This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

Nazeeka Alkayal,‡ Hakan Durmaz,‡ Umit Tunca,‡a Nikos Hadjichristidis‡a

Novel well-defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyneterminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentyenoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methyldiethoxymethylene to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macrorinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN₃) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

In this work, we report the synthesis of novel polyethylene-based graft terpolymers via the “grafting onto” strategy by combining NMP, polyhomologation and CuAAC “click” chemistry.

Experimental information

Materials
Styrene (St, 99%, Acros) and 4-chloromethyl styrene (4-CMS, 90%, Aldrich) were passed through basic alumina before use. ε-Caprolactone (99%, Alfa Aesar) was distilled over CaH₂. Sodium hydride (60% dispersion in mineral oil, Acros) was washed with hexane before use. DMF (99%, Fisher), methanol (99%, Fisher), dichloromethane (>99%, Fisher), hexane (99%, Fisher) were used as received. Tetrahydrofuran (99%, Fisher) and toluene (99.7%, Fluka) were distilled over Na and benzophenone. CuBr (98%, Aldrich) was purified by stirring with acetic acid and washing with methanol and then dried under vacuum. Calcium hydride (CaH₂, 95%, Aldrich), trimethylsulfoxonium iodide (98%, Alfa Aesar), benzyl tri-n-butylammonium chloride (98%, Alfa Aesar) and trimethylamine N-oxide dihydrate (TAO, >99%, Fluka), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 98%, Aldrich), benzoyl peroxide (BPO, 75%, Aldrich), NaN₃ (99%, Fisher), N,N,N′,N″,N‴-
pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich), 4-pentynoic acid (95%, Aldrich), triethyl borane (Et3B, 95%, Aldrich), N,N-dimethylpyridin-4-amine (DMAP, 99%, Aldrich), N,N'-dicyclohexylcarbodiimide (DCC, 99%, Aldrich), t-BuP2 (2.0 M in THF, Aldrich), Merrifield’s resin (1% crosslinked chloromethylated PS, Aldrich) and 1-hexyne (97%, Aldrich) were used as received.

Instrumentation

High-temperature-size exclusion chromatography (HT-SEC) measurements were carried out with the Agilent PL-SEC 220 having one Plgel 10 µm MIXED-B column. 1,2,4-Trichlorobenzene (TCB) was used as eluent at a flow rate of 1.0 mL/min at 150 °C. The system was calibrated with PST standards. SEC measurements at 35 °C were recorded on a Viscotek TDA 305 instrument equipped with one Plgel 10 µm mixed-C column (only used for (PS)b) or two columns, Styragel HR2(7.8X300 mm) and Styragel HR4 (7.8X300 mm). THF was used as eluent at the flow rate of 1 mL/min. The system was calibrated with PST standards. 1H NMR spectra were recorded on a Bruker AVANCE III-600 spectrometer. Fourier transform infrared spectra (FTIR) were obtained with a Nicolet Magna 6700 FT spectrometer. Differential scanning calorimetry (DSC) was performed on a Mettler Toledo DSC1/TC100 system in an inert nitrogen atmosphere. The second heating curve was used to determine the glass transition temperature (Tg), melting temperature (Tm), and degree of crystallinity.

Synthesis of hydroxyl terminated polyethylene (PE-OH)

Into a dried 100 mL round bottom flask equipped with a stirrer, a solution of dimethylsulfoxonium methylide in toluene (see ESI) (84 mL, 0.96 mmol/mL, 81 mmol) was introduced by syringe under argon and heated to 50 °C, followed by the addition of 0.26 mL of triethyl borane (1 M, 0.26 mmol). After 15 min a sample of the reaction mixture was taken and added to water to measure the pH of the solution. Since the pH was neutral, meaning that all methylide monomer was consumed, TAO (0.28 g) was added to the solution under argon. After 3 hours the solvent was removed under reduced pressure and the polymer was precipitated in methanol and dried under vacuum. (1.2 g, 100 % yield, Mw, NMR = 2030 g mol⁻¹). 1H NMR (600 MHz, toluene-ds, 80 °C) values included 3.38 ppm (t, 2H, CH₂-OH, end-group of PE), 1.36 ppm (2H, -CH₂-, the backbone of PE).

Synthesis of OH-terminated polyethylene-b-polycaprolactone (PE-b-PCL-OH)

0.71 g of the macrorinitiator PE-OH (Mw, NMR = 2030 g mol⁻¹, 0.35 mmol) was dissolved in 3 mL of hot toluene (80 °C) followed by addition of 4 mL of e-caprolactone (35 mmol), and 0.1 mL of catalyst solution t-BuP₂ (2 M in THF, 0.35 mmol) to performROP under argon at 80 °C. The polymerization was kept at 80 °C for 15 h and quenched by acetic acid (0.5 mL). The obtained copolymer was precipitated in methanol and dried under vacuum (2.3 g, 47 % yield, Mw, NMR = 4800 g mol⁻¹). 1H NMR (600 MHz, toluene-ds, 80 °C) values included 4.02 ppm (t, CHO-of PCL), 3.38 ppm (2H, CH₂-OH, end-group of PCL) 2.23 ppm (t, CH₂OC of PCL), 1.61-1.26 ppm (CH₂ of PCL), 1.40 ppm (2H, -CH₂- of the PE backbone).

Synthesis of alkynyl-terminated polyethylene-b-polycaprolactone (PE-b-PCL-alkyne)

PE-b-PCL-alkyne was synthesized by reacting PE-b-PCL-OH with 4-pentynoic acid in the presence of DCC and DMAP. 2.2 g of PE-b-PCL-OH (Mw, NMR = 4800 g mol⁻¹, 0.45 mmol) was dissolved in 15 mL of freshly distilled toluene followed by addition of 4-pentynoic acid (0.45 g, 4.5 mmol), DCC (1.3 g, 4.5 mmol) and DMAP (0.1 g, 0.9 mmol). The reaction was kept under stirring at 80 °C for 24 h. The white solid formed during the esterification was removed by filtration. The filtrate was precipitated in methanol twice giving a white solid product. The resulted PE-b-PCL-alkyne (2.1 g, 95 % yield, Mw, NMR = 4900 g mol⁻¹) was characterized by HT-SEC, 1H NMR and FTIR. 1H NMR (600 MHz, toluene-ds, 80 °C) values included 4.02 ppm (t, C=H-O of PCL), 2.30-2.25 ppm (alkyne-CH₂=CH=O-CO-O.), 2.20 ppm (t, C=OCH₂ of PCL), 1.61-1.26 ppm (CH₂ of PCL), 1.40 ppm (2H, -CH₂- of PE backbone).

“Click” grafting of PE-b-PCL-alkyne chains onto the azide-containing polymeric backbone

The synthetic procedure of azide-containing copolymers poly (St-co-4-CMS) and poly (St-co-4-AMS), reported previously20, is briefly described in the ESI. Poly (St-co-4-AMS)-25 and poly (St-co-4-AMS)-55 were reacted with PE-b-PCL-alkyne in the presence of CuBr and PMDETA in toluene at 80 °C. Typical “click” grafting reactions are as follows. The azido-functionalized backbone polySt-co-4-AMS)-25 (0.05 g, 0.0043 mmol, 1 equiv of azide group), the alkynyl-functionalized branches PE-b-PCL-alkyne (0.4 g, 0.086 mmol, 20 equiv of alkyn group) and CuBr (0.012 g, 0.086 mmol) were added into a 100 mL Schlenk flask followed by addition of 6 ml of deoxygenated toluene. Then, deoxygenated PMDETA (15 µL, 0.086 mmol) was added with an argon-purged syringe. In another experiment, deoxygenated PMDETA (17 µL, 0.098 mmol) was introduced with an argon-purged syringe to the backbone solution polySt-co-4-AMS)-55 (0.05 g, 0.0028 mmol, 1 equiv of azide group), PE-b-PCL-alkyne (0.5 g, 0.098 mmol, 35 equiv of alkyn group) and CuBr (0.015 g, 0.098 mmol) in 6ml dry toluene. The two mixtures were degassed by three freeze-thaw-purge (FTP) cycles and stirred under argon at 80 °C for 6h. The unreacted azide units were reacted with 1-hexyne until the FTIR absorption of azide group completely disappeared. The obtained graft terpolymers solutions were passed through neutral alumina columns to remove the copper, then precipitated in methanol and dried under vacuum at room temperature. The obtained graft terpolymers were washed with acetone to remove unreacted polystyrene and successfully treated with Merrifield’s resin-azide to remove unreacted PE-b-PCL-alkyne (see ESI). Graft terpolymers synthesized from the backbone with 25 units of azide groups (0.15 g, 33 % yield) are designated as PST-g-(PCL-b-PE)-1 and those from 55 units (0.2 g, 40 % yield) as PST-g-(PCL-b-PE)-2. A typical 1H NMR spectrum (600 MHz, toluene-ds, 80 °C) for graft terpolymers is giving the following results: 7.50 ppm (s, 1H, CH=C triazole ring), 6.5-7.3 ppm (9H, ArH of PST and P (4-CMS)), 5.14 ppm (s, 2H, Ph-CH₂-triazole), 4.02 ppm (t, CH2-O of PCL), 3.86 ppm (2H, -CH₂OCO-PCL-b-PE), 2.71 ppm (2H, -CH₂CH₂ triazole), 1.61-1.26 ppm (2H, aliphatic protons CH₂ of PCL, PS and PE).

Results and Discussion

Synthesis of PE-b-PCL-alkyne

The synthetic route for the alkynyl-terminated PE-b-PCL-alkyne is illustrated in Scheme 1. Hydroxyl terminated polyethylene (PE-OH) was synthesized via polyhomologation of dimethylsulfoxonium methylide using triethyl borane as the initiator followed by oxidation with TAO. The PE-OH was then used as macrorinitiator to polymerize ε-caprolactone in the presence of phosphazene base t-BuP₂ as a catalyst. Alkyn side groups were attached on the polymeric chain by esterification of the hydroxy groups of PE-b-PCL-OH with 4-
Polymer Chemistry Accepted Manuscript, 2012, Accepted - Manuscript, 1 – polymers were synthesized by coupling -3200

Scheme 1. Synthetic route for PE-b-PCL-alkyne copolymers.

Table 1 Molar characteristics of PE-OH, PE-b-PCL-OH and PE-b-PCL-alkyne copolymers

<table>
<thead>
<tr>
<th>No.</th>
<th>Polymers</th>
<th>M_n (SEC)</th>
<th>PDI</th>
<th>M_n (NMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE-OH</td>
<td>2150</td>
<td>1.12</td>
<td>2030*</td>
</tr>
<tr>
<td>2</td>
<td>PE-b-PCL-OH</td>
<td>3850</td>
<td>1.19</td>
<td>4800*</td>
</tr>
<tr>
<td>3</td>
<td>PE-b-PCL-alkyne</td>
<td>4000</td>
<td>1.16</td>
<td>4900*</td>
</tr>
</tbody>
</table>

*High-temperature SEC, PSI standards. M_n (NMR) of PE homopolymer = 14 x DPn of PE (integrated value of -CH2-at 1.40 ppm/ integrated value of -CH3-OH at 3.40 ppm). M_n (NMR) of copolymers were calculated from the ratio of integrated values of signals at δ = 1.20-1.40 ppm to signal at δ = 4.02 ppm.

As revealed by the HT-SEC traces (ESI, Figure S1†) PE-OH, PE-b-PCL-OH and PE-b-PCL-alkyne polymers showed monomodal and narrow distributions. The success of the different synthetic steps was confirmed by FTIR spectroscopy (Figure S2†). After the ROP of ε-caprolactone by using PE-OH (Figure S2(a)†) as macrorinitiator the characteristic absorption peak of the ester groups of PCL at 1730 cm⁻¹ was appeared (Figure S2(b)†). In the case of PE-b-CL-alkyne (Figure S2(c)†), the broad band of hydroxyl group (3200-3600 cm⁻¹) disappeared and the characteristic absorption peaks of alkyne group appeared at 3300 cm⁻¹. The successful synthesis of PE-OH and PE-b-PCL-OH was also confirmed by 1H NMR (Figure 1(a) and 1(b)), where all characteristic fingerprints of PE-OH and PCL are present. The 1H NMR spectrum of the resulting product PE-b-PCL-alkyne (Figure 1(c)) revealed that the esterification of PE-b-PCL-OH proceeded practically quantitatively as confirmed by the presence of the new peaks at δ = 2.24-2.28 ppm corresponding to the two methylene groups close to alkyne end group (alkyne-CH2=CH2-CO-O-). The peak of the –OH at δ = 3.38 ppm of PE-b-PCL-OH (Figure 1(b)) completely disappeared and a new peak at δ = 3.90 ppm (Figure 1(c)) corresponding to the ester group, overlapped by the peak of PCL at δ = 4.00 ppm, appeared. The melting points were determined from the DSC traces (Figure S3†) to be 110.59 °C (PE-OH) °C and 110.27 and 54.40 °C corresponding to PE and PCL blocks of PE-b-PCL-OH.

Figure 1. 1H NMR spectra (a) PE-OH, (b) PE-b-PCL-OH and (c) PE-b-PCL-alkyne in toluene-δ (600 MHz).

Scheme 2. Synthetic route for PST-g-(PCL-b-PE) graft terpolymers via CuAAC.

Synthesis of graft terpolymers PST-g-(PCL-b-PE) by CuAAC “click” reaction

The graft terpolymers were synthesized by coupling the alkyne-terminal groups of PE-b-PCL-alkyne with the side azido-groups of the two backbones, poly (St-co-4-AMS) -25 and poly (St-co-4-AMS) -55, using the CuBr/PMDETA catalytic system in toluene at 80 °C. After 6 h, 1-hexyne was added to react with the unreacted azide group. The graft terpolymers were purified using Merrifield’s resin–azide to remove unreacted PE-b-PCL-alkyne. As shown in Figure 2, the HT-SEC traces of graft terpolymers shifted to higher molecular weight compared to that of precursor polymers, PE-b-PCL-alkyne and poly (St-co-4-AMS), indicating the successful synthesis of grafted terpolymers.
Figure 2 HT-SEC (TCB at 150 °C, PST standard) traces of PST-g-(PCL-b-PE) -1 and PST-g-(PCL-b-PE)-2.

Another proof of the successful synthesis of the graft terpolymers comes from the 1H NMR spectroscopy. As shown in Figure 3, the appearance of the new peaks at δ = 7.50 ppm are assigned to the proton of triazole ring and the peak at δ = 5.14 ppm to the methylene protons between phenyl and triazole rings. Furthermore, all fingerprints of PE, PCL and PST are present in 1H NMR spectrum. The efficiency of CuAAC “click” reaction was calculated from 1H NMR and it was found to be around 20 and 16% for PST-g-(PCL-b-PE)-1 and PST-g-(PCL-b-PE)-2, respectively. Therefore, it is reasonable to postulate that the click reaction efficiency of the “grafting onto” method was affected by steric hindrance. Similar behavior was observed in other “grafting onto” cases. The success of the “click” reaction to yield the PE-based graft terpolymers was also confirmed by the disappearance of the azide and alkyne peaks at 2104 and 3300 cm⁻¹ in the FTIR spectra (Figure S6c).

Table 2 Molecular characterization data of graft terpolymers PST-g-(PCL-b-PE)

<table>
<thead>
<tr>
<th>no.</th>
<th>Polymers</th>
<th>Mw,SEC (g mol⁻¹)</th>
<th>PDI</th>
<th>Mn,NMR (g mol⁻¹)</th>
<th>Ygrafting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PST-g-(PCL-b-PE) -1</td>
<td>55800</td>
<td>1.12</td>
<td>32900</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PST-g-(PCL-b-PE) -2</td>
<td>73100</td>
<td>1.18</td>
<td>56600</td>
<td>9</td>
</tr>
</tbody>
</table>

a High-temperature SEC, PST standards. b Mn,NMR of graft terpolymer was calculated from 1H NMR spectrum using the area ratio of protons in PST backbone to the ones on the side chains. c Number of branches (Ygraff) was calculated from 1H NMR by taking into account the Mn,NMR of graft, the Mn,NMR of backbone and the Mw,NMR of branch.

Thermal properties of poly (St-co-4-CMS), poly (St-co-4-AMS) and PST-g-(PCL-b-PE)

The poly (St-co-4-CMS), poly (St-co-4-AMS) and PST-g-(PCL-b-PE) with different molecular weights were analyzed by DSC under a nitrogen atmosphere. As shown in Figure 4, the Tg of Poly (St-co-4-CMS) copolymers increases with functionality. It was noticed that the Tg values gradually decreased when azide groups increased. The crystallinity of the PE-based grafts was also measured by DSC (Figure 4). After the CuAAC “click” reaction, the lack of chain movements, due to the PE, prevents the PCL chains to crystallize as indicated by the presence of only one melting point corresponding to PE. This behavior was also observed in the PE-based bilayered molecular cobruses. The Tg of PST block in PST-g-(PCL-b-PE) -1 was observed but not in the case of PST-g-(PCL-b-PE) -2 due to the increased graft concentration.

Figure 3 1H NMR spectrum of PST-g-(PCL-b-PE) in toluene-d8 at 80°C (600 MHz).

Figures DSC curves of poly (St-co-4-CMS), poly (St-co-4-AMS) and PST-g-(PCL-b-PE) at various stages (N2 atmosphere, 10 °C/min, second heating cycle).

Conclusions

Novel well-defined polyethylene-based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. The well-defined character has been proved by HT-SEC, IR and 1H NMR characterization. This general strategy allows the synthesis of various PE-based graft polymers with different structures. DSC studies on the graft terpolymers shown that due to the presence...
of PE the mobility of the attached PCL chains decreases resulting in the disappearing of PCL melting point.

Acknowledgements

Research reported in this publication was supported by the King Abdullah University of Science and Technology.

Notes and references

Polymer Chemistry Accepted Manuscript
Published on 30 March 2016. Downloaded by King Abdullah Univ of Science and Technology on 03/04/2016 07:19:55.
DOI: 10.1039/C6PY00331A

83x37mm (300 x 300 DPI)

Polymer Chemistry

Poly(St-co-4-AMS) + CuBr, PMDETA, 80 °C, After 6h
PE-b-PCL-alkyne

PSt-g-(PCL-b-PE)