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Abstract We give an overview of four different ensemble-based techniques for uncertainty quantifica-
tion and illustrate their application in the context of oil plume simulations. These techniques share the com-
mon paradigm of constructing a model proxy that efficiently captures the functional dependence of the
model output on uncertain model inputs. This proxy is then used to explore the space of uncertain inputs
using a large number of samples, so that reliable estimates of the model’s output statistics can be calcu-
lated. Three of these techniques use polynomial chaos (PC) expansions to construct the model proxy, but
they differ in their approach to determining the expansions’ coefficients; the fourth technique uses Gaussian
Process Regression (GPR). An integral plume model for simulating the Deepwater Horizon oil-gas blowout
provides examples for illustrating the different techniques. A Monte Carlo ensemble of 50,000 model simu-
lations is used for gauging the performance of the different proxies. The examples illustrate how regression-
based techniques can outperform projection-based techniques when the model output is noisy. They also
demonstrate that robust uncertainty analysis can be performed at a fraction of the cost of the Monte Carlo
calculation.

1. Introduction

The rapid increase in computational power and the increased sophistication of numerical models have
made simulations an essential tool in engineering and scientific disciplines. Reliable simulations demand
good fidelity between the real system and its virtual counterpart, and modelers attempt to limit the dispar-
ities between the two. The sources of these disparities can be roughly categorized into: modeling errors
(misspecifying the mathematical model describing the real system), numerical errors generated by the dis-
cretization of the continuous mathematical equations, and data errors caused by uncertainties in the mod-
el’s input data, such as its initial and boundary conditions, forcing, model parameters, etc. The focus here is
on data errors.

Uncertainty quantification (UQ) is concerned with estimating the impact of the uncertain input data on the
model’s outputs. It aims to enhance the model’s usefulness by presenting an output in a probabilistic frame-
work that allows users to estimate robustly and efficiently its most likely value as well as the confidence and
uncertainties associated with that value. This propagation of uncertainty through the model allows addi-
tional uncertainty analyses such as determining the principal contributors to the output uncertainties (sensi-
tivity analysis), using observational data to refine input uncertainties and thereby to reduce output
uncertainties (inverse propagation analysis and data assimilation), and guiding the acquisition of additional
observational data (observing system simulation experiments).

The present article provides an overview of several inexpensive techniques for propagating uncertainty in
inputs to outputs and compares their performance within the context of a simple integral plume model of a
deep sea oil spill. Such a comparison is not feasible for more complex models due to the high cost of each
run, but this model’s relatively low cost permitted the use of traditional Monte Carlo simulations to obtain
output statistics for comparison with those resulting from the inexpensive techniques. Applications of these
different techniques to oil-fate modeling [Gonçalves et al., 2016], plume modeling (S. Wang et al.,

Special Section:
Physical Processes
Responsible for Material
Transport in the Gulf of
Mexico for Oil Spill
Applications

Key Points:
� Overview of surrogate construction

with polynomial chaos and Gaussian
process methods
� Uncertainty quantification with

surrogates is more efficient than
Monte Carlo methods
� Noisy model outputs require filtering

Correspondence to:
M. Iskandarani,
miskandarani@rsmas.miami.edu

Citation:
Iskandarani, M., S. Wang, A. Srinivasan,
W. Carlisle Thacker, J. Winokur, and
O. M. Knio (2016), An overview of
uncertainty quantification techniques
with application to oceanic and
oil-spill simulations, J. Geophys. Res.
Oceans, 121, 2789–2808, doi:10.1002/
2015JC011366.

Received 1 OCT 2015

Accepted 31 MAR 2016

Accepted article online 4 APR 2016

Published online 22 APR 2016

VC 2016. American Geophysical Union.

All Rights Reserved.

ISKANDARANI ET AL. OVERVIEW OF UNCERTAINTY QUANTIFICATION 2789

Journal of Geophysical Research: Oceans

PUBLICATIONS

http://dx.doi.org/10.1002/2015JC011366
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/PHYSPROC1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/PHYSPROC1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/PHYSPROC1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/PHYSPROC1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/PHYSPROC1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model, submitted to Journal
of Geophysical Research: Oceans, 2016, Wang 2016 hereafter), and to circulation forecasting in the Gulf of
Mexico (M. Iskandarani et al., Quantifying Uncertainty in Gulf of Mexico Forecasts Stemming from Uncertain
Initial Conditions, submitted to Journal of Geophysical Research: Oceans, 2016, Iskandarani 2016 hereafter)
will be presented in separate articles in the special JGR issue on ‘‘Physical Processes Responsible for Material
Transport in the Gulf of Mexico for Oil Spill Applications.’’ The present article consolidates the methodology
sections of these papers. It also provides the opportunity to present to oceanographers the rapidly evolving
field of uncertainty quantification.

The propagation of uncertainty can be viewed as the transformation of an input probability density function
(PDF) into an output probability density function. For example, the ensemble of input data specifying the
Monte Carlo simulations is drawn from the input PDF and the ensemble of outputs these runs produce can
be regarded as being drawn from the output PDF. The main drawback of this direct approach is the large
number of simulations required, which prohibits its application when sufficient computational resources are
unavailable or when the uncertainty analysis must be performed in a relatively short period.

Alternatives to Monte Carlo sampling, which are the focus of the present article, rely on what could be
described as ‘‘indirect’’ sampling. An inexpensive proxy for the model is constructed using a relatively small
ensemble size, and this proxy is then used to generate a much larger ensemble. In effect, most of the costly
simulations are replaced with cheap proxy counterparts. The reliability and efficiency of this approach
hinges on producing an efficient and accurate proxy for the forward model. Polynomial chaos expansions
and Gaussian Process Regressions are two categories of such techniques (the proxy is often referred to as
surrogate in the first case and an emulator in the second; here we will use the three terms interchangeably).
Three of the four proxy construction techniques presented here use spectral expansions made up of
orthogonal polynomials to represent the dependence of the model output on the uncertain inputs; they dif-
fer in their approach to calculate the series coefficients (Galerkin projection, least squares, and basis pursuit
denoising). The fourth technique relies on Gaussian Process Regression (GPR) and requires the specification
of a covariance function and its hyperparameters. The four techniques can be regarded as different ways to
reconstruct the output’s response surface [Thacker et al., 2015] using a relatively small ensemble. All four
can be characterized as ‘‘nonintrusive’’ (requiring no modification of model code) and as ensemble-based
[Le Mâıtre et al., 2002].

The four techniques could also be grouped according to how they handle noise, which could be generated
inadvertently by iterative procedures in the model or intrinsically by stochastic model parameterizations
and forcing. PC Galerkin projection does not handle noise explicitly, and thus can suffer from aliasing effects
when sampling noisy model output. The other techniques can extract the model signal by filtering the
noise via either a least squares [Blatman, 2009] or a Bayesian approach [Sargsyan et al., 2009].

The layout of this paper is as follows. Section 2 discusses the characterization of the input uncertainties in
terms of their PDFs and establishes some notation for later use. Section 3 briefly describes the different PC-
based approaches, and section 4 introduces the Gaussian process approach. Section 5 introduces the inte-
gral plume model and its UQ analysis using the different approaches presented here. Finally, section 6 con-
cludes with a discussion.

2. Characterizing the Input Uncertainty

Let uðx; hÞ refer to the model output requiring uncertainty analysis; u depends on the vector of
deterministic-independent variables x (such as space and time) and on the vector of uncertain input data
h5ðh1; . . . ; hd; . . . ; hDÞ>, where D is the number of uncertain inputs (and the dimension of the uncertainty
space). Computational models require the specification of a value for each hd. The ‘‘correct’’ value may not
be known however, and modelers must then pick a value from within an acceptable uncertainty range:
hmin

d � hd � hmax
d (the uncertainty interval can be infinite or semi-infinite); most often the value chosen

coincide with a mean or central value. The quantification of the uncertainty in hd requires that an input PDF
also be assigned for each parameter.

A first step in UQ analysis consists of identifying and characterizing the input uncertainties by their ranges
and PDFs. Modelers can easily recognize the uncertain inputs in a given model, but specifying the PDF can
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be quite difficult in practice. This is largely due to a lack of knowledge and to the scarcity of observational
data. The problem is particularly severe in the case of oceanic flows where dynamical scales are small com-
pared to the basin size, and where extreme conditions make measurements very difficult and costly. One
course of action is to use available data to identify the ranges of the uncertain inputs and, in the absence of
additional information, to consider the parameter to be uniformly distributed. If additional information is
available, the user can use it to sharpen his/her estimate of the input PDF. The applications discussed in
Thacker et al. [2012], Sraj et al. [2013a, 2014], and Gonçalves et al. [2016] and in Wang 2016 and Iskandarani
2016 illustrate how the observational data are used to identify the uncertainty ranges of the input parame-
ters. See also Webster and Sokolov [2000] for an interesting discussion on how expert opinion can be used
to inform the specification of input PDFs.

An additional complication arises when the uncertain input is a field and not a scalar quantity. For example,
initial conditions uncertainties can conceivably involve treating every prognostic model variable at each
computational grid cell as an independent random variable whose input PDF needs to be specified; this is
clearly impractical. Some mechanism is needed to limit the dimension of the uncertain space while captur-
ing most of the uncertainty associated with that field. One solution is to decompose the field into Empirical
Orthogonal Functions (EOFs) and to characterize the field’s uncertainties as uncertainties in the amplitudes
of a few EOFs. Iskandarani 2016 and Gonçalves et al. [2016] rely on these EOFs to perturb fields. For the
remainder of the paper, we assume that the user has capitalized on the available a priori information to
specify the uncertain parameters and their input PDFs.

It is convenient to introduce (dimensionless) standard random variables that are related to the original
parameters by a simple map, e.g.,

nd5

hd2hmin
d

hmax
d 2hmin

d

when the uncertainty range is finite

hd2�hd

rhd

when the uncertainty range is infinite

;

8>>>>><
>>>>>:

(1)

where �hd and rhd are the mean and standard deviation of hd. The vector n5ðn1; . . . ; nDÞ> will refer to the
uncertain input variables in the remainder of this article, and we will omit referencing the deterministic vari-
ables x for clarity of presentation.

3. Polynomial Chaos Expansions

Polynomial chaos (PC) [Wiener, 1938; Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Najm, 2009; Le
Mâıtre and Knio, 2010] is a spectral-type expansion where the model dependence on the uncertain input
variables is represented as a polynomial expansion of the form:

uðnÞ � uPðnÞ5
XP

k50

ûkwkðnÞ; (2)

where uðnÞ is the model output (presumed to have finite variance) and uP is its truncated series representa-
tion, ûk are the PC coefficients (both of which in general depend on x), n is the vector of independent uncer-
tain input variables with joint PDF pðnÞ, and wkðnÞ are orthogonal multivariate polynomial basis functions in
the n-space. Appendix A provides some details on the multidimensional construction and truncation of the
basis functions. For reference, we also define the discrepancy between the model response and its truncated
representation, which defines the error associated with using the surrogate rather than the original model:

�ðnÞ5uðnÞ2uPðnÞ: (3)

The basis functions wkðnÞ are chosen to form an orthogonal basis in the weighted inner product defined by

hf ; gi5
ð

f ðnÞ gðnÞ pðnÞ dn; so that hwj;wki5dj;khwk;wki5dj;kjjwkjj
2
2 ; (4)

where f ðnÞ and gðnÞ are any two square integrable functions of n (meaning that their norms as defined in
equation (4), jjf jj2 and jjgjj2, are finite), and dj;k is equal to 1 when j 5 k and 0 otherwise. Table 5 lists
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examples of orthogonal bases for some commonly used weight functions. Since the weight pðnÞ appearing
in the inner product is the input PDF, the inner product coincides with an expectation operation on the
quantity fg. This simplifies the calculation of statistical moments of u; for example, the mean reduces to the
first coefficient û0 whereas the variance is simply a weighted sum of the square of the remaining coeffi-
cients (see Appendix B). The truncation level P controls the accuracy of the series representation and, along
with the dimension of the uncertain space D, the computational cost required to calculate the ðP11Þ coeffi-
cients. Once the ûk are available, the series can be used as a surrogate for the model and sampled much
more efficiently. The bulk of the computational burden is then associated with the determination of these
coefficients.

Several nonintrusive (ensemble-based) approaches are available to determine these coefficients, namely
Galerkin projection [Ghanem and Spanos, 1991; Le Mâıtre et al., 2002; Le Mâıtre and Knio, 2010], least squares
[Blatman, 2009], and compressed sensing [Doostan and Owhadi, 2011]. The main philosophy of the different
approaches revolves around minimizing different norms of the truncation error �.

3.1. Galerkin Projection
The Galerkin projection determines the coefficients by minimizing the error norm jj�jj25

ffiffiffiffiffiffiffiffiffiffi
h�; �i

p
, where the

angle brackets refer to the inner product defined in equation (4). Thanks to the orthogonality property of
the basis set, this minimization reduces to a simple projection of u on the basis set with the coefficients
given by:

ûk5
hu;wki
hwk ;wki

: (5)

The remaining task is the evaluation of the integral to compute the inner product in the numerator. This
can be done by numerical quadrature:

hu;wki5
ð

uðnÞwkðnÞpðnÞ dn �
XS

i51

uðniÞwkðniÞxi ; (6)

where ni and xi are the quadrature’s points and weights and where S is the number of quadrature points
needed for an accurate approximation. The Galerkin approach is often referred to as ‘‘pseudospectral’’ when
numerical quadrature is used to compute the series coefficients. The main computational expense is the
evaluation of the model output uðniÞ for inputs specified by the quadrature points, since each quadrature
point requires a run of the numerical model. A number of quadrature rules are available such as tensorized
Gauss quadrature, Sparse Smolyak, and their adaptive variants (see Appendices A and C for a brief discus-
sion on the construction of multidimensional basis functions and quadrature).

In this study, we use the pseudospectral projection based on Gauss-Kronrod-Patterson 1-D rule for the
Galerkin projection; its details can be found in Gerstner and Griebel [1998, 2003], Huan [2010], Constantine
et al. [2012a], Conrad and Marzouk [2013], and Winokur et al. [2013]. The projection approach is most suita-
ble when the function uðnÞ varies smoothly with respect to n as a low-order expansion is then sufficient to
approximate the model output accurately. The projection’s computational cost can however become prob-
lematic when high-order expansions are necessary, for example, when localized sharp transitions occur
within the interval of interest. Moreover, when uðnÞ is polluted by small-scale noise, other approaches are
required; sections 3.2, 3.3, and 4 discuss regression-based techniques that can filter this noise effectively.

3.2. Least Squares Regression
The least squares approach oversamples the response surface to filter the noise and thus requires more
samples than model coefficients, S > ðP11Þ. The series coefficients are determined by minimizing the sum
of the squared discrepancy between surrogate and model response at the S sample points:

jj�jj2LS5
XS

i51

uðniÞ2uPðniÞð Þ2: (7)

Note that the S sampling points are not necessarily quadrature points. This leads to the least squares solu-
tion [Blatman, 2009] for the series coefficients:
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û5 WW>
� �21

Wu; (8)

where W is a ðP11Þ3S matrix whose entries are given by Wk;i5wkðniÞ; û>5ðû0; . . . ; ûPÞ is the vector of PC
coefficients that minimizes the sum of the squared discrepancy, and u>5ðuðn1Þ; . . . ; uðnSÞÞ is the S31 vec-
tor of samples of the response surface. Again, the computation of u constitutes the bulk of the cost; the
least squares approach incurs the additional cost of solving the matrix system (8). The choice of sampling
points is a delicate matter since an ill-conditioned matrix WW> may lead to an unstable calculation. A num-
ber of recent articles [Hampton and Doostan, 2015; Zhou et al., 2014; Shin and Xiu, 2016; P. Seshadri et al.,
Optimal quadrature subsampling for least squares polynomial approximations, arXiv:1601.05470, 2016]
have proposed optimal and stable sampling strategies for least squares polynomial approximations in high-
dimensional spaces.

If the number of samples is the same as the number of coefficients, S5ðP11Þ, the matrix W is square and,
provided it is nonsingular, admits a solution of the form û5ðW>Þ21u [Tatang et al., 1997]. Then, rather than
smoothing the response samples, as one might want when the response is noisy, the series reproduces
them exactly, uðniÞ5uPðniÞ for 1 � i � S, so that the discrepancy in the surrogate, equation (3), is exactly
zero at the sampling points and jj�jjLS vanishes. In this case, the choice of points to sample is still a delicate
matter, as it can cause W> to be ill conditioned. Alternatively, the stochastic collocation method [Klimke,
2006a,b; Ganapathysubramanian and Zabaras, 2007; Le Mâıtre and Knio, 2010; Narayan and Zhou, 2015] also
enforces zero discrepancy at the sampling points but avoids the matrix inversion by linearly recombining
the orthogonal polynomials to produce the so-called nodal basis, where each basis functions is equal to 1
at only one sample point and 0 at all the others (the coefficient of that basis function becomes the value of
the response at the sampling point); again, numerical stability is achieved by careful selection of the sam-
pling points. Approaches to determine the coefficients that force the discrepancy to be zero at the sampling
points are, however, ineffective when model noise is present, irrespective of the nature of the basis func-
tions and the sampling strategy.

3.3. Basis Pursuit Denoising
The Basis Pursuit Denoising (BPDN) approach [Doostan and Owhadi, 2011] seeks to build a sparse represen-
tation of the response function (2), i.e., one that represents the simulated response to within a given toler-
ance while retaining as few coefficients in the series as possible (the sparsity requirement). To this end, the
BDPN algorithm minimizes the sum of the magnitude of the series coefficients while requiring the discrep-
ancy between the surrogate and model to be small:

min
XP

k51

jûk j
 !

subject to jj�jjLS5
XS

i51

uðniÞ2uPðniÞð Þ2
" #1

2

� r: (9)

The use of jj�jjLS as constraint allows this technique to choose the fewest terms while guaranteeing that
root-mean-square differences between surrogate and samples is no greater than the specified tolerance r.
The inequality constraint on the magnitude of the discrepancy allows BDPN to handle noisy model outputs,
and the chosen tolerance r should reflect the noise’s amplitude. The BDPN algorithm works best when the
response function is sparse, i.e., when a small fractions of the terms dominate the truncated PC expansion.
In that case, the number of samples needed to reconstruct the function can be much smaller than the num-
ber of terms retained in the series: S� ðP11Þ. The choice of the noise level r is important for BDPN. If r is
too small, the surrogate may overfit the data, while if r is too large, it may not be accurate. A cross-
validation approach proposed in Doostan and Owhadi [2011] and Peng et al. [2014] can be used to select
the optimal r. The BPDN software used here is the SPGL1 [van den Berg and Friedlander, 2007, 2008] Matlab
solver.

4. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) [Rasmussen and Williams, 2006] relies on an intrinsically statistical
approach to approximate the model output’s dependence on its uncertain input data. Constructing a GPR
surrogate is not viewed as the truncation of a spectral expansion, as was the case for the polynomial chaos
surrogates, instead, reproducing-kernel Hilbert spaces [Weinert, 1982], provide its function-theoretic
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foundations. In practice, GPR involves the choice of a mean function, which specifies the default response
when there are no simulations that can provide guidance, and a covariance function, which specifies how
closely the surrogate for one set of inputs resembles another as the two sets of inputs become separated.
This is exactly the same mathematics used commonly for data assimilation [Daley, 1993; Kalnay, 2003]: a
forecast, which is to be corrected by observations, provides the mean (background) function, an error-
covariance matrix is the covariance function evaluated for points on a computational grid, and the observa-
tions provide information for updating the forecast. Similarly, the sample outputs from model runs provide
information for updating the mean function. And just as is the case for data assimilation, the statistics are
best thought of as Bayesian. The mean function that is specified is the prior mean of possible surrogates
and the updated mean based on samples provided by model runs is the surrogate that is constructed. We
refer the reader to the appendix in Thacker et al. [2015] for more details on Gaussian Process Regression.

Because of its statistical underpinnings, GPR regression is ideal for providing a proxy for models with noise.
However, its approach to incorporating noise is different from those of polynomial chaos projection or
basis-pursuit denoising. For the least squares approach, more terms in the spectral expansion can be
retained until the proxy agrees with the model within a tolerance that allows for the magnitude of the
noise, while the compressed-sensing approach specifies the tolerance as an inequality constraint that is
used in controlling which terms in the expansion should be retained. GPR, on the other hand, handles noise
through the specification of a Gaussian probability density function relating sampled values to their noise-
free counterparts. Consequently, the maximum-likelihood GPR proxy is obtained by minimizing a sum of
two terms, one guaranteeing it is close to the samples, but not so close that it reflects the noise, and the
other guaranteeing it is not far from the prior mean, so the estimate would not be absurd for any choice of
input.

In practice, Gaussian Process Regression is quite straight-forward, as there is a simple equation relating the
proxy response ua5uðnaÞ to any input na desired:

ua5ma1K as K ss1Rssð Þ21ðus2msÞ ; (10)

where ma is the prior mean function evaluated at the analysis point na and where the vectors us and ms

contain the sampled model output and the values of the prior mean function at the corresponding points,
respectively. The covariance matrices K as and K ss are obtained by sampling the covariance function at pairs
of points, the former containing the covariance of the response at all sampled points with the response at
the analysis point and the later, for all pairs of sampled points. Finally, the covariance matrix Rss character-
izes the model noise manifesting in the samples. Similarly, there is a simple expression for the posterior
covariance matrix characterizing the error of the proxy:

Qaa5K aa2K as K ss1Rssð Þ21K>as ; (11)

where the elements of Qaa are covariances of the approximate response at pairs of analysis points and
where those of K aa; K ss, and K as are given by the covariance function evaluated using the pairs of analysis
or sampled points.

Before equations (10) and (11) can be used, it is necessary to specify the Gaussian process’ mean and covari-
ance functions and the covariance matrix for the model’s noise. Unless there is information about the
expected response, the mean function is typically taken to be an average of the samples. A common choice
for covariance function is the squared exponential:

kðni ; njÞ5r2
uexp 2

ðni2njÞ>Lðni2njÞ
2

" #
; (12)

where r2
u sets the magnitude and L is a positive definite matrix that determines the separation required

between inputs to produce a significant change in the models response. In the simplest case, L is diagonal
with Ldd5l22

d , where ld is the correlation length for the response in the direction corresponding to the dth
input. A simple choice for the noise covariance matrix is Rss5r2I where I is an identity matrix; this is equiva-
lent to assuming that the noise of each sample is independent and identically distributed with zero mean
and variance r2. The choice of the hyperparameters (r, ru, and fLgÞ affects the performance of GPR; Ras-
mussen [2006] discusses various techniques to find their optimal values given the data.
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5. Test Problem

The performance of the different tech-
niques will be illustrated here using
the TAMOC integral plume model
[Socolofsky et al., 2008]. The test prob-
lem consists of simulating an oil-gas
plume resulting from a Deep Water
Horizon blowout scenario. TAMOC
simulates the plume within a few hun-
dred meters of the wellhead where
the dominant dynamical processes are

buoyancy, turbulent mixing, buoyancy peeling, and gas dissolution [Crounse et al., 2007]. TAMOC relies on a
combination of theoretical assumptions and empirical data to parametrize these processes; as such the
model output depends on quite a large number of uncertain inputs. Here we focus on a set of five uncertain
parameters that significantly influence the buoyancy of the plume. The parameters and their uncertainty
ranges are listed in Table 1; details on how the ranges were identified and a description of TAMOC can be
found in Wang 2016. The uncertain parameters will be assumed to be uniformly distributed within the
ranges indicated and we use the simple linear map in equation (1) to calculate the corresponding standar-
dized input variables nd. Furthermore, we restrict our attention to two model outputs, namely the trap
height (i.e., the depth of the deepest intrusion layer) and the peel height which designates the level at
which the plume stops ascending. Analyses of additional quantities of interest are presented in Wang 2016.

5.1. Proxy Model Configurations
Four different surrogates for the TAMOC plume model are considered, three that use polynomial chaos
approaches and one that uses a Gaussian Process approach. The PC-based surrogates are based on a uni-
form probability density for inputs within their prescribed minima and maxima, and use Legendre polyno-
mials as they are orthogonal when weighted uniformly. The PC-surrogates, however, differ in their
truncation to a finite basis and in the way their coefficients are determined. On the other hand, the GPR-
based surrogate requires the specification of suitable mean and covariance functions, the noise variance,
and the associated hyperparameters. The present subsection summarizes the setups used for the surro-
gates’ construction.

The multivariate PC basis consists of tensor products of univariate Legendre polynomials. For both trap
height and peal height, in all cases except one, the maximal degree for each uncertain input was set to 5,
the exception being a single PC regression experiment using ninth degree univariate polynomial factors.
However, the particular combination of univariate factors is different for the three different methods (see
Appendix A and Table 2 for more details). A total-order truncation (aka triangular truncation) discards terms
where the sum of the degrees of the univariate Legendre polynomial factors contributed by the various
inputs exceeds 5 and thus retains 252 multivariate polynomial terms, each with a coefficient to be deter-
mined. With this truncation, least squares regression using twice as many samples as coefficients to filter
model noise requires an ensemble of 504 TAMOC runs. With a library of these 252 multivariate basis func-
tions to choose from, basis pursuit denoising, on the other hand, requires only an ensemble of 100 simula-
tions and finds 32 nonzero coefficients for the trap height and 174 for the peel height. The
multidimensional quadrature (sparse Smolyak based on 1-D Gauss-Kronrod-Patterson quadrature) used
with the projection approach maximizes the number of mixed degree terms retained in the series and leads
to a truncation requiring the determination of 738 coefficients; their calculation required an ensemble of

903 realizations. The configurations of
these different PC bases and their sup-
porting ensembles are summarized in
Table 3 along with the list of numerical
experiments.

The GPR was configured with a con-
stant but unknown background ~u , and
with a squared exponential covariance

Table 1. Uncertain Input Variables and Their Initial Distributionsa

Parameter Parameter Range Units

Entrainment coefficient ð0:06, 0:116Þ
Entrainment ratio ð0:4, 0:6Þ
Gas-to-oil ratio (39.64, 84.95) m3/barrel
95th percentile of the droplet size (1, 10) mm
Droplet distribution spreading ratio ð1:5, 4Þ

aThe Ranges of the entrainment coefficient and entrainment ratio are from
Bhaumik [2005], the Gas-to-oil ratio range is from Reddy et al. [2012] and
Valentine et al. [2010], the ranges of the 95th percentile of the droplet size is
from Johansen et al. [2001], and the Droplet distribution spreading ratio range
from Lefebvre [1988].

Table 2. Ensemble Size Needed to Calculate the Coefficients in a Projection-
Based Five-Dimensional PC Series Truncated Isotropically at a Maximum Polyno-
mial Degree p, Using Different Quadrature Rules

Polynomial Degree (p) 1 2 3 4 5

Basis size ðP11Þ 6 21 56 126 252
Tensorized Gauss ðp11Þ5 6 36 216 1296 7776
Sparse Smolyak 11 51 151 391 903
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function of the form shown in equation (12). The matrix L is diagonal with entries Ldd5l22
d , where ld deter-

mines the range of influence of each sample along the dth direction. The list of hyperparameters consisted
of the eight parameters ðr;ru; l1�i�5; ~uÞ where ~u refers to the mean background value. A maximum-
likelihood method was used to identify the optimal hyperparameters and relied on conjugate gradient iter-
ations; 20 random restarts were used for each hyperparameter to avoid local extrema. The posterior GPR
hyperparameters are shown in the Table 4. The r hyperparameter in GPR represents the noise in the model
which is relatively small compared with the signal variance ru, and the characteristic length scales represent
the decorrelation length scales in different parameter dimensions.

The relative efficiency of TAMOC allowed us to perform an independent uncertainty analysis which
relied on a 50,000 Monte Carlo ensemble designed using Latin Hypercube Sampling. The MC analysis,
with its direct sampling of the model response, will allow us to gauge the merits of the different surro-
gates by measuring their approximation errors and their usefulness in representing the output’s statis-
tics. Additional samples were calculated to visualize the nature of the model response to variations in
the uncertain inputs along the five unidimensional axes passing through the center of the uncertain
space.

5.2. Response Curves Analysis
Figure 1 compares the different proxy response curves of trap and peel heights to unidimensional variations
in the uncertain inputs with those obtained from the unidimensional validation samples. The validation
samples reveal that the trap and peel heights calculations exhibit quite a bit of small-scale noise which is
attributable to the way the plume model terminates an iterative procedure and/or to TAMOC’s sensitivity to
the measured stratification profile. The noise is of small amplitude (less than 2% of the signal’s amplitude)
and the errors incurred are negligible from a practical point of view. The representation of this small-scale
noise in the PC surrogate series would require a very long series and a costly ensemble for no practical ben-
efit. Except for the noise, the curves exhibit very little curvature (in fact the trap height seems to vary linearly
with the entrainment coefficient and ratio but exhibits some nonlinear dependence on the 95th percentile
droplet size), so low-degree polynomials should be able to capture this behavior. The response curves of
the different proxies, whether PC-based or GPR, capture the large-scale trends but not the noise. The largest
errors seem to be associated with PC-projection, which is incapable of filtering the noise; its response curves
exhibits larger oscillations than the other approaches. The presence of noise in the response curves makes

Table 3. Table of Experiments, Proxy, and Sampling Configurations, and L2 Approximation Errorsa

Experiment Coefficient
Ensemble
Type/Size

Basis Size
or Kernel

Max. Poly.
Degree

Multidim.
Truncation S

Trap
Error

Peel
Error

PC-P Galerkin Quadrature/903 738 5 Pseudospectral 0.0509 0.0267

PC-R5 Regression Random/504 252 5

�X5

d51

md

�
� 5 0.0177 0.0097

PC-BPDN Sparse Random/100 252 5 Sparse 0.0195 0.0152

PC-R9 Regression Random/4004 2002 9

�X5

d51

md

�
� 9 0.0247 0.0139

GPR Regression Random/100 Squ. Exp 0.0159 0.0095
MC Random/50,000
REF-1D 200 3 5

aThe pseudospectral projection scheme calculates a larger number of coefficients than a traditional total-order truncation which has
only 252 coefficients. The additional terms retained are the high-order mixed terms disregarded by the traditional total-order trunca-
tion. The numbers of nonzero PC coefficients determined using BPDN are 32 for trap height and 174 for peel height. Only the Galerkin
projection required a quadrature-based ensemble, all the other techniques used randomly generated samples.

Table 4. GPR Hyperparameters for Trap Height and Peel Heighta

Hyperparameter Mean l1 l2 l3 l4 l5 ru r

Trap height (m) 327.22 5.13 7.43 11.75 1.95 7.77 162.09 3.38
Peel height (m) 558.43 2.56 6.00 7.30 1.72 6.23 222.55 3.17

al12l5 represents the characteristic length scales in each dimension, ru is the signal standard deviation, and r is the noise standard
deviation.
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this problem very challenging for projection-based techniques as they perform best when the dependence
of the model output on the model input is smooth [Sargsyan et al., 2009; Canuto et al., 2006].

The coefficients of the different PC approaches are shown in Figure 2. All methods return coefficients of
similar magnitude for the low-degree polynomial terms (left end of the x axis); the major differences are in
the magnitudes of the coefficients of the high-degree polynomials (right end of the x axis). The PC-P series
(black) retains the most polynomial terms but not enough to resolve the small-scale noise; the ensuing ali-
asing leads to high mode coefficients with substantial magnitude. The PC-R5 proxy (blue) exhibits a spec-
trum similar to PC-P for the high-order modes, except its spectrum is one third as long. Its ratio of number
of samples to coefficients is 2 whereas the pseudospectral projection’s is only 1.15; this higher ratio is prob-
ably responsible for the regression’s better overall performance. This suggests that regression using a larger
ratio of samples to number of coefficients would perform even better. The PC-BPDN series for the peel
height (right) is less sparse than the trap height series (left) as the former retains more coefficients than the
latter; most of these extra coefficients, however, have small magnitudes. Noisy model outputs thus repre-
sent a challenge to the construction of PC surrogates, and long PC series in this context are not necessarily
better, as they risk overfitting to model noise.
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Figure 1. Trap and peel height samples from the univariate validation sets (thin noisy black lines) and the proxy models’ response curves (colored thick lines) along the five central axes
of the space of uncertain inputs. The 1-D proxy response curves were calculated from the 5-D proxies by varying only one parameter at a time while fixing the others at their central
values.
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Figure 2. Distribution of coefficients for surrogates constructed using three polynomial-chaos methods. Recall that the number of coefficients and the polynomials that they multiply
are different for the different surrogates; (left) trap height PC coefficients; (right) peel height PC coefficients.
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5.3. Approximation Errors
The existence of model noise precludes a traditional analysis of the approximation error via a convergence
study. We thus turn to analyzing the statistical distribution of the approximation errors in the five-
dimensional uncertainty space. To this end, we define the relative local error as:

eðnMC
i Þ5

juproxyðnMC
i Þ2uMCðnMC

i Þj
max uMCð Þ2min uMCð Þ ; i51; 2; . . . ; 5 3 105; (13)

where nMC
i refers to the locations of the MC samples in the uncertain space.

Figure 3 show scatterplots of the relative local errors for trap and peel heights. Red lines indicating 95th per-
centile (Err95) levels have been added, so that it is possible to judge the magnitudes of the 5% of largest
errors. The 1-D validation sets and the GPR posterior for the noise hyperparameter suggest a relative noise
amplitudes of about 0.01–0.02, which provides a basis for judging whether relative local errors are large.
There is no need for the local errors to be much smaller than the noise, but few samples should be much
larger either. PC-P shows the largest errors: its Err95 is the largest (0.11 for trap height and 0.06 for peel
height) with the local error reaching as much as 0.40 for the trap height and 0.30 for the peel height at
some isolated sampling points. Quite a few PC-P surrogate samples have errors ranging between 0.15 and
0.30 for the trap height and 0.10 and 0.25 for the peel height. The regression methods, whether PC or GPR
based, perform substantially better: their Err95 level stands at 0.03 and 0.02 for the trap and peel heights,
respectively, and their maximum trap and peel heights error levels are 0.20 and 0.08, respectively, for GPR
and PC-BDPN. PC-R5 maximum errors are somewhat higher reaching 0.30 at five isolated points for the trap
height and 0.12 for the peel height. The best performers for the present problem are thus the PC-BDPN and
GPR as they produce the lowest error levels for the least amount of computations requiring only 100 sam-
ples each. Both PC-BPDN and GPR account for model error and for a sparse representation while PC-
regression only accounts for model error but does not guard against aliasing errors.

We also present a measure for the global error jjejj

jjejj5

X
i

uMCðnMC
i Þ2uproxyðnMC

i Þ
� �2

� �1
2

X
i

uMCðnMC
i Þ

� �2
� �1

2

: (14)

The global errors for trap height and peel height for the different proxy methods are shown in Table 3.
Again, PC-P exhibits the largest error while other methods perform similarly; one exception is that the PC-
BPDN peel height global error is larger than that from PC-R5 and GPR.

5.4. Comparison of Proxy-PDF to MC-PDF
The PDFs of the model outputs can be obtained by using the proxies to calculate a large number of model
realizations without any additional model runs. Using Latin Hypercube Sampling, 105 new input points were
generated and the trap and peel heights were then estimated using the different proxies. Figure 5 presents
PDFs for the resulting peel (left) and trap (middle) heights. For comparison, corresponding PDFs obtained
directly from the TAMOC Monte Carlo ensemble are also shown (Figure 4 confirms that the 503103 MC sam-
ples delivers a ‘‘converged’’ estimate for the PDFs). The MC-based PDF for the trap height indicates a narrow
peak near 275 m with a substantial shoulder between 300 and 360 m, while the peel height MC PDF has a
broader peak between 450 and 500 m and shows some skewness toward higher values but no shoulder. The
mode and spread of the peel height PDFs using proxies agree well with the MC reference solution. The proxy-
based PDFs for the trap height, however, differ from the reference solution in the central portion of the distri-
bution. Both PC-BDPN and GPR, with 100 realizations only, miss the mode and shoulder of the MC-PDF; they
exhibit a Gaussian-like shape with a mode at 325 m. PC-P shows a broad peak where the shoulder is expected
to be. Only the PC-R approach shows a hint of a peak near 275 m. All methods, however, seem to capture the
tails well.

The disparities between the MC PDF for trap height and its proxy counterparts were further investigated to
determine whether the discrepancies are caused by sampling errors, approximation errors or a combination
of both. An analysis of the MC samples to identify the origins of the shoulder, i.e., to identify which uncer-
tain input values lead to a trap height in the shoulder range, was inconclusive; no pattern was identifiable.
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Figure 3. Blue points indicate the relative errors of the proxies for (left) trap height and (right) peel height. From top to bottom: proxies
constructed using Gaussian-process regression, polynomial chaos regression, polynomial chaos basis-pursuit denoising, and polynomial
chaos projection. Horizontal red lines indicate the 95-percentile error.
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To investigate whether a PC series of higher polynomial degree might capture the shoulder, a new ninth
degree PC-R proxy is constructed using a basis set of 2002 coefficients and 4004 realizations; the ensuing
PDF is compared to that of the fifth degree PC-BPDN (100 realizations) and PC-R5 (504 realizations) in Figure
5, right. The ninth degree proxy PDF shows better agreement with the reference MC-PDF including the
appearance of a shoulder, and a better defined narrow mode along with a better estimate of its probability.
Additionally, we use the Kullback-Leibler [Kullback, 1959] divergence (also known as relative entropy):

DKLðpjjqÞ5
X

i

pðiÞln pðiÞ
qðiÞ

to quantify the distance between two discretely defined probability distributions p and q. DKL is nonnega-
tive, is zero if p and q are identical, and increases as p and q grow apart. The DKL divergences of the PC-
BPDN, PC-R5, and PC-R9 PDFs from the Monte Carlo PDF are 0.1084, 0.0276, and 0.0125, respectively; the
ninth degree basis is thus the closest to the MC-PDF. It appears that an improvement in the PDF estimate
can be obtained using a higher degree PC basis, but this improvement occurs at the expense of a very large
increase in the number of realizations. The following section attempts to describe the impact of misrepre-
senting the PDF on the sensitivity analysis.

5.5. Analysis of Variance
Analysis of variance, also known as sensitivity analysis in the UQ community, is an attempt at identifying
the largest contributors to forecast uncertainty by estimating the variance injected by the different variables
to the total variance; it is an important application of the forward uncertainty propagation. Here the impacts
of proxy approximation errors on the sensitivity analysis are investigated. Two measures of sensitivity are

Figure 4. Probability density function of the (left) peel height and (right) trap height as estimated by Monte Carlo sampling using different sample sizes. The pdfs of the two largest sam-
ples are in agreement.

Figure 5. Comparisons of (left) peel height and (middle) trap height PDFs obtained from different proxies with the reference Monte Carlo PDF. (right) Comparison of the trap height PDF
obtained using a new ninth degree polynomial basis (4004 realizations) with those obtained from a fifth degree basis using either regression or basis-pursuit denoising.
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commonly used. The first-order sensitivity index is the ratio of the variance contributed by the polynomial
terms involving only a single specified input to the variance accounted for by all the terms; it measures the
fraction of variance attributed to that input alone. The total-order sensitivity index is the relative variance
contributed by all terms involving that specified input; it attempts to account for the variance due to the
interaction of that input variable acting in concert with all the others. The orthogonality of the polynomials
makes the computations of these ratios extremely easy [Crestaux et al., 2009; Le Mâıtre and Knio, 2010; Alex-
anderian et al., 2012], whereas their estimation directly from model realizations is considerably more difficult
[Homma and Saltelli, 1996a; Saltelli, 2002]. Details of the estimation of sensitivity indices can be found in
Appendix D. First-order and total-order sensitivity of trap height and peel height to the five uncertain inputs
calculated in the previous three experiments are shown in Figures 6 and 7, respectively. The fact that the
sensitivity indices for the different surrogates agree with each other suggest that reliable sensitivity indices
can be obtained using PC surrogates.

6. Discussion

All surrogate construction methods discussed here are ensemble based and are nonintrusive; that is, no
code modification is necessary, and all that is needed is the ability to run the forward model at specified val-
ues of the uncertain parameters. The optimal approach to build a model surrogate is problem dependent,
and insight about the response surface, uðnÞ, is clearly very useful in deciding which surrogate type is most
suitable for the problem at hand. For model outputs that depends smoothly on the uncertain input data,
the Galerkin projections are quite practical and straightforward to implement as exemplified in several oce-
anic applications [Thacker et al., 2012; Alexanderian et al., 2012]; moreover, the adaptive construction used
in Winokur et al. [2013] and Sraj et al. [2013] was extremely useful in steering the sampling toward regions
in the uncertainty space that contributed most toward the output uncertainties. The test problem presented
here, on the other hand, features small-scale noise and methods that can filter it will fare better on this class

Figure 6. First-order and total-order sensitivity of trap height to the five uncertain inputs. Colors indicate the different polynomial chaos surrogates, bar heights indicate sensitivity, and
group labels indicate the input variable.
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of problems. The two model outputs analyzed here are the trap and peel heights. Both quantities exhibit
small-scale noise according to the one-dimensional plots in Figure 1; however, all proxies tested here per-
form better at representing the peel height than the trap height. The discrepancies between the different
proxies are most visible in the PDF of the trap height where, for low-order polynomials, the shoulder and
mode of the reference trap height PDF are either missed or barely present. Increasing the maximum poly-
nomial degree to 9 allows the regression-based PC to represent these features better at the expense of
increasing the ensemble size substantially. These errors in representing the PDF however do not seem to
affect the sensitivity calculation in substantial ways. A number of additional general remarks can be made.

Projection-based PC methods minimize h�; �i, dispense with the inversion of a linear system of equation,
sample the model at quadrature points, and do not suffer from ill conditioning because of the orthogonality
of the basis functions. Different quadrature rules can be used to approximate the projection integral, most
notably the pseudospectral technique of Constantine et al. [2012b] and Conrad and Marzouk [2013] com-
pute the coefficients incrementally and truncate the series adaptively by focusing the sampling along direc-
tions contributing the most to the variance (see also Winokur et al. [2013] for an example application).
Quadrature rules, however, are not very flexible, as they require model runs at a set of prescribed points,
many of which are near the edges of the uncertainty space, and the whole set may have to be discarded if
a single sampling point falls outside the operating regime of the numerical model. Finally, the Galerkin pro-
jection does not account for model noise and may incur a high cost in representing inconsequential model
noise if proper precautions are not taken. The projection technique exhibited the largest approximation
errors among the different techniques presented here.

Least-squares-based PC methods minimize the algebraic residual norm jj�jjLS, and allow more freedom in
the selection of sampling points since the latter do not have to be quadrature points. The sampling points,
however, must be chosen carefully so as to avoid severe ill conditioning. Least squares approaches are
more useful in cases where the model includes algorithmic errors and/or stochastic processes. In these

Figure 7. First-order and total-order sensitivity of peel height to the five uncertain inputs. Colors indicate the different polynomial chaos surrogates, bar heights indicate sensitivity, and
group labels indicate the input variable.
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cases, a projection approach would be suboptimal as the higher-order coefficients would grow to accom-
modate noise. In the present work, the regression approaches proved to be more useful than the projection
one because of the noisy model output.

PC-BPDN selects the sparsest basis set that can represent the response within a specified tolerance. This tol-
erance can be obtained from the model samples using cross validation, a process that, though computa-
tionally expensive, can guard against the dangers of overfitting the surrogate to model noise. One concern
with BPDN is in specifying the basis set on which the sparsity will be enforced. The PC-BPDN provided the
best overall approach as it delivered the smallest errors for the least amount of work. Furthermore, its
orthogonal bases allowed a straightforward calculation of the sensitivity indices.

The GPR approach also accounts for the presence of model noise but uses Bayesian principles to construct
the model surrogate. Its sampling strategy is quite flexible, as it is not constrained by quadrature require-
ments. Most importantly, GPR delivers estimates of the mean and variance (uncertainty) of the response uðnÞ
at all points. From a practical point of view, GPR does not concern itself with the specification and truncation
of a basis set, rather it requires the specification of mean and covariance functions and their hyperparameters.
Although a variety of covariance functions are available to model quite general surfaces the squared exponen-
tial covariance functions have proven extremely useful in a large number of applications, even when the
hyperparameters are not optimal. Furthermore, relatively sophisticated covariance functions can be con-
structed by combining simpler ones in order to model quite complicated response surfaces; for example, a
Mat�ern class could have been added to represent the characteristics of the small-scale noise [Rasmussen and
Williams, 2006].

In conclusion, PCE and GPR methods provide an efficient way for propagating the input uncertainties, mak-
ing it possible to compute the full probabilistic descriptions of model outputs. Verification using a large
Monte Carlo ensemble of simulations confirms their usefulness in delivering accurate surrogates and sensi-
tivity analyses in spite of discrepancies in estimating the trap height PDF. The examples in this paper illus-
trate a great gain in computational efficiency using indirect sampling methods compared with direct Monte
Carlo sampling. The UQ procedures discussed here have been used to quantify uncertainties in a number of
oceanic applications [Thacker et al., 2012; Alexanderian et al., 2012; Sraj et al., 2013, 2014; Chen et al., 2015].
The articles of Gonçalves et al. [2016] and Wang 2016 focus on their application in oil plume and oil-fate
modeling while Iskandarani 2016 focus on quantifying uncertainties in oceanic forecasts in the Gulf of
Mexico due to initial condition uncertainties.

Appendix A: Multidimensional Basis Functions

Multidimensional-polynomial basis functions wkðnÞ are products of orthogonal polynomials Pmd of the indi-
vidual uncertain inputs nd:

wkðnÞ5Pm1ðn1ÞPm2ðn2ÞPm3ðn3ÞPm4ðn4ÞPm5ðn5Þ : (A1)

Note that the index k of the multidimensional basis wkðnÞ can be represented collectively by the degrees of
each polynomial factor: ðm1;m2;m3;m4;m5Þ; in practice, these five numbers are mapped to the sequential
index k ordered so that the degrees of the terms in (A1) increase monotonically and information relating
the individual degrees of the factors to this index allows both to be accessed as needed. The multivariate
degree of wkðnÞ is simply the sum of the degrees of its univariate factors:

X5

d51
md .

While truncation of the multidimensional expansion to eliminate terms with high degree strongly restricts
the univariate polynomial factors, the number of possible combinations increases rapidly with increasing

univariate degrees. For example, if all univariate
factors have degrees no greater than M, total-
order (triangular) truncation retains P115ðM15Þ!
=M!5! terms, while maximum-order truncation
retains ðM11Þ5. The nature of the truncation is
influenced strongly by the particular method used
for constructing the polynomial chaos surrogate.
Adaptive pseudospectral construction of Conrad
and Marzouk [2013], for example, allows the basis

Table 5. Some Common Input PDFs and Their Associated
Orthogonal Polynomial Bases

pðnÞ
Orthogonal

Polynomial wnðnÞ

Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre
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polynomials for different input variables to have different maximal degrees, which are selected automati-
cally according to their contributions to the variance; see e.g., Winokur et al. [2013] for an example applica-
tion. And basis pursuit denoising generally discards some terms with lower degree than others that are
retained.

For independent random input variables, the joint probability density function is the product of the univari-

ate densities pd for the individual inputs nd: pðnÞ5
Y5

d51
pdðndÞ. Hence the multidimensional basis functions

inherit their orthogonality properties. The orthogonal univariate polynomials associated with given distribu-
tions are listed in Table 5. Legendre polynomials, which are basis functions for a uniform distribution pðnÞ5 1

2

with jnj � 1, are shown in Figure 8.

Appendix B: Statistical Properties of PC Series

The statistics of the uncertain output can be calculated straightforwardly with polynomial series that are
orthogonal with respect to their pdf. The expectation or the mean of the model output is

E½u�5
ð

uðnÞ pðnÞ dn5hu;w0i5huP;w0i1h�P;w0i5û0; (B1)

since w0ðnÞ is just a constant for all orthogonal polynomials that can be scaled such that its norm
hwm;wmi51, and the orthogonality property has been invoked to arrive to the last equality in equation (B1).
The mean is then simply the first coefficients û0. Likewise, the variance of u can also be derived:

E½ðu2E½u�Þ2�5
X1

m;n51

ûmûn

ð
wmwnpðnÞ dn5

X1
m;n51

ûmûnhwm;wni; (B2)

5
XP

n51

û2
njjwnjj

2
1
X1

m5P11

û2
njjwnjj

2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
truncation errors

: (B3)

The mean of the model output is unaffected by truncation when the inner product is evaluated exactly; it
does however include aliasing errors when quadrature rules are used to approximate the inner products.
The truncated series underestimates the variance but the error remains small if the amplitude of the higher-
order terms is small. Monitoring the variance is hence a good indicator of whether the series includes
enough terms or not.

Figure 8. Legendre polynomials of degree 0–5.
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Appendix C: Numerical Quadrature

Quadratures are numerical approximations to integrals of the form:

I5
ðb

a
f ðnÞpðnÞdn � Q1

l f 5
XS

i51

f ðniÞxi

where S is the number of quadrature points, and xi and ni are the quadrature weights and quadrature roots
associated with the weight function pðnÞ; Q stands for the quadrature operator. The traditional Gauss quad-
rature is well known for maximizing the accuracy of the integration per sample evaluation of f: if the quad-
rature roots and weights are chosen to be those of the orthogonal polynomials associated with the weight
function pðnÞ, then an S-point quadrature would integrate exactly polynomials of degree 2S21, conversely
a polynomial of degree 2M would be integrated exactly using a Gauss rule using S > M1 1

2 points. Multidi-
mensional quadrature can be done using tensor products of 1-D rules.

ðQ1
l1 � . . .� Q1

ld
Þf :5

XS1
l1

i151

:::
XS1

ld

id 51

xl1;i1 . . . xld ;id f ðnl1;i1 ; . . . ; nld ;id
Þ

where Qli is the 1-D quadrature operator using li samples in the ith variable, Sli is the number of quadrature
points xld ;id is the quadrature weights associated with different dimensions. There are a number of disad-
vantages to Gauss quadrature which include: the roots cluster near the edge of the interval to maximize the
order, this is equivalent to sampling the edges of the uncertainty interval; the roots are not nested so the
users cannot reuse the old quadrature samples if the number of sample points is increased after a first cal-
culation is performed; and finally the number of quadrature points increases exponentially with the number
of uncertain variables.

Fortunately, sparse nested quadrature rules can be constructed so that adaptive integration with reuse of
results can be performed, and so that the curse of dimensionality can be mitigated [Gerstner and Griebel, 1998].

Figure 9. Comparison of quadrature nodes between classic Smolyak sparse construction and ‘‘Full-Tensor’’ construction. Quadrature is
built with Gauss-Kronrod-Patterson 1-D rule.
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The starting point is 1-D nested quad-
rature at level l: Qlf 5

XSl

i51
f ðnl;iÞxl;i

such as Gauss-Kronrod-Patterson rules,
where Sl52l21 is the number of quad-
rature points, and the quadrature
points of level l include all the quadra-
ture points in level l 2 1. Smolyak con-
struction capitalizes on the generally
weak effect of high-order mixed terms,
such as nM

1 nM
2 , to reduce the number of

function evaluations needed. The
Smolyak quadrature construction is a
telescoping sum of different level of
quadrature rules. Figure 9 is a compari-
son of full tensor product tensorization
and classic Smolyak sparse grid
construction.

Appendix D: Sensitivity Indices

The analysis of variance is based on sensitivity indices as defined in Homma and Saltelli [1996b], but the
orthogonal nature of PC series with respect to the input PDF makes this analysis extremely simple. First
notice that the total variance in a PC expansion is given by the sum of positive quantities (equation (B3))
with each coefficient in the series contributing a single term in the variance estimate. Thus, it would be pos-
sible to attribute the variance contributed by a combination of uncertain parameters by forming different
partial sums of these same terms. The process is made simple by the mapping that keeps track of the
degree of the polynomial along each dimension

k $ ðmk
1;mk

2; . . . ;mk
d; . . . ;mk

DÞ; (D1)

where k50; . . . ; P and mk
d refers to the 1-D polynomial degree in the dth variable in the kth term of the

expansion.

The variance contributed by the dth variable alone, for example, would correspond to a partial sum where
mk

d > 0 and mk
j 50 for j 6¼ d. If the set Kd designates the collection of multi-indices that satisfies this rela-

tionship then this contribution is:

Vd½u�5
X
k2Kd

û2
khwk ;wki: (D2)

The first-order sensitivity index Sfdg which measures the fraction of the variance due nd alone is then

Sd½u�5
Vd½u�XP

k51
û2

khwk ;wki
with

XD

d51

Sd½u� � 1: (D3)

The variance contributed by the dth variable in conjunction with other variables involves a different partial
sum. Let T d designates the set of basis where mk

d > 0, then the variance caused by the nd is

Vf1;...;Dg½u�5
X

k2T d

û2
khwk ;wki; (D4)

and the total sensitivity index is the ratio:

Td½u�5
Vf1;...;Dg½u�XP

k51
û2

khwk ;wki
with

XD

d51

Td½u� � 1: (D5)

Figure 10 shows a sketch of the basis functions whose coefficients are involved in computing the first-order
and total sensitivity indices for a two-dimensional case.

Figure 10. The basis functions contributing to Si are within the blue zone whereas
those contributing to the total sensitivity are within the red zone. The different
bases are represented by the highest degree in x and y.
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Gonçalves, R., M. Iskandarani, A. Srinivasan, C. Thacker, E. Chassignet, and O. M. Knio (2016), A framework to quantify uncertainty in simula-

tions of oil transport in the ocean, J. Geophys. Res. Oceans, doi:10.1002/2015JC011311, in press.
Hampton, J., and A. Doostan (2015), Coherence motivated sampling and convergence analysis of least squares polynomial chaos regres-

sion, Comput. Methods Appl. Mech. Eng., 290, 73–97, doi:10.1016/j.cma.2015.02.006.
Homma, T., and A. Saltelli (1996a), Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Safety, 52(1), 1–

17, doi:10.1016/0951-8320(96)00002-6.
Homma, T., and A. Saltelli (1996b), Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Safety, 52(1), 1–17.
Huan, X. (2010), Accelerated Bayesian experimental design for chemical kinetic models, Master’s thesis, Mass. Inst. of Technol., Cambridge.
Johansen, O. I., H. Rye, and A. Melbye (2001), Deep spill JIP-Experimental discharges of gas and oil at Helland Hansen–June 2000, SINTEF

Rep. 5TF66 F01082, pp. 1–159, SINTEF Applied Chemistry, Trondheim, Norway.
Kalnay, E. (2003), Atmospheric Modeling, Data Assimilation, and Predictability, 341 pp., Cambridge Univ. Press, N. Y.
Klimke, A. (2006a), Uncertainty modeling using fuzzy arithmetic and sparse grids, PhD thesis, Univ. Stuttgart, Stuttgart, Germany.
Klimke, A. (2006b), Sparse Grid Interpolation Toolbox—User’s guide, Tech. Rep. IANS Doc. 2006/001, Univ. Stuttgart, Stuttgart, Germany.
Kullback, S. (1959), Information Theory and Statistics, John Wiley, N. Y.
Lefebvre, A. (1988), Atomization and Sprays, 434 pp., CRC Press.
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