylogarithmic condition numbers bounds of the type

κ2 ≤ C(1 + log(H/h))2,

with h the characteristic size of the elements, H the maximum diameter of the subdo-
mains, and C a constant independent of the number of subdomains considered [61, 62].
These condition number bounds hold even in the presence of jumps in the coefficient
of the PDE between subdomains [61], or when rough interfaces among subdomains
are present [50]. A polylogarithmic bound has also been established for some cases
with discontinuities crossing subdomain boundaries [70, 71]. Although such bounds
are typically obtained under the assumption that each subdomain is the union of a
few well-shaped coarse elements of a coarse triangulation, the BDDC and FETI-DP
algorithms are well suited for more general and irregular subdomains as given by mesh
partitioners.

The BDDC algorithms provide preconditioners for the linear operator of the dis-
cretized PDE, whereas the FETI-DP methods recast the linear system as a constrained
minimization problem and iterate on the set of Lagrange multipliers introduced as in
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an associated saddle point formulation. The construction of both methods relies on
the selection of primal continuity constraints and on the choice of an averaging proce-
dure; the latter is needed in BDDC methods to restore the continuity of the degrees
of freedom at the interface between the subdomains during Krylov iterations, whereas
in FETI-DP, continuity is restored in the limit by using Lagrange mulipliers. In both
cases, the averaging procedure contributes to the robustness of the methods for the
case of coefficient jumps between subdomains. For the same choice of the primal
constraints and the averaging procedure, the iteration matrices of the two methods
have been proven to have the same spectra except for eigenvalues at 0 and 1 [62]. It is
worth mentioning that primal variants of FETI-DP were also independently proposed
in [23] and [32].

The BDDC method has been successfully extended to different discretization
techniques such as the lowest order Nédélec [26] and Raviart-Thomas [65] elements,
spectral elements [66], mortar discretizations [38], discontinuous Galerkin [28], and
isogeometric analysis [13]. The algorithm also has been applied to a variety of PDEs
including advection-diffusion [84], incompressible Stokes [55], porous media flows
[82, 83, 73], almost incompressible elasticity [67], Reissner–Mindlin plates [11, 53],
and Naghdi shells [12]. The FETI-DP method has also been extensively studied;
among others, we cite the studies on the Stokes problem [40], contact problems [6],
indefinite complex problems [30, 31], mortar discretizations [39], and biomechanics
[49]. Interesting nonlinear formulations of the BDDC and FETI-DP methods have
been recently proposed to tackle nonlinear problems with localized nonlinearities [43].

Extensions of the BDDC algorithm have recently focused on primal space enrich-
ments techniques for symmetric positive definite (SPD) systems with high-contrast
distributions in the coefficients of the PDE; cf. [15, 19, 41, 42, 44, 45, 75, 69]. All
these techniques increase the arithmetic intensity of the algorithm by properly com-
bining generalized eigenvalue calculations and nearest neighbor communications; the
outcome is a robust BDDC preconditioner which is able to reduce the number of
iterations of the Krylov solver in a black-box fashion. Similar techniques have been
studied for enriching the coarse space of overlapping Schwarz [33, 78], FETI [76], and
Neumann–Neumann algorithms [77].

The paper is organized as follows. Section 2 describes the nonoverlapping do-
main decomposition setting and provides details for the construction of specific linear
operators with the PETSc library. Section 3 describes the BDDC method and the
current PETSc implementation, together with available user customizations of the
method; an experimental interface to the FETI-DP method is also introduced. Algo-
rithmic details of the primal space enrichment technique implemented in PCBDDC are
discussed. Large-scale numerical results obtained with the latest version of the code
are provided in section 4. Current limitations and future developments are discussed
in section 5.

2. Nonoverlapping domain decomposition. Following the framework of it-
erative substructuring algorithms [79], the domain Ω is decomposed into N non-
overlapping open Lipschitz subdomains Ωi such that

Ω =

N⋃
i=1

Ωi.

Let a(·, ·) be the bilinear form of the variational formulation we are considering and
a(i)(·, ·) its restriction to subdomain i, i.e.,
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S284 STEFANO ZAMPINI

a(·, ·) =

∫
Ω

. . . , a(i)(·, ·) =

∫
Ωi

. . . .

We will denote by Â the linear operator corresponding to the discretization of a(·, ·)
in a finite dimensional Hilbert space Vh = Vh(Ω). Within the nonoverlapping frame-
work, linear operators defined on Vh are never assembled explicitly. Instead, local
operators are assembled at the subdomain level by considering

A(i) : V
(i)
h → V

(i)
h

′
, 〈A(i)u, v〉 = a(i)(u, v), ∀ u, v ∈ V

(i)
h ,

with V
(i)
h = Vh(Ωi), and 〈·, ·〉 the duality pairing. Let

R(i) : Vh → V
(i)
h

be the restriction operator from the global to the local space; using the property of
finite summation of integrals, the action of the global linear operator Â can then be
expressed by the subassembling relation

Â = RTAR,

where A is a block diagonal matrix with one block for each subdomain, i.e.,

(2.1) A =

A
(1)

. . .

A(N)

 ,
and R the direct sum of the R(i) operators.

In order to simplify the notation used for the description of the BDDC algorithm,

we write W(i) = V
(i)
h . Within the nonoverlapping framework, the interface Γ between

the subdomains is defined as

Γ =
⋃
i 6=j

∂Ωj ∩ ∂Ωi,

and the local discrete spaces are split into interior and interface degrees of freedom

(2.2) W(i) = W
(i)
I ⊕W

(i)
Γ ,

where the degrees of freedom in the interior (I) correspond to those basis functions
that are zero on Γ. After the split, the following product spaces are defined:

W =

N∏
i=1

W(i), WΓ =

N∏
i=1

W
(i)
Γ , WI =

N∏
i=1

W
(i)
I .

Since the spaces W and WΓ are discontinuous across the interface, their continuous
subspaces are usually distinguished by using a surrounding hat,

(2.3) ŴΓ ⊂WΓ, Ŵ ⊂W, Ŵ = WI ⊕ ŴΓ.

The PETSc matrix class for matrices in unassembled format is the MATIS type,
which has the following constructor:
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PetscErrorCode MatCreateIS(MPI_Comm comm, PetscInt bs,

PetscInt m,PetscInt n,

PetscInt M, PetscInt N,

ISLocalToGlobalMapping map, Mat* A)

where comm is the communicator associated with the matrix and bs the block size (i.e.,
the number of degrees of freedom per grid point). M and N are the global number of
rows and columns of the matrix, whereas m and n are the local sizes of the distributed
vectors used for matrix-vector multiplication and they are not related to the number
of unknowns on the subdomains. The current MATIS implementation assumes a one-
to-one mapping between MPI processes and subdomains, and thus the number of
subdomains is given by the size of the communicator. The local to global mapping
map is the PETSc object representing the action of the operator RT , and it stores the
information needed to subassemble local matrices; the number of unknowns on each
subdomain is then inferred by the constructor from the local size of the map.

Figure 1 contains a very simple example of how the MATIS object can be con-
structed. A square (left) is triangulated into two triangles, and the degrees of freedom
are labeled by their global number and placed on the vertices of the triangles. In the
central panel, each triangle is then assigned to a subdomain (0 or 1): the degrees of
freedom are then labeled by the pair (G,L), where L represents the degree of freedom
in a local subdomainwise ordering, whereas G corresponds to the global ordering. The
local to global maps needed to construct the MATIS operator are provided on the
right, together with the resulting split of local spaces according to (2.2). Note that
the current implementation is not limited to P 1 elements, but can accommodate any
kind of elements, even with different types, as long as the subdomain matrices and
the local to global maps are properly constructed by the user.

Once the MATIS object has been constructed, matrix entries can be inserted by
using either a local numbering of the degrees of freedom via MatSetValuesLocal

or a global numbering via MatSetValues. Subdomain matrices are stored in the
opaque object and they can be accessed using MatISGetLocalMat; local subdomain
matrices can be replaced using MatISSetLocalMat. The function MatISGetMPIXAIJ

can be used to convert from the MATIS format to an assembled AIJ object. Ma-
trix preallocation can be locally performed by first retrieving the subdomain matrix
from the MATIS object and then calling the specific routines for sequential objects;
otherwise, if the global distribution of nonzeros is known for the AIJ object, the
preallocation routine MatISSetPreallocation can be used.

3. Balancing domain decomposition by constraints. The splitting of the
degrees of freedom into interior and interface parts given by (2.3) induces a reordering

(0) (1)

(2)(3)

(0,1)

0

(1,2)

(3,0)

(2,2)

1

(1,0)

(3,1)

subdomain 0: map {3,0,1}

subdomain 1: map {1,3,2}

W
(0)
I = {1}, W(0)

Γ = {0, 2}
W

(1)
I = {2}, W(1)

Γ = {0, 1}

Fig. 1. MATIS mapping example.
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of the global linear operator

(3.1) Â =

[
AII AIΓ

AΓI ÂΓΓ

]
that is suitable for a block factorization

(3.2) Â−1 =

[
I −A−1

II AIΓ

0 I

] [
A−1

II 0

0 Ŝ−1

] [
I 0

−AΓIA
−1
II I

]
,

where

(3.3) Ŝ = ÂΓΓ −AΓIA
−1
II AIΓ

is the interface Schur complement, which is never assembled explicitly, since it can be
obtained by subassembling

Ŝ = RT
ΓSRΓ

with R
(i)
Γ the restriction operator from ŴΓ to W

(i)
Γ , RΓ the direct sum of the R

(i)
Γ ,

and S the block diagonal matrix of local Schur complements

(3.4) S =

S
(1)

. . .

S(N)

 ,
where

(3.5) S(i) = A
(i)
ΓΓ −A

(i)
ΓIA

(i)−1
II A

(i)
IΓ

with A
(i)
II , A

(i)
IΓ, A

(i)
ΓI , and A

(i)
ΓΓ obtained by reordering the local basis functions in

interior and interface parts.
BDDC methods were first presented as preconditioners for the Schur complement

matrix (3.3), and they can be viewed as a two-level additive alternative to the bal-
ancing Neumann–Neumann method [60] (also known as the BDD method). However,
any Schur complement preconditioning technique can be recast as a preconditioner
for the global problem (3.1) exploiting the block factorization (3.2); different variants
of the preconditioners can then be designed by replacing the inverses appearing in
formula (3.2) with suitable solvers,

(3.6) M−1 =

[
I −M−1

II AIΓ

0 I

] [
M−1

II 0
0 M−1

Γ

] [
I 0

−AΓIM
−1
II I

]
.

In their standard formulation, both BDDC and BDD methods use exact subdo-
main solvers for the interior Dirichlet problems (i.e., M−1

II = A−1
II ) and exploit the

subassembled structure of the linear operator to construct scalable preconditioners
MΓ that are also robust with respect to jumps in the coefficient of the PDE aligned
with Γ. BDD methods precondition the Schur complement by using solvers with local
subdomain matrices (Neumann problems) and by multiplicatively combining these
Neumann solvers with a coarse solver, which provides scalability of the methods and
well-posedness of the local corrections. On the other hand, the BDDC methods con-
sider a partially assembled Schur complement that is cheaper to invert than Ŝ; a block
factorization of the partially assembled matrix then leads to the additive split of the
preconditioner in local and coarse parts.
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For additional details on the nonoverlapping domain decomposition framework
and on BDD methods, see the monographs [64, 74, 79]; for the BDDC algorithm,
see [24, 25, 51, 54, 62] and references therein. For additional user customization and
command line options that are not described in what follows in the paper, please
consult the online PETSc documentation [9].

3.1. Interface equivalence classes. The first step in BDDC methods consists
in the analysis of the interface among subdomains, since the partition of degrees of
freedom on Γ into equivalence classes plays a central role in the design, analysis, and
programming of the algorithm. Faces (F ), edges (E), and vertices (V ) classes are
detected during the setup phase of PCBDDC by using the following rules (see also [48]):

2D


x, y ∈ Ek ⇐⇒ |Nx| = 2, Nx = Ny, x ∼ y, x /∈ ∂ΩN,D,

x ∈ Vk ⇐⇒ |Nx| > 2, x /∈ ∂ΩD,

or

|Nx| = 2, x ∈ ∂ΩN ,

3D



x, y ∈ Fk ⇐⇒ |Nx| = 2, Nx = Ny, x ∼ y, x /∈ ∂ΩN,D,

x, y ∈ Ek ⇐⇒ |Nx| > 2, Nx = Ny, x ∼ y, x /∈ ∂ΩN,D,

or

|Nx| = 2, Nx = Ny, x ∼ y, x ∈ ∂ΩN ,

x ∈ Vk ⇐⇒ @y 6= x s.t. Nx = Ny, x ∼ y, x /∈ ∂ΩD,

where x, y are two different degrees of freedom, Nx is the set of subdomains sharing
x, ∼ is a connectivity relation, and ∂ΩN (resp., ∂ΩD) is the part of the boundary
where natural (essential) boundary conditions have been imposed. In other words,
two degrees of freedom belong to the same class if they are connected and shared by
the same set of subdomains. The cardinality of the sharing set discriminates between
faces and edges in three dimensions. Finally, a degree of freedom not connected to
any other is denoted as a vertex.

The default connectivity between degrees of freedom is induced by the sparsity
structure of the subdomain matrices; the use of the default connectivity can be turned
off by using the switch -pc bddc use local mat graph 0, or it can be specified by
the user through the function PCBDDCSetLocalAdjacencyGraph. Additional informa-
tion on the degrees of freedom can be provided by the user to further customize the
definition of ∼. The number of fields and the associated degrees of freedom can be
specified via PCBDDCSetDofsSplitting, or they can be deduced by PCBDDC by detect-
ing the block size of the problem; interface classes will be then made up by degrees
of freedom belonging to the same field. Finally, since the current implementation
does not support any automatic selection of primal vertices (see [72] and references
therein), additional user-defined vertices can be specified in local ordering by using
PCBDDCSetPrimalVerticesLocalIS.

Essential and natural parts of the domain boundary ∂ΩD and ∂ΩN (which with
abuse of terminology have been denoted respectively by Dirichlet and Neumann)
can be specified in global numbering by using PCBDDCSetDirichletBoundaries and
PCBDDCSetNeumannBoundaries or in local subdomainwise ordering via
PCBDDCSetDirichletBoundariesLocal and PCBDDCSetNeumannBoundariesLocal.
The boundary specification is not mandatory, but it can improve the convergence
properties of the algorithm: in particular, the residual on the degrees of freedom
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where essential boundary conditions have been imposed is eliminated at the begin-
ning of the Krylov iterations.

3.2. Primal and dual spaces. At the core of the BDDC methods is the defi-
nition of a partially assembled space W̃Γ,

ŴΓ ⊂ W̃Γ ⊂WΓ, W̃Γ = W∆ ⊕ ŴΠ,

where ŴΠ is the primal space and W∆ is the product space of the local dual spaces

W∆ =

N∏
i=1

W
(i)
∆

consisting of functions with zero values at the primal degrees of freedom. The func-
tions in the space W̃Γ will be continuous at the (coarse) primal level and discontin-
uous elsewhere across the subdomain interface. The balancing procedure for BDDC
methods consists in properly selecting the primal degrees of freedom in order to have
well-posed dual corrections. In addition, the proper choice of primal degrees of free-
dom contributes to the scalability of the method, mainly intended here as a number
of preconditioned Krylov iterations independent of the number of subdomains.

The primal space is typically spanned by the minimum energy extensions of se-
lected degrees of freedom such as subdomain vertices and certain functionals over
edges or faces of the subdomains. The continuity of edge and face functionals can be
imposed either by using a saddle point formulation [24, 25] or by partial assembling if
a change of basis has been performed [51]. Since the two techniques provide equivalent
methods, and in order to simplify the description of the algorithm, we assume that a
change of basis has been performed and all primal degrees of freedom have been made
explicit. We can then reorder the local matrices accordingly, i.e.,

A(i) =

A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 .
Without any additional information from the user, PCBDDC uses arithmetic aver-

ages for edge and face functionals; these functionals can be customized by attaching a
MatNullSpace object to the preconditioning matrix via MatSetNearNullSpace. The
vectors of the MatNullSpace object should contain the functionals in the form of
quadrature weights; weights for different classes can coexist in the same vector. If
more than one functional per class is prescribed, any linear dependence is eliminated
by means of edge or face based SVD operations. As an example, the rigid body modes
represent a robust set of functionals for the linear elasticity problem, even in the almost
incompressible limit [67]. The use of vertices, edges, and faces can be enabled or dis-
abled with the command line switches -pc bddc use vertices, -pc bddc use edges,
and -pc bddc use faces.

The PETSc class PCBDDC imposes the continuity of primal constraints using the
saddle point formulation [24, 25]; the change of basis approach [51] is implemented
using a QR factorization of the constraints and it is available via the command line
switches -pc bddc use change of basis and -pc bddc use change on faces. For
certain discretization techniques like the Nédélec elements, the BDDC method needs
a specific change of variables which depends on the underlying mesh [26]; in such
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cases, the user can specify the desired change of variables attaching a matrix to the
PCBDDC object using PCBDDCSetChangeOfBasisMat, where the columns of the matrix
correspond to the representation of the new basis functions in the original basis.

3.3. Schur complement preconditioner. The interface preconditioner for
(3.6) is given in terms of the inverse of the partially assembled Schur complement

on W̃Γ combined with a proper scaling of interface degrees of freedom, i.e.,

(3.7) M−1
BDDC = R̃T

D,ΓS̃
−1R̃D,Γ, S̃ = R̃ΓSR̃

T
Γ ,

where S is given by (3.4). Additional restriction operators need to be defined to
complete the description of the BDDC algorithm,

R
(i)
∆ : W∆ →W

(i)
∆ , R

(i)
Π : ŴΠ →W

(i)
Π ,

RΓ∆ : WΓ →W∆, RΓΠ : WΓ → ŴΠ,

with R̃Γ = RΓΠ ⊕RΓ∆.
The scaling operator R̃D,Γ plays a central role in the algorithm and it is described

in more detail in section 3.4. The matrix S̃ is usually not assembled explicitly; instead,
the inverse of S̃ is obtained by block elimination [54],

(3.8) S̃−1
Γ = RT

Γ∆

 N∑
i=1

[
0 R

(i)
∆

T
] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]RΓ∆ + ΦS−1
ΠΠΨT ,

which expresses the application of the BDDC preconditioner as the additive combina-
tion of local subdomain corrections and a global coarse correction; the latter imposes
the continuity on the primal space and provides the global exchange of information
between subdomains that is required to obtain scalable preconditioners in terms of
the number of Krylov iterations. The matrices defining the primal basis functions are
the minimal energy extension of the primal degrees of freedom into the subdomains

(3.9)

Φ =RT
ΓΠ −RT

Γ∆

N∑
i=1

[0 R
(i)
∆

T
] [A(i)

II A
(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)
IΠ

A
(i)
∆Π

]
R

(i)
Π

 ,

Ψ =RT
ΓΠ −RT

Γ∆

N∑
i=1

[0 R
(i)
∆

T
] [A(i)

II A
(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−T [
A

(i)T
ΠI

A
(i)T
Π∆

]
R

(i)
Π

 .

In the case of symmetric problems, the computation of Ψ is not needed. The primal
coarse problem is defined as the projection of S̃ on the primal basis functions and it
can be assembled by considering individual subdomain contributions,

(3.10) SΠΠ = ΨT S̃Φ =

N∑
j=1

R
(i)
Π

T
S

(i)
ΠΠR

(i)
Π ,

with each contribution computed in terms of local Schur complements with respect
to the primal degrees of freedom, i.e.,

(3.11) S
(i)
ΠΠ = A

(i)
ΠΠ −

[
A

(i)
ΠI A

(i)
Π∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)
IΠ

A
(i)
∆Π

]
.
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No additional computations are needed to compute (3.11), since it can be obtained
as a by-product of the computation of the primal basis functions (3.9). It must be
noted that the application of the interface preconditioner (3.8) and the computation
of the primal basis functions (3.9) are slightly different when a saddle point formula-
tion is used for imposing the primal constraints. To save space, we omit here their
description; additional details can be found in [25].

Turning to the PETSc implementation, command line switches are available to
experiment with different solvers for the static condensation (Dirichlet) step M−1

II in
(3.6) and for the subdomain Neumann correction in (3.8) using the option prefixes
-pc bddc dirichlet and -pc bddc neumann . Solvers for the coarse problem can be
selected at run-time by using the option prefix -pc bddc coarse . For nonsymmetric
problems, the computation of Ψ in (3.9) must be enabled by using the command line
switch -pc bddc symmetric 0.

An extension of the BDDC algorithm to use approximate solvers has been pro-
posed in [25], together with an interesting algebraic variant of (3.6), available in
the PCBDDC class by using the command line switch -pc bddc switch static. The
function PCBDDCSetNullSpace should be used to specify the kernel of the local subdo-
main matrices needed to compute the local nullspace corrections of inexact subdomain
solvers in BDDC methods [25].

The setup of parallel solvers for the coarse problem can be a bottleneck when
a large number of subdomains and/or many primal constraints per subdomain are
considered. Also, the parallel backward and forward substitutions can affect the
timings of the application of the preconditioner with a large number of subdomains.
In fact, even if the coarse problem matrix is sparse, the number of nonzeros per row
can be quite large, since it is obtained by assembling dense subdomain contributions as
given by (3.11); in turn, the memory requirements for the factorization step of parallel
direct solvers could become prohibitive. Different strategies have been implemented
in the PCBDDC class in order to overcome the latter issues:

• If some of the MPI processes of the MATIS object’s communicator are not
associated with any subdomain (i.e., the local size of their local to global
map in the MATIS constructor is zero), then PCBDDC automatically maps the
coarse problem on those MPI processes. This approach has the advantage
that the subdomain corrections and the solution of the primal problem can
be overlapped during the application of the preconditioner [7].

• In order to deal with memory issues of parallel direct solvers, the command
line switch -pc bddc coarse redistribute is available to redistribute the
coarse problem on a subcommunicator; an additional integer parameter to
the previous switch defines the size of the subcommunicator. As a result of
the remap, the coarse matrix will have a larger number of local (per MPI
process) rows and thus the amount of communications needed by a parallel
direct coarse solver will be smaller.

• Given the unassembled nature of the coarse problem (3.10) and the algebraic
nature of the BDDC algorithm, a multilevel extension is readily available [80,
81]. In the multilevel BDDC framework, the solution of the coarse problem is
replaced by the application of a BDDC preconditioner at a coarser level. The
use of approximate coarse solvers could increase the total number of iterations
of the Krylov solver [25] but also lead to highly scalable preconditioners.
Additional details on the current implementation of multilevel BDDC are
given in section 3.6. Large-scale numerical results are provided in section 4.
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3.4. Scaling operator. The scaling operator appearing in (3.7) is defined as

R̃D,Γ = RΓΠ ⊕RD,∆RΓ∆, RD,∆ = ⊕N
i=1D

(i)R
(i)
∆ ,

where D(i) are subdomain matrices defined to realize the following partition of unity:

(3.12) EDw = R̃ΓR̃
T
D,Γw = w ∀ w ∈ ŴΓ,

where ED is the average operator induced by the scaling. The proper choice of scaling
guarantees the robustness of the method with respect to jumps in the coefficients of
the PDE aligned with the interface between the subdomains [61]; for a proof of the
robustness of BDDC with more general coefficient distributions see [70, 71].

For scalar elliptic PDEs with only one material coefficient, the scaling matrices
D(i) are defined as diagonal matrices, with the diagonal entry corresponding to the

degree of freedom x given as a weighted average of subdomain values ρ
(i)
x of x as

(3.13) d(i)
x =

ρ
(i)
x∑

j∈Nx
ρ

(j)
x

with Nx the set of subdomains sharing x (see [79]); this scaling is also valid for linear
elasticity in the compressible case, where a robust choice in case of subdomainwise

constant coefficients corresponds to using one of the Lamé parameters, i.e., ρ
(i)
x = µ(i)

[51]. The so-called stiffness scaling is obtained by setting ρ
(i)
x equal to the diagonal

entry of the subdomain matrix relative to x. An optimal choice for ρ
(i)
x depends on

the problem and on the distribution of the coefficients and it is thus left to the user.
For some possible solutions, see [71].

An advanced scaling operator, named deluxe, has been recently proposed to deal
with the case of jumping coefficients for systems of PDEs with more than one material
parameter [86]. Such scaling has also proven very effective for unstructured grid
computation with irregular subdomains given by mesh partitioners [18]. In the deluxe
case, the scaling matrices D(i) are block diagonal, with dense blocks corresponding
to each class of the local interface. Given a face or an edge F of a subdomain, the
diagonal blocks accounting for the scaling of the degrees of freedom on F are given
by

(3.14)

∑
j∈NF

S
(j)
F

−1

S
(i)
F ,

where S
(i)
F is the principal minor of S(i) given in (3.5) relative to F and NF the set

of subdomains sharing F .
Since the entries of S(i) are not readily available, different strategies have been

implemented in PCBDDC to compute the action of the deluxe operator on a given
vector. The basic strategy consists in repeatedly applying S(i) to unit vectors in

order to compute each subdomain block S
(i)
F . This strategy leads to noncompetitive

algorithms, since a Dirichlet problem has to be solved for each degree of freedom
of F; however, the computational costs can be greatly reduced using the economical
version of the scaling [26], which considers Schur complements with respect to a thin
neighborhood of F rather than the whole union of subdomains having F in common.
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A different implementation of deluxe scaling exploits one of the most recent fea-
tures of sequential factorization packages, which consists in the ability of providing

the factors of A
(i)−1
II and the explicit form of S(i) when factoring A(i) at some addi-

tional cost (see, e.g., [3]). Irrespective of the technique used, once matrices S
(i)
F are

available, only nearest neighbor communications are needed to assemble the sum of
Schur complements appearing in formula (3.14); the factorization of the latter matrix
can then be carried out separately on each subdomain.

The PCBDDC class uses by default the cardinality scaling, which is obtained by

using ρ
(i)
x = 1 in (3.13). A subdomainwise constant value for ρ

(i)
x can be specified by

using PCISSetSubdomainScalingFactor. More general pointwise scaling can be de-
fined by using PCISSetSubdomainDiagonalScaling; the stiffness scaling is available
by using the command line switch -pc is use stiffness scaling; deluxe scaling is
available by using the command line switch -pc bddc use deluxe scaling. The com-
mand line switch -pc bddc schur layers switch on the economic version of the scal-
ing by defining the number of layers of degrees of freedom which have to be included
in the explicit computation of the local Schur complements. The current PCBDDC im-
plementation uses the external package MUMPS [3] for the explicit computation of
the local Schur complements; since PETSc has to be linked against external libraries
supporting 64-bit integer representation in order to solve problems with more than
2.1 billion distributed unknowns, the current deluxe version of PCBDDC with explicit
Schur complement support is limited to 32-bit integer builds, since the current version
of MUMPS does not support parallel builds with 64-bit integers.

3.5. Adaptive selection of constraints. Although the proper choice of the
scaling operator ensures robustness of the BDDC methods with respect to jumps in
the PDE coefficients aligned with the interface, the convergence rate of the associated
preconditioned Krylov methods usually deteriorates when such jumps are not aligned
with the interface. After the pioneering work [63], in recent years different approaches
have been proposed to accommodate arbitrary jumps in the coefficients of elliptic
PDEs within BDDC methods [15, 19, 41, 42, 44, 45, 46, 69, 75].

The approach proposed in [75] selects face constraints by iteratively solving sparse
eigenproblems defined on each pair of subdomains sharing a face and its boundary.
Edge primal constraints, which could be obtained as a by-product of the eigensolver,
were not considered in the numerical experiments due to a loss of sparsity of the
projected operators involved. An extension to edge constraints has been recently
analyzed in the case of compressible and almost incompressible linear elasticity [44].

On the other hand, uncoupled dense generalized eigenproblems defined on each
face or edge are instead considered in [15, 19, 41, 42, 45, 46, 69]; some differences
exist among these techniques, but their common feature set consists in working with
a collection of relatively small, sequential, and dense data structures instead of using
iterative eigensolvers and PDE-dependent projection operators. This makes them
appear attractive for future exascale machines or for targeting hardware accelerators.

The PETSc class PCBDDC implements the adaptive approach first proposed in
[69], by combining constraint selection with the optimal deluxe scaling, which in turn
permits us to reduce BDDC condition number estimates to individual bounds for
subdomains [86]; also, there is evidence that the adaptive primal spaces generated
by deluxe BDDC algorithms are smaller than those generated by using pointwise
scalings [42]. The chosen approach has the further advantage that only one generalized
eigenvalue problem has to be solved for each interface class, whereas the approaches
considered in [41, 45] need the solution of two different eigenproblems.
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When dealing with SPD problems, the norm of the average operator given by
(3.12) is used to estimate the condition number of the BDDC preconditioned system
[62]; the estimation is then usually performed by analyzing vertex, edge, and face
contributions separately. Using deluxe scaling, face estimation in three dimensions or
edge estimation in two dimensions can be reduced to the analysis of the generalized
eigenvalue problem

(3.15) (S
(i)
F : S

(j)
F )φ = λ(S̃

(i)
F : S̃

(j)
F )φ

with F a given class of the interface shared by subdomains i and j, the : operator
defined for SPD matrices as

S
(i)
F : S

(j)
F = (S

(i)−1
F + S

(j)−1
F )−1

and

(3.16) S̃
(i)
F = S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F ,

with F ′ = Γ(i) \F ; the matrices S
(i)
FF , S

(i)
F ′F , and S

(i)
F ′F ′ are obtained by reordering the

local Schur complement matrix accordingly.

If we include in the primal space all the vectors of the form (S
(i)
F : S

(j)
F )φk, where

φk are generalized eigenvectors of (3.15) corresponding to the eigenvalues greater than
a given threshold λm, then the contribution of F to the maximum eigenvalue of the
preconditioned operator will be less than λm times a constant [19, 42, 46].

A careful inspection of (3.16) reveals that S̃
(i)
F will not be in general positive

definite, being the Schur complement of S(i), which could be positive semidefinite
depending on the PDE, the geometry of the subdomains, and the boundary condi-
tions. The strategy currently implemented in PCBDDC overcomes the possible positive

semidefinitness of the local Schur complements by constructing the S̃
(i)
F matrices from

S(i)
r = A(i)

rr −A
(i)T
Ir A

(i)−1
II A

(i)
Ir , r = Γi \ V,

instead of S(i), where V is the set of primal vertices for subdomain Ωi, since each S
(i)
r

is well-defined by construction.
The computational costs of assembling and solving the generalized eigenvalue

problem (3.15) can be greatly reduced, since we can directly use the generalized
eigenvectors corresponding to the largest eigenvalues of

(3.17)
(
S̃

(i)−1
F + S̃

(j)−1
F

)
φ = λ

(
S

(i)−1
F + S

(j)−1
F

)
φ,

resulting in the saving of two explicit matrix inversions and one dense matrix-matrix
multiplication for each class of the local interface.

The adaptive selection of constraints for BDDC using deluxe-based estimates is
still an active topic of research for edge classes; for very recent results, see [19, 42, 46]:
differently from these approaches, PCBDDC implements

(3.18)

 ∑
j∈NE

S̃
(j)−1
E

φ = λ

 ∑
j∈NE

S
(j)−1
E

φ,
which is a heuristic approach that generalizes (3.17) to edge classes. Adaptivity for
symmetric indefinite problems or more general operators could be the subject of future
research.
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The current implementation uses dense linear algebra kernels provided by
LAPACK [4] to solve (3.17) and (3.18) for each class of the local interface. The

small dense blocks S
(i)
F are inverted explicitly. Formula (3.16) is not used in practice;

instead, each local Schur complement is inverted explicitly, and then the principal

minors S̃
(i)−1
F are extracted. Such an approach has the further advantage that the

inverted matrices can be reused when solving the local corrections in (3.8) and in (3.9)
by means of dense matrix-vector products. Since MUMPS is used to explicitly com-
pute the Schur complements, the current implementation is limited to 32-bit integer
builds.

3.6. Multilevel extensions. The definition of the BDDC coarse problem given
in (3.10) naturally leads to a multilevel extension of the algorithm where a subdomain
at the fine level is considered an element of a coarser mesh, with coarse element
matrices given by (3.11) [80, 81]; the solution of the coarse problem at a given level
is then replaced by the application of a BDDC preconditioner defined on the coarser
level. In the current implementation, multilevel BDDC can be selected by using the
command line switch -pc bddc levels n, where n is the number of additional levels
requested. Options for the solvers at coarser levels can be specified at the command
line by using the prefix -pc bddc lm , where m should be replaced by the desired level
number. The command line switch -pc bddc coarsening ratio controls the number
of coarse elements which are aggregated into a coarse subdomain at the coarser levels;
any of the graph partitioning packages interfaced to PETSc can be used to compute
the aggregation. The command line switch -pc bddc coarse adj can be used to
specify the number of processes used within the partitioning procedure, in order to
increase the quality of the partitioning and to reduce its computational costs.

The current PCBDDC implementation exploits the additive nature of the applica-
tion of the preconditioner (3.8) and employs subcommunicators for the coarser levels
of the hierarchy, in order to overlap subdomain and coarse solvers at a given level.
Preconditioner setup is instead performed sequentially with respect to the number of
levels. Figure 2 contains a schematic diagram of how the MPI processes are mapped
throughout the multilevel BDDC hierarchy. The example considers eight subdomains
at the fine level, one for each MPI process; two additional levels are considered with
a coarsening ratio of 2. MPI process placement for the finest and coarser subdomains
is schematically drawn on the left and on the right, respectively. On each level, sub-
domains are labeled by the couple (rank, level), where rank is the MPI rank in the
communicator associated with the level. Arrows indicate the aggregation scheme in
the coarsening procedure. With regard to the example considered, substructure cor-
rections are first applied at the finest level (0); local corrections at levels 1 and 2 are
then applied concurrently to the solution of the coarse problem on level 2, which is
mapped on the MPI processes labeled by SΠΠ in the figure.

3.7. FETI-DP methods. The PCBDDC class provides experimental support for
FETI-DP methods, exploiting the well-known duality between BDDC and FETI-DP
algorithms [62]. Briefly, FETI-DP methods solve the following minimization problem
[29]:

(3.19) argmin
w∈W̃

[
1

2
wT Ãw −wT f̃

]
s.t. Bw = 0,
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SΠΠ

Fig. 2. Schematic diagram of process distribution and preconditioner application for multilevel
BDDC.

with Ã the linear operator (2.1) partially assembled at primal degrees of freedom and

f̃ the partially assembled right-hand side; the jump operator

B =
[
B(1)| . . . |B(N)

]
, Bw = 0 ⇐⇒ w ∈ Ŵ,

imposes the continuity of dual degrees of freedom between subdomains. After the
introduction of the saddle point formulation associated to (3.19),[

Ã BT

B 0

] [
w
λ

]
=

[
f̃
0

]
, λ ∈ Λ = Range(B),

the FETI-DP linear system for the set of Lagrange multipliers is obtained by statically
condensing the degrees of freedom on W̃ as

(3.20) Fλ = d, F = BÃ−1BT , d = BÃ−1f̃ .

Note that primal continuity is enforced by partial assembling in FETI-DP, whereas the
continuity for dual degrees of freedom is obtained at the convergence of the method;
alternative approaches based on projector preconditioning have been proposed for
imposing primal continuity within FETI-DP methods [47].

The application of Ã−1 involves a block inversion technique and it can be obtained
by reusing the computational routines for the application of the interface BDDC
preconditioner (3.8). Once (3.20) has been solved, the solution in the original discrete
space can be obtained as

w = Ã−1
(
f̃ −BTλ

)
, w ∈ Ŵ.

An almost optimal preconditioner for (3.20) is the Dirichlet preconditioner

M−1
D = BDR

T

∆

(
N∑
i=1

R
(i)
∆ (A

(i)
∆∆ −A

(i)T
I∆ A

(i)−1
II A

(i)
I∆)R

(i)
∆

)
R∆B

T
D,

with R∆ the restriction operator from W̃Γ ⊕WI to W∆ and BD the scaled jump
operator, which is built combining B with the diagonal scaling matrices D(i) defined
in section 3.4; for additional details see [79].

In the current implementation, the FETI-DP matrix F and the Dirichlet pre-
conditioner M−1

D can be obtained via PCBDDCCreateFETIDPOperators. A suitable
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right-hand side for FETI-DP can be computed from the original right-hand side
via PCBDDCMatFETIDPGetRHS; the solution in the original discrete space can be ob-
tained from the FETI-DP solution by calling PCBDDCMatFETIDPGetSolution. Non-
redundant Lagrange multipliers are implemented by default when assembling the jump
operator; fully redundant Lagrange multipliers can be requested via the command line
switch -fetidp fullyredundant. The scaled jump operators are then constructed in
accordance with the selected type of multipliers [88]. Deluxe scaling and constraints
adaptivity are not yet supported; a specific FETI-DP class will be designed in the
future PETSc releases with additional support for inexact methods [49].

4. Numerical results. In this section, we present numerical results related to
the multilevel extension of PCBDDC (see section 3.6) and to the adaptive selection of
constraints (see section 3.5) implemented in the current version of PETSc [10]; large-
scale numerical results are also provided combining adaptivity and multileveling. Nu-
merical results using the previous versions of the code appeared elsewhere: BDDC
and FETI-DP methods applied to symmetric positive semidefinite linear systems aris-
ing in cardiac electrophysiology have appeared in [88]; an extension to approximate
subdomain solvers has been studied in [87]. Previous versions of the PCBDDC code
also have been applied to the spectral element discretization of almost incompressible
elasticity in three dimensions [67] and within the isogeometric analysis framework
[13, 14]. Finally, a Newton–Krylov–BDDC approach has been recently proposed for
nonlinear mechanical models of cardiac tissue deformation [68].

The numerical results provided in this section have been obtained on the new
Cray XC40 Shaheen of KAUST [34], which features 6192 dual 16-core Haswell pro-
cessors clocked at 2.3 GHz and equipped with 128 GB of DRAM per node, for
a total of 198,144 cores (ranked ninth as of November 2015 in the TOP500 list,
http://www.top500.org/).

The domain considered is always Ω = [0, 1]3, SPD linear systems are solved by
means of the preconditioned conjugate gradient (PCG) method using a single reduc-
tion per iteration and PCBDDC as a preconditioner; the right-hand sides are always
randomly chosen and the relative residual reduction of 10−8 is used as a stopping
criterion. PETSc has been compiled with the GNU compiler version 4.9.2, using opti-
mization level -O3 and with support for AVX instructions. Intel MKL version 11.2.2
has been used for linear algebra kernels.

In what follows, results will be provided for the following three-dimensional model
problem: find u ∈ H0(div,Ω) such that

(4.1)

∫
Ω

(α div u div v + β u · v) dx =

∫
Ω

f · v dx, v ∈ H0(div,Ω),

where α is a nonnegative function in L∞(Ω), β is a strictly positive function in

L∞(Ω), and f ∈ (L2(Ω))
3
. The space H(div,Ω) consists of vector-valued functions u

such that u ∈ (L2(Ω))3 and div u ∈ L2(Ω), with H0(div,Ω) the proper subspace of
H(div,Ω) with vanishing normal component on ∂Ω. Such a problem arises in first or-
der least-squares formulations of second order elliptic problems [17], regularization or
pseudostress-vorticity formulation of the Navier–Stokes equations [56], precondition-
ing of mixed finite elements [5], and block preconditioning of the Brinkman equations
of porous media flow [85]. The same model problem (4.1) has been used to validate
a robust auxiliary space multigrid preconditioner for H(div) problems in [52].

The bilinear form given in (4.1) is discretized using the lowest order Raviart–
Thomas tetrahedral elements that are conforming in H(div,Ω) [16]; the degrees of
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freedom are the average values of the normal components of u over the faces of the
elements. A polylogarithmic bound for the condition number using BDDC with deluxe
scaling has been proven in [65] under the assumption of piecewise constant distribution
of the material coefficients and that each subdomain is the union of a few well-shaped
coarse elements of a coarse triangulation; a recipe for the characterization of the
primal space of the BDDC operator is also provided. Extensive numerical results for
(4.1), complementary to those provided in the next sections, and with challenging
three-dimensional coefficient distributions, can be found in [65].

For the numerical results, the triangulation of Ω and the computation of the sub-
assembled matrix are carried out using the C++ library DOLFIN [58], which is part
of the FENICS project [57]; ParMETIS is used to decompose the meshes. Deluxe
scaling is used throughout all the simulations. MUMPS [3] Cholesky factorizations
are used for the subdomain solvers.

4.1. Adaptive coarse spaces for H(div). The first test case is meant to
validate the adaptive framework implemented in PCBDDC. The domain is discretized
by a 48 × 48 × 48 hexahedral grid, with each hexahedron thereafter subdivided into
6 tetrahedra. The tetrahedral mesh is then decomposed into 40 subdomains; the
number of degrees of freedom for the test case is 1.3 million. The material coefficients
α and β of (4.1) are randomly chosen, element by element, in the ranges [10−p, 10p]
and [10−q, 10q], respectively; we first draw uniformly distributed random numbers x
in the interval [−p, p] (resp., [−q, q]), and then set α (resp., β) to 10x; the threshold
considered for the eigenproblem (3.17) is 10. Table 1 shows the iteration counts (it)
and condition number estimates (κ2) for different orders of magnitude in the contrast
of the coefficients; contrast in α is increased from left to right, contrast in β from top
to bottom. Iteration counts and condition numbers are independent of the contrast
of the material coefficients. The condition numbers reported are always smaller than
or very close to the prescribed threshold.

The second set of results provides additional insights on the adaptive enrichment
of the primal space. The numerical setting is the same as before, except that here
the contrast in the material coefficients is kept fixed (p = q = 3), and different
threshold values for (3.17) are considered. Figure 3 shows the iteration counts (left
panel) and the number of iterations (central panel) as a function of the eigenvalue
tolerance. As the tolerance decreases, the number of iterations needed by the PCG
always decreases; the effectiveness of using smaller tolerances increases as the tolerance
decreases, since more constraints are added at lower tolerances. Indeed, approximately
1000 primal constraints are enough to decrease the iterations from 70 to 15; instead,

Table 1
Iteration counts (it) and condition number estimates (κ2) of the PCG method are reported for

different values of the contrast in material coefficients. Material coefficients α and β of (4.1) are
randomly chosen in the range [10−p, 10p] and [10−q , 10q ], respectively. Adaptive BDDC deluxe
with eigenvalue threshold 10.

HHHHq
p

0 1 2 3 4

0
1
2
3
4

it κ2
17 6.05
22 9.98
22 9.75
21 8.58
22 9.54

it κ2
16 5.85
22 9.99
22 9.73
21 8.55
21 9.62

it κ2
14 5.13
20 9.70
20 9.64
20 9.26
20 9.90

it κ2
11 4.03
18 10.22
19 11.45
17 9.45
19 10.28

it κ2
10 3.58
15 8.64
18 12.53
17 9.05
17 9.09
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Fig. 3. PCG iteration counts as a function of eigenvalue tolerance (left panel) and primal
constraints (central panel). Right panel shows setup times, solving times for Krylov solver and total
(setup+solve) time as a function of eigenvalue tolerance. Fixed distribution of material coefficients
of (4.1) randomly chosen in [10−3, 103].

almost 4000 constraints are needed to further reduce the number of iterations from
15 to 3. Computational times shown in the right panel are given for the setup of
the preconditioner (Setup), for the Krylov solver (Solve), and for the sum of the two
phases (Total) as a function of the eigenvalue tolerance; as expected, as the tolerance
is decreased, setup times increase and solving times decrease. At larger tolerances
(thus with smaller coarse spaces and less effective BDDC preconditioners), the costs
associated with the eigenvalue computations and with the factorization of the coarse
problem are negligible compared to the setup of the local solvers and to the explicit
computations of the Schur complements (data not shown); as a result, setup times
are almost constant for thresholds larger than 10. For smaller thresholds, a very
rich coarse space is instead generated and factored, and computational times grow
accordingly. On the other hand, solving times constantly decrease as the tolerance
is decreased, as a result of a smaller number of Krylov iterations; also, the costs
associated to the application of the preconditioner remain almost constants (data not
shown) for the case considered.

4.2. Weak scaling of adaptive multilevel BDDC. We next report on two
weak scaling tests for problem (4.1). The purpose of the first test is to validate the
multilevel BDDC framework with high-quality coarse BDDC solvers. Subdomain sizes
are kept fixed with approximately 35K degrees of freedom per core while the number
of processors is increased from 4096 to 32,768; the number of degrees of freedom ranges
from 108 million to 915 million, and the size of the coarse problem increases from 28K
to 230K degrees of freedom. Constant material parameters are considered, and the
averages of the normal components on each subdomain face (as given by the so-called
no-net-flux condition) are used as primal constraints at the finest level [65]. In Figure
4, standard BDDC with MUMPS parallel Cholesky solver on a subcommunicator
(direct MUMPS label) is compared against adaptive multilevel BDDC with coarsening
ratio 32 (CR32 label); setup (left) and solving (center) times as a function of the
number of subdomains are provided, together with the total number of iterations
(right) needed by the PCG. For the standard BDDC case, the computational times
reported correspond to the best results obtained by testing different sizes of the sub-
communicator associated with the coarse problem. In the multilevel case, ParMETIS
is used to distribute the coarse mesh, and constraint adaptivity is used at the coarser
level, since an optimal set of primal constraints for this problem is not known a priori;
an eigenvalue threshold equal to 2 is used. A sequential Cholesky solver from MUMPS
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Fig. 4. Weak scaling test for (4.1) with constant material coefficients. Standard BDDC with
direct coarse solver (direct MUMPS) is compared against adaptive multilevel BDDC with coarsening
ratio 32 (CR32). Computational times in seconds for the setup of the preconditioner (left) and for
the PCG (right) are shown as a function of the number of processors.

is always used for the coarse problems generated at the coarser levels, given that the
sizes of these problems are always small.

Setup times depend on the number of subdomains in both cases; however, the
setup costs of the multilevel BDDC preconditioner at the second level are always
modest and the dependence on the number of subdomain is weaker than if using a
parallel direct coarse solver. In particular, the increase of setup times for the multilevel
case is due to the partitioning of the coarser mesh, the redistribution of the coarse
elements matrices (3.11), and the following assembling of coarse subdomain matrices;
the costs related to the adaptive enrichment of primal space at the coarse level are
negligible (data not shown). The solving times using a direct coarse solver degrade
as the number of processors increases, since the coarse solver dominates the timings
of the preconditioning step. On the other hand, the inexact solution of the coarse
problem using a high-quality adaptive BDDC preconditioner does not significantly
affect the convergence properties of the method, since it requires only a few more
iterations to converge than the exact version. Solving times are almost constant, and
the efficiency of the application stage of the adaptive multilevel BDDC preconditioner
is 99% with 32K cores, computed as

(4.2) Ep = p1
Sp

p
, Sp =

Np1

Tp1

Tp
Np

,

where Np is the size of the problem solved with p processes, Tp the time spent in the
stage, and Tp1

the reference time with p1 = 4096 cores.
The second weak scaling test is performed using the same settings as before,

except that the material parameters are here elementwise randomly chosen with p =
q = 2, and the number of the degrees of freedom per subdomain is larger, with
each subdomain having approximately 80K unknowns; the total number of degrees
of freedom ranges from 263 million to 2.1 billion. Threshold values of 10 and 2 have
been used for the generalized eigenvalue problem (3.17) at the finest and coarse levels,
respectively. Different coarsening ratios for the adaptive multilevel BDDC (64, 96, and
128) are here compared, whereas the standard BDDC with parallel Cholesky coarse
solver has not been considered, since the sizes of the coarse problems generated by
the adaptive selection of constraints is much larger than in the previous test; at the
finest levels, coarse problem sizes range from 218K for the case with 4K subdomains
to 1.9M degrees of freedom for the case with 32K subdomains.

Computational times for the setup and solve phases of PCBDDC are reported as
a function of the number of subdomains in Figure 5. Setup times for the adaptive
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Fig. 5. Weak scaling test for (4.1) with random material coefficients in [10−2, 102]. Adaptive
multilevel BDDC with coarsening ratios 64 (CR64), 96 (CR96), and 128 (CR128). Computational
times in seconds for the setup of the preconditioner (left) and for the PCG (right) are shown as a
function of the number of processors.

Table 2
Computational times for the main phases of the adaptive selection of constraints at the finest

level in the weak scaling test for (4.1) with random material coefficients in [10−2, 102]. Minimum
and maximum times (in seconds) are reported for the explicit computation of the Schur complement
(S), its explicit inversion (S−1), and the solution of all the generalized eigenvalue problems (GEP).

procs S S−1 GEP

8192
16384
32768

min max
1.02 2.23
0.98 2.32
0.94 2.30

min max
0.25 4.82
0.23 5.28
0.24 5.57

min max
0.05 0.52
0.08 0.49
0.06 0.68

multilevel BDDC method are larger than in the constant coefficients case, but they
are still acceptable considering the highly heterogeneous problem we are solving. The
increase of setup time is due to the larger sizes of the subdomains and to the use of
adaptivity at the finest levels, that in turn generate larger coarse subdomain matrices
(3.11). Also, a very strict eigenvalue tolerance for the computation of primal con-
straints has been used at the coarser levels, in order to stress as much as possible the
current PCBDDC code and reveal its weaknesses; as a result of the very low threshold
used, coarse problem sizes at the second levels range from 12K to 141K for CR64, from
8K to 104K for CR96, and from 7K to 85K for CR128. The setup costs of a parallel
Cholesky solver for these problems are not negligible and increase as the number of
coarse subdomains increases.

Detailed timings for the three main phases of the adaptive technique employed
are shown in Tables 2 and 3 for the finest and coarser levels, respectively. The phases
considered are the explicit computation of the local Schur complement (S), its explicit
inversion (S−1), and the solution of the local generalized eigenvalue problems on
subdomain faces; minimum and maximum times for each phase are reported. Results
reveal that the costs for the eigenvalue computations are negligible; instead, a very
poor load balancing in the local interface sizes affects the timings for the other two
phases, with the explicit inversion step being most affected, since the complexity of
this algorithm is cubical in the matrix size. The same issues are observed at the
coarser level, and they are more pronounced with larger coarsening ratios (see Table
3). However, the performances of the adaptive multilevel BDDC algorithm for the
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Table 3
Computational times for the main phases of the adaptive selection of constraints at the coarser

levels in the weak scaling test for (4.1) with random material coefficients in [10−2, 102]. Minimum
and maximum times (in seconds) are reported for the explicit computation of the Schur complement
and its explicit inversion for the cases CR64 and CR128.

procs S64 S−1
64 S128 S−1

128

8192
16384
32768

min max
0.13 0.71
0.18 0.82
0.16 0.80

min max
0.05 1.00
0.07 1.31
0.06 1.95

min max
0.53 2.21
0.56 2.32
0.55 2.45

min max
0.26 3.71
0.31 4.41
0.28 4.98

highly heterogeneous SPD problem at hand are very good in the solve phase, since
the number of Krylov iterations is constant and equal to 21 (data not shown), and
the solving times weakly increase as the number of subdomains increases, due to the
increasing costs of the parallel Cholesky solver for the coarse problem of the coarser
level.

4.3. Weak scaling at Shaheen’s full scale. We end this section by reporting
the results of a weak scaling test using Shaheen at full scale. The model problem
considered here is the Poisson problem on the unit cube discretized with linear hex-
ahedral elements; Dirichlet boundary conditions are imposed on a face of the unit
cube, whereas Neumann conditions are imposed elsewhere on the boundary. Cubical
subdomains are considered. The test is meant to validate the current multilevel im-
plementation on a very large number of cores. The sizes of the local problems are kept
fixed at 64K degrees of freedom per core, and the number of subdomains is increased
to 195K, for a total of 12.4 billion degrees of freedom. Inexact subdomain solvers with
nullspace corrections [25] are used applying one V-cycle of boomerAMG [35] from the
HYPRE library [36], using two sweeps per multigrid level with symmetric-SOR re-
laxation. Vertices and edge averages have been used to customize the primal space
of PCBDDC at the finest level; multilevel BDDC with one extra level and coarsening
ratio 768 is considered for the coarse solver, using vertices constraints together with
edge and face averages at the coarser level. Cardinality scaling has been used at all
levels. Since ParMETIS [37] is used to the decompose the coarser meshes, the coarse
subdomains no longer possess cubical shapes. Sequential Cholesky factorizations from
CHOLMOD [22] are used for all the solvers at the coarser level. Figure 6 shows the
timings for the setup (left panel), solve (central panel), and application (right) phases
of PCBDDC. Setup times increase as the number of processors increases, but they re-
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Fig. 6. Weak scaling test for the inexact multilevel BDDC. Computational times (in seconds)
for the setup of the preconditioner (left), the PCG (central), and the application of the preconditioner
(right) are plotted as a function of the number of processors.
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main bounded using the machine at full scale; the increase of solving times results
from the different number of iterations needed by the PCG (data not shown). Indeed,
the computational times for the application of PCBDDC remain almost constant; the
efficiency of the application stage of the preconditioner is about 92% with 195K cores,
computed by using (4.2) with p1 = 5184. Similar results have been obtained by other
groups on an IBM BlueGene/Q machine [8].

5. Conclusions and future work. The current work has presented a novel
class of preconditioners in the PETSc library which are based on BDDC techniques;
the construction of the unassembled linear operators needed by the methods and
the preconditioner customization have been presented. Large-scale numerical results
up to 195K cores have established the scalability of the current implementation. An
experimental interface to the FETI-DP method, dual of BDDC, has also been detailed.

The construction of the unassembled operator using the PETSc MATIS format is
currently left to the user; future implementations plan to support the creation of the
MATIS object from within the DMPlex container in order to natively support the most
recent features of PETSc for finite element discretizations. Future implementation of
the PCBDDC class will include a face-based selection of primal vertices [72] in order to
guarantee well-posed local corrections; also, future extensions of the adaptive selec-
tion of constraints will consider different factorization packages that provide a Schur
complement support, in order to remove the restriction to 32-bit integer builds which
has been inherited from the external package MUMPS. An interface to PCBDDC from
the C++ DOLFIN library is currently under development and will be integrated into
the future versions of the FENICS package.

The numerical results provided in the current work for synthetic highly heteroge-
neous SPD systems encourage future research on the adaptive selection of constraints
for symmetric indefinite or nonsymmetric linear systems. Even if it is still to be
demonstrated to what extent the adaptive selection of constraints will lead to com-
petitive BDDC algorithms in real applications, the overall technique is well suited
for future exascale machines, where local flops are expected to be cheap compared to
data movement [27]. Also, having the ability to control the condition number, the
adaptive enrichment of the primal space makes it possible to reduce dramatically the
number of iterations of the Krylov solver in a black-box fashion; this in turn reduces
the number of global synchronization steps needed by the iterative solver. Sensitivity
analysis on generalized eigenvalue thresholds and related strong scaling tests will be
meaningful in real test cases and they will be the subject of future research. Adap-
tive BDDC algorithms are currently under study for the mixed formulation of porous
media flows with lowest order Raviart–Thomas elements [82] and in the context of
magnetic inversion [20] using lowest order Nédélec elements.

The results provided here will serve as a basis for future optimizations of the code;
mesh partitioning algorithms that are able to balance the size of the local interface and
not only the number of degrees of freedom per subdomains [21] are key to the success
of the algorithm. Also, the possibility of exploiting hardware accelerators during the
adaptive process will be the subject of future research, with a specific focus to the
explicit inversion of the local Schur complements [2, 59].

Finally, future research efforts may consider the possibility of expanding the
BDDC methods toward black-box hybrid solvers [1] for elliptic problems, by approx-
imately disassembling already assembled SPD matrices in a way that preserves the
fundamental requirements of the unassembled problems, even if exact information
about their discrete origins is not known.
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