


0018-926X (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2016.2543803, IEEE
Transactions on Antennas and Propagation

9

TABLE II
THE OUTPUT DC VOLTAGES Vout OF THE RECTIFIER CORRESPONDING TO NORMALLY INCIDENT PLANE WAVES Einc WITH DIFFERENT AMPLITUDES.

Einc [V/m] 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0

Vout [V] 0.19 0.54 0.98 1.44 1.92 2.41 2.91 3.41 3.92 4.43 4.94 5.45 5.96 6.48 6.99 7.51

Fig. 9. The calculated power delivered to the probe by the proposed
algorithm. For comparison, the measurement result is also provided.

different Gm . In Fig. 11, the delivered powers corresponding
to Gm = 25, 35, 42.5, and 50 mS are presented. As expected,
the original resonant frequency of probe is changed from 1.08
GHz to 1.165 GHz. Simultaneously, the magnitudes of the
resonant peaks are also varied. All these can be attributed to
the frequency dependent gain of the MESFET amplifier and
the impedance matching condition.

C. A Monopole Rectenna

For the third example, a monopole antenna loaded with a
rectifier is studied. As shown in Fig. 12, the 15 cm monopole
antenna is place along the z-direction with a = 1 mm, and
a z-directed sinusoidally modulated plane wave propagating
along the y-direction is employed as the excitation. The
rectifier comprises of a three-stage differential mode voltage
multiplier [33]. Each diode in this work is described by a
standard exponential current source Id = I0

�
eVd =V0 � 1

�
with

I0 = 1.0 µA and V0 = 0.03 V. The values of reactive elements
are given as: L0 = 54.3 nH, C0 = 0.55 pF, C1 = 1 pF, and
C2 = 1 pF. The total field/scattered field (TF/SF) technique
is utilized to implement the plane wave excitation in this
work. To implement the TF/SF into DGTD, the numerical
flux at the TF/SF interface should be corrected as follows:
in the TF region, the incoming flux from the SF region is
modified as: Ej = Ej

SF +Einc and Hj = Hj
SF +Hinc; in the

SF region, the field values for incoming flux calculation are
revised as:Ej = Ej

TF � Einc and Hj = Hj
TF � Hinc.

For this example, the monopole is uniformly meshed into 10
segments, and the field domain is split into 4, 908 tetrahedrons.
The resulted time-step sizes of DGTD and TDBI are 1.085
ps and 15.77 ps, respectively. The average edge length in
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Fig. 10. The extrinsic equivalent circuit model of a small signal MESFET.
Lg = 0.37 nH, Ld = 0.23 nH, Ls = 0.02 nH, Cgd = 0.06 pF, Cds =
0.26 pF, Cgs = 0.69 pF, Rg = 1.39 Ω, Rs = 0.76 Ω, Ri = 1.42 Ω,
Rds = 197 Ω, Rd = 1.3 Ω, and the transconductance Gm is a parameter
to be determined.

Fig. 11. The power delivered to the thin wire via a MESFET amplifier with
varying transconductance.

the proximity of the monopole is around 1.53 cm. The
number of unknowns of the resultant wire-circuit matrix is
15, including fourteen nodal voltage and one auxiliary current
source unknowns. Due to the nonlinear property of the diode,
the Newton-Raphson method is employed with the iteration
number equal to 15. Firstly, the output DC voltage versus
plane waves with different amplitudes are investigated, as
shown in Table II. In Fig. 13, the recorded output voltage
Vout versus the time t is plotted for incident wave with
amplitude Einc = 3.0 V/m. As expected, the AC input is
successfully converted to a DC output with amplitude around
5.448 V. For realistic situations, the incident waves could
impinge on the antenna with different directions of arrival.
Thus, its is necessary to study the output DC voltage for
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Fig. 12. Left: A monopole rectenna under the illumination of a normally
incident plane wave. Right: The circuit details of the rectifier composed of a
three-stage voltage multiplier.

Fig. 13. The temporal evolution of the voltage at the output port correspond-
ing to a normally incident wave with amplitude Einc = 3.0 V/m.

Fig. 14. The output voltage Vout corresponding to the different obliquely
incident wave with amplitude Einc = 3.5 V/m. θ denotes the angle between
the wave number k̂ and the positive z-axis.

obliquely incident waves. In Fig. 14, the output voltages for
plane waves propagating in the yz plane with wave number
k̂ = sin(θ)ŷ + cos(θ)ẑ are plotted as the function of time.
It is noted that the output voltage decreases with the incident
angle, which agrees with the theory.

Next, to investigate the impacts of the number of voltage

Fig. 15. The output DC voltages corresponding to rectifiers with one to
four-stage voltage multipliers.

multipliers on the magnitude of output voltage, a normally
incident plane wave with amplitude Ein = 5 V/m is employed
as the excitation. In Fig. 15, the recorded temporal results with
one to four voltage multipliers are plotted. The numbers of
wire-circuit coupling matrix unknowns are 6, 11, 15, and 19,
respectively. As expected, the amplitude of the output voltage
increases with the number of voltage multipliers. Interestingly,
it is noted that it takes more time to reach steady state for the
case with more voltage multipliers.

IV. CONCLUSION

In this paper, a thin wire model characterized by a modified
telegrapher’s equation (MTE) is employed to replace the
physical presence of the thin wire, which results in a reduced
number of unknowns and relaxed CFL number. To treat thin
wires loaded by lumped circuits, auxiliary equations derived
from the invariable property of the characteristic variables
are integrated into the MNA based circuit equations. The
thin wire-circuit coupling matrix equation is iteratively solved
by Newton-Raphson method if nonlinear circuit elements are
involved. As hyperbolic systems, both the MTEs and the
Maxwell’s equations are solved by the DGTD with explicit
time-marching scheme. For the open-region problems, the
hybrid DGTD-BI approach is used to conformal and local-
ly truncate the computational domain. The accuracy of the
proposed algorithm is demonstrated by three representative
examples.
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