Hydrophilic Fe$_2$O$_3$ dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

Dongwei Lu, Wei Cheng, Tao Zhang, Xinglin Lu, Qianliang Liu, Jin Jiang, Jun Ma

PII: S1383-5866(16)30139-3
DOI: http://dx.doi.org/10.1016/j.seppur.2016.03.034
Reference: SEPPUR 12921

To appear in: Separation and Purification Technology

Received Date: 26 October 2015
Revised Date: 10 March 2016
Accepted Date: 17 March 2016

Please cite this article as: D. Lu, W. Cheng, T. Zhang, X. Lu, Q. Liu, J. Jiang, J. Ma, Hydrophilic Fe$_2$O$_3$ dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion, Separation and Purification Technology (2016), doi: http://dx.doi.org/10.1016/j.seppur.2016.03.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Hydrophilic Fe$_2$O$_3$ dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

Submitted by

Dongwei Lu a, Wei Cheng a, Tao Zhang b, Xinglin Lu a, Qianliang Liu a, Jin Jiang a and Jun Ma a*

a. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China

b. Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 4700, Kingdom of Saudi Arabia
ABSTRACT

Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe₂O₃ dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe₂O₃ dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe₂O₃ dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

Keywords:
Dynamic membrane; Oil/Water emulsion; Ceramic membrane fouling; Membrane cleaning;
Abbreviations

O/W emulsion
Oil in water emulsion

UF
Ultrafiltration

DM
Dynamic membrane

SDBS
Sodium dodecyl benzene sulfonate

PLD
Pulsed-Laser Deposition

SEM
Scanning electron microscopy

FEEM
Fluorescence excitation-emission matrices

LSCM
Laser scanning confocal microscopy

pH_{pzc}
Isoelectric points

J
Instantaneous permeate flux ($\text{L m}^{-2} \text{ h}^{-1}$)

J_n
Initial permeate flux after each back wash ($\text{L m}^{-2} \text{ h}^{-1}$)

J_0
Pure water permeate flux of ceramic membrane ($\text{L m}^{-2} \text{ h}^{-1}$)

FR_n
Flux recovery rate of each cycle (%)

V
Permeate volume (L)

A
Membrane area (m^2)

Δt
Filtration duration (h)

C_f
COD concentrations of the feed (mg/L)

C_p
COD concentrations of the permeate (mg/L)

R
COD rejection rate (%)
1. INTRODUCTION

Oil-in-water (O/W) emulsion is stable dispersion of microscopic oil droplets (size < 10 μm) in an aqueous solution and daily produced by various industrial activities [1-3]. The ever-increasing O/W emulsion with high pollution loads has become a severe environmental issue. Ceramic ultrafiltration membrane is an effective technology for O/W emulsion separation. It has been widely applied in the treatment of O/W emulsion with its advantages of no addition of chemicals, relatively low operation cost and stable quality of purified water [4-6]. However, the performance of ceramic UF membrane is compromised by severe oil fouling during the treatment of O/W emulsion, which remains a major challenge for ceramic membrane to be successfully applied in O/W emulsion treatment [7-9].

Extensive efforts have been dedicated toward membrane modification through introducing hydrophilic material to reduce membrane fouling, e.g., the antifouling ability of PVDF membrane was significantly enhanced through post-fabrication tethering of surface-tailored superhydrophilic silica nanoparticles [10-13]. However, the process of membrane modification is relatively complicated, and thus leading to an increase cost in practical industrial application. Dynamic membrane has advantages of simple preparation, ease of removal and regeneration [14]. It can be formed in situ by deposition of a suspension on a porous support, which was used as filtration membrane to enhance the rejection rate of protein or salt, etc. [15]. In the treatment of O/W emulsion, membrane fouling is mainly caused by direct contact and interaction between oil droplets and membrane surface [16]. Therefore, hydrophilic
Dynamic membrane formed on the surface of support membrane can be used to mitigate fouling of support membrane through enhancing the hydrophilicity of membrane surface and reducing exposures of support membrane to oil foulants.

Dynamic membranes can be classified into two basic types: pre-coated membrane and self-forming membrane [17]. Pre-coated membrane is formed before the filtration of target solution by deposition of dynamic membrane material on the surface of a porous support. Self-forming membrane is formed during the filtration of target solution that contains dynamic membrane material. To our best knowledge, antifouling performance of these two types of dynamic membranes has never been compared, which will be helpful for the selection of appropriate dynamic membrane for O/W emulsion treatment. In addition, since membrane fouling is inevitable, an efficient membrane cleaning method for dynamic membrane under mild conditions is essential for its sustainable O/W emulsion treatment.

In this study, highly hydrophilic Fe$_2$O$_3$ dynamic membrane prepared by two methods was used as a protective membrane to reduce the fouling of support ceramic membrane in O/W emulsion treatment. The antifouling performance of Fe$_2$O$_3$ composite membranes (i.e., Fe$_2$O$_3$ dynamic membrane and ceramic membrane) was compared, and possible fouling mechanism was proposed. In addition, correspondingly cleaning method for Fe$_2$O$_3$ composite membranes was developed. This study provides a facile strategy to effectively reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in oily wastewater treatment.
2. Material and Methods

2.1 Preparation and characterization of O/W emulsion

Crude oil (Saudi Aramco) and sodium dodecyl benzene sulfonate (SDBS) (Sigma-Aldrich) were used as base oil and surfactant, respectively, to prepare oil/water (O/W) emulsion. Crude oil (100 mg L\(^{-1}\)) and SDBS (10 mg L\(^{-1}\)) were mixed in ultra-pure water (Milli-Q Academic, Millipore) and sonicated (Q700, Qsonica) for 50 min. The prepared O/W emulsion was at pH 6 (i.e., pH of the ultra-pure water) and stable in terms of average oil-droplet size and zeta potential for 5 days. All the experiments were conducted in the stabilization period of the emulsion.

The crude oil/water emulsion was characterized in terms of the size distribution of oil droplets and zeta potential. They were measured with a particle size and zeta potential analyzer (Nano ZS, Malvern). Microscopic configuration of oil droplets was characterized with laser scanning confocal microscopy (LSCM) (LSM710, Carl Zeiss) using Nile red (Sigma-Aldrich) as a stain [18].

2.2 Preparation and characterization of Fe\(_2\)O\(_3\) composite membranes

Fe\(_2\)O\(_3\) composite membranes consisted of Fe\(_2\)O\(_3\) dynamic membrane (acted as protective and filtration membrane) and ceramic membrane (acted as support and filtration membrane) (Molecular weight cut off 50 kDa, TAMI Industries).

2.2.1 Preparation and characterization of Fe\(_2\)O\(_3\) dynamic membrane

Fe\(_2\)O\(_3\) particles with particle size larger than 0.45\(\mu\)m were screened out for membrane preparation through filtration of Fe\(_2\)O\(_3\) suspension (Sigma-Aldrich) by 0.45\(\mu\)m membrane. The preparation process of dynamic membrane usually leads to
the decline of membrane flux [15, 19]. The application of larger particles would minimize flux loss caused by pore blockage of small particles or the dense cover of small particles on membrane surface. **Scheme S1 (Supporting Information, SI)** shows two preparation methods of Fe$_2$O$_3$ dynamic membrane. Pre-coated Fe$_2$O$_3$ dynamic membrane was formed before the treatment of O/W emulsion as follows: Fe$_2$O$_3$ particles were first added into deionized water to prepare Fe$_2$O$_3$ suspension with Fe$_2$O$_3$ concentration of 1 g/L. The suspension was then filtered by support ceramic membrane at 1 bar. The permeate flux vs. time profile was recorded with an electronic balance connected to a desktop. The filtration of Fe$_2$O$_3$ suspension ceased at the permeate volume of 0.065 L, and the deposition dose of Fe$_2$O$_3$ on ceramic membrane surface was theoretically around 0.065 g. Self-forming dynamic membrane was formed during the treatment of O/W emulsion: Fe$_2$O$_3$ particles were directly added into the O/W emulsion at Fe$_2$O$_3$ concentration of 1g/L. Then, the O/W emulsion and Fe$_2$O$_3$ suspension were simultaneously filtered by support membrane. The filtration ceased at the permeate volume of 0.065 L, and the deposition dose of Fe$_2$O$_3$ on membrane surface was also approximately 0.065 g in theory.

Dynamic Fe$_2$O$_3$ membrane was characterized in terms of the average size of Fe$_2$O$_3$ particles, surface charge, hydrophilicity and microscopic configurations. The average size of Fe$_2$O$_3$ particles was measured with a zeta potential analyzer (Nano ZS, Malvern). The surface charge of metal oxides is developed through ionization of surface hydroxyl groups, which is pH dependent [20]. The isoelectric point of Fe$_2$O$_3$ particles was measured by cross-partition of two zeta potential-pH curves obtained at
different ionic strengths (adjusted with sodium chloride) with a zeta potential analyzer [21]. The hydrophilicity of Fe$_2$O$_3$ dynamic membrane was characterized with contact angle measurement (Attension, KSV). Since the infiltration of water droplet into large pores of dynamic membrane was too fast to measure contact angle, and high surface roughness of dynamic membrane also influences contact angle, [22, 23] Fe$_2$O$_3$ particles of dynamic membrane were deposited on a smooth silicon wafer (roughness < 0.5 nm) by Pulsed-Laser Deposition (PLD) (COMPexPro201, Coherent) for contact angle measurement. Contact angle of Fe$_2$O$_3$ deposited wafer was measured by 10 times using a water-droplet volume of 5 ± 0.2 µL. The mean value of contact angles was calculated with a standard deviation below 2°. The cross section morphologies of dynamic membranes were investigated with scanning electron microscopy (SEM) (Sirion, FEI) using gold vapor deposition for sample preparation.

2.2.2 Characterization of support ceramic membrane

Support ceramic membrane was characterized in terms of surface charge and hydrophilicity and microscopic configurations. The surface charge of ceramic membrane was measured by Electrokinetic Analyzer for Solid Surface Analysis (SurPASS, Anton Paar). The hydrophilicity was characterized with contact angle measurement following the same measurement procedure as that of dynamic membrane: filtration layer material of ceramic membrane (i.e., TiO$_2$ and ZrO$_2$ components) were deposited on a smooth silicon wafer and used for contact angle measurement. The cross section morphologies of ceramic membrane were investigated with SEM.
2.3 Fe₂O₃ composite membranes for O/W emulsion treatment

A dead-end filtration setup with back wash function was applied to investigate the fouling of Fe₂O₃ composite membranes in the treatment of O/W emulsion (Fig. 1). The filtration process of O/W emulsion was conducted for 4 cycles. Each cycle consists of dynamic membrane preparation, forward filtration of O/W emulsion and back wash as follows: 1) the initial permeate flux was obtained by measuring the pure water flux of ceramic membrane alone or the composite membranes at 1 bar for 30 min; 2) dynamic membrane was prepared; 3) the emulsion was filtered by ceramic membrane or the composite membranes at 1 bar until the permeate volume reached 0.065 L.; 4) back wash with pure water or alkalescent water was introduced at 2 bar for 4 min after the filtration of emulsion, and Fe₂O₃ particles and oil foulants removed by back wash were collected in disposal tank. It should be noticed that the preparation process of self-forming membrane was also the filtration process of O/W emulsion.

!Fig. 1. Schematic diagram of dead-end filtration setup with back wash function.
The antifouling performance of Fe$_2$O$_3$ composite membranes was evaluated by flux recovery rate of each filtration cycle. The instantaneous permeate flux J (L m$^{-2}$ h$^{-1}$) was calculated with Eq. (1). Flux recovery rate of each cycle (FR_n) was calculated with Eq. (2), which represents the recovery extent of membrane permeability after back wash. Higher flux recovery rate indicates better antifouling performance and less fouling of support ceramic membrane.

$$J = \frac{V}{AZt}$$ \hspace{1cm} (1)

V (L) is the permeate volume, A (m2) denotes the membrane area, and Zt (h) represents filtration duration.

$$\text{FR}_n = \frac{J_n}{J_0} \times 100\%$$ \hspace{1cm} (2)

J_n denotes the initial permeate flux after each back wash ($n = 1, \ldots, 6$), and J_0 is pure water permeate flux of ceramic membrane.

In addition, COD rejection (R %) of the membranes was investigated with Eq. (3). The fluorescent organic contents in the feed and the permeates of O/W emulsion filtered by two composite membranes and ceramic membrane alone were also compared by three-dimensional fluorescence excitation-emission matrices (FEEM) (Aqualog CDOM Fluorometer, Horiba Scientific). The wavelength range of excitation and emission scans were 200-600 nm and 211.44-620.81 nm, respectively.

$$R = (1-C_p/C_f) \times 100\%$$ \hspace{1cm} (3)

R is the COD removal rate, and C_f and C_p are COD concentrations of the feed and permeate, respectively.

2.4 Enhanced backwash for Fe$_2$O$_3$ composite membranes

The pH of backwash fluid was changed from 6.0 to 8.0 by substitution of deionized
water (pH = 6.0) with alkalescent water (pH = 8.0) to enhance the cleaning efficiency of backwash for composite membranes. The alkalescent water was established at pH 8.0 with 10 mM phosphate buffer through addition of sodium dihydrogen phosphate and hydrochloric acid (Sigma-Aldrich).

3. Results and Discussion

3.1 Oil/water emulsion properties

Table 1 presents major characteristics of crude oil/water emulsion. O/W emulsion was negatively charged at pH 6.0 and pH 8.0. The zeta potential of oil droplets slightly increased from -45.5 ± 3.0 to -36.52 ± 3.0 mV with pH increase. The average size of oil droplets at pH 6.0 was almost the same as that at pH 8.0, which was independent to the pH. This phenomenon is consistent with that reported by Lobo et al [24]. The images of oil droplets show that the emulsion was composed of fine oil droplets which uniformly dispersed in the aqueous phase (Fig. 2). During the experiments, the emulsion was relatively stable in terms of droplet size distribution and zeta potential.

<table>
<thead>
<tr>
<th>pH</th>
<th>Zeta potential(mV)</th>
<th>Average droplet size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>-45.5 ± 3.0</td>
<td>369.5 ± 12.8</td>
</tr>
<tr>
<td>8.0</td>
<td>-36.5 ± 3.0</td>
<td>362.2 ± 15.0</td>
</tr>
</tbody>
</table>

Oil dosage = 100 mg L⁻¹; volume prepared = 12 L; sonication time = 50 min.
Fig. 2. Microscopic images of oil droplets in crude oil/water emulsion obtained with LSCM.

3.2 Properties of Fe$_2$O$_3$ composite membranes

Table 2 summarizes the properties of Fe$_2$O$_3$ dynamic membrane and support ceramic membrane. The average size of Fe$_2$O$_3$ particles was 784.4 nm that is much larger than the pore size of support membrane, indicating that Fe$_2$O$_3$ particles would deposit on membrane surface rather than penetrate into membrane pores. The isoelectric points (pH$_{pzc}$) of dynamic membrane and support membrane are 6.4 and 4.8, respectively (Table 2 and Fig. S1, SI). The surface charge of Fe$_2$O$_3$ DM and support membrane would be positive and negative, respectively, during the process of membrane preparation, emulsion treatment and deionized water backwash (pH = 6.0). Therefore, electrostatic attraction would occur between Fe$_2$O$_3$ DM and support membrane which contributes to the stabilization of dynamic membrane on support membrane. While the surface charge of Fe$_2$O$_3$ DM would change to be negative in the period of alkalescent water backwash (pH = 8.0), support membrane would remain negatively charged (Table 2). In this case, electrostatic repulsion would occur between Fe$_2$O$_3$ DM and support membrane. This would help for the detachment of
Fe$_2$O$_3$ DM from support membrane. The hydrophilicity of Fe$_2$O$_3$ DM was compared with that of ceramic membrane (Table 2 and Fig. S2, SI). Fe$_2$O$_3$ dynamic membrane (contact angle = 26.6°) was more hydrophilic than ceramic membrane (contact angle = 39.9°). Since higher hydrophilicity indicates lower fouling potential, [25] Fe$_2$O$_3$ dynamic membrane covering on ceramic membrane surface would significantly improve the antifouling performance of ceramic membrane.

Table 2. Properties of dynamic membrane and ceramic membrane*

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Average particle size (nm)</th>
<th>pH$_{pzc}$</th>
<th>Contact angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$ dynamic membrane</td>
<td>784.4 ± 30.5</td>
<td>6.4</td>
<td>26.6 ± 1.6</td>
</tr>
<tr>
<td>Support ceramic membrane</td>
<td></td>
<td>4.8</td>
<td>39.9 ± 2.0</td>
</tr>
</tbody>
</table>

* pH$_{pzc}$ and contact angle were obtained from Figure S1 and Figure S2 of Supporting Information.

The surface optical images and the cross-section SEM images of support ceramic membrane and two Fe$_2$O$_3$ composite membranes were shown in Fig. 3 and Fig. 4, respectively. Compared with ceramic membrane (Fig. 3A and Fig. 4A), pre-coated composite membranes had a dynamic membrane evenly covered on support membrane surface (Fig. 3B and Fig. 4B). The permeate flux remained stable during the preparation process (Fig. 5), indicating that the pre-coated dynamic membrane had almost no influence on the flux of support membrane. For self-forming composite membranes (Fig. 3C and Fig. 4C), a more compact dynamic membrane was observed on support membrane which was confirmed by the decline of permeate flux (Fig. 5). This phenomenon may be ascribed to that Fe$_2$O$_3$ particles and oil droplets superimposed on each other during the preparation process, in which oil droplets
played an adsorption bridging effect between Fe$_2$O$_3$ particle-particle and particle-support membrane.

Fig. 3. Optical images of support ceramic membrane (A), Pre-coated composite membranes (B) and Self-forming composite membranes (C); below is the membranes after filtration process.

Fig. 4. Cross-section SEM of support ceramic membrane (A), Pre-coated composite membranes (B) and Self-forming composite membranes (C)
Fig. 5. Normalized permeate-flux curves for preparation of Fe₂O₃ dynamic membrane.

3.3 Fe₂O₃ composite membranes for O/W emulsion treatment

Two Fe₂O₃ composite membranes and ceramic membrane alone were, respectively, used for the treatment of O/W emulsion. Their antifouling performances were evaluated by flux recovery rate of each filtration cycle. **Fig. S3 (SI)** shows the normalized permeate flux decline of these membranes as a function of filtration time. All the membranes had flux decline during the filtration of O/W emulsion, which was caused by membrane fouling and cake layer [26].

Fig. 6 presents a comparison of flux recovery rate (FRₙ, n represents the filtration cycles) of three membranes after each back wash. The FRₙ of all membranes declined as the number of filtration/backwash sequence increased, indicating that their permeability decreased gradually. These membranes had significantly different flux recovery rates after four filtration cycles (**Fig. 6**). Pre-coated composite membranes, self-forming composite membranes and support membrane alone had 46.1%, 27.5% and 36.1% flux recovery rate, respectively. Pre-coated DM enhanced the flux recovery rate by 10% and significantly reduced the membrane fouling. In contrast,
self-forming DM decreased the flux recovery rate by 8.6% and aggravated the membrane fouling. However, self-forming DM has been reported to reduce membrane fouling in the cross-filtration of O/W emulsion through promotion of shear stress [27, 28]. This contrary trend in our study may be explained by that the antifouling performance of self-forming DM was investigated under dead-end filtration condition. The detailed analysis for this phenomenon was provided in the following proposed fouling mechanism. The filtration results demonstrate that pre-coated Fe₂O₃ dynamic membrane can be used as protective membrane to effectively reduce membrane fouling of ceramic membrane in O/W emulsion treatment.

![Fig. 6. Decline of flux recovery rates for three membranes backwashed at pH = 6.0.](image)

In addition, COD rejection rates (R%) of three membranes were listed in Table 3. The COD rejection rates of ceramic membrane (R% = 95.7%) and pre-coated composite membranes (R% = 95.0%) were close to each other and less than that of self-forming composite membranes (R% = 97.8%). Higher COD rejection of self-forming composite membranes further confirmed that a more compact dynamic membrane was formed on the surface of support membrane.
Table 3. COD rejection rate of three membranes*

<table>
<thead>
<tr>
<th>Membrane</th>
<th>R%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic membrane</td>
<td>95.7</td>
</tr>
<tr>
<td>Pre-coated composite membranes</td>
<td>95.0</td>
</tr>
<tr>
<td>Self-forming composite membranes</td>
<td>97.8</td>
</tr>
</tbody>
</table>

*COD of feed emulsion is 327 mg/L.

The fluorescent organic contents of O/W emulsion before and after filtration by three membranes were also compared using FEEM (Fig. 7). Two major peaks adjacent to each other (centered at Ex/Em of 215/297 and 225/337 nm) presented in feed (Fig. 7a), which can be ascribed to aromatic-like compounds (benzene derivatives) [29][30]. Another peak area centered at Ex/Em of 250/450 nm with relatively intense signals can be assigned to fulvic acid-like compounds [30]. In contrast to the feed, most of the fluorescent constituents were removed to great extent by three membranes (Fig. 7b, c, d). The emulsion filtered by self-forming composite membranes had the lowest fluorescent organic contents indicating their high oil rejection (Fig. 7d), which is consistent with the COD rejection. Taken together, those results indicate that Fe₂O₃ composite membranes are highly efficient to remove oil from O/W emulsion.
Fig. 7. FEEM spectra of the feed and the permeates of emulsion treated by three membranes.

3.4 Possible membrane fouling mechanism

Membrane fouling mechanism of three membranes in O/W emulsion treatment was hypothesized and schematically shown in Scheme 1. The following two reasons may account for the better antifouling performance (i.e., high flux recovery rate) of pre-coated Fe$_2$O$_3$ composite membranes (Scheme 1b): 1) high hydrophilicity of Fe$_2$O$_3$ DM enhanced the removal of oil foulants from its surface by backwash; and 2) the Fe$_2$O$_3$ dynamic membrane on surface of support membrane reduced the exposure of support membrane to oil foulants, and Fe$_2$O$_3$ particles of surface layer directly interacted with oil foulants were easily washed out by backwash.
In contrast, self-forming Fe$_2$O$_3$ composite membranes had a higher fouling propensity (i.e., low flux recovery rate). This phenomenon can be explained by two reasons in Scheme 1c. The first reason was that some oil droplets absorbed on Fe$_2$O$_3$ particles in the suspension before the preparation of dynamic membrane, and some oil droplets and Fe$_2$O$_3$ particles were simultaneously deposited on support membrane surface during the preparation process. These oil droplets were stuck in the gaps of Fe$_2$O$_3$ particles (i.e., the pores of dynamic membrane) and cannot be easily removed by backwash, thus leading low flux recovery and high rejection of oil droplets. This
hypothesis was supported by the results of COD rejection and FEEM for self-forming composite membranes (Table 3 and Fig. 7). The other reason was that Fe₂O₃ particles on the surface of self-forming composite membranes were not readily washed out, because they were “glued” on each other due to the adsorption bridging effect of oil foulants between the gaps. The photographs of three fouled membranes after backwash confirmed this assumption (Fig. 3). Compared with ceramic membrane and pre-coated composite membranes (Fig. 3a and 3b), self-forming composite membranes had more oil foulants and Fe₂O₃ particles adhered to their surface (Fig. 3c).

3.5 Enhanced backwash for pre-coated Fe₂O₃ composite membranes

The fouling of ceramic membrane can be increased or reduced through electrostatic interactions between membrane surface and solutes, which was largely influenced by membrane surface charge [24, 31]. The surface charge of metal oxides is developed through protonation/deprotonation of surface hydroxyl groups at pH below or above pHₚzp of the metal oxide [20]. In this study, electrostatic attraction between positively charged Fe₂O₃ DM (Table 2) and negatively charged oil droplets (Table 1) may compromise the cleaning efficiency by water backwash (pH 6.0). In order to improve the cleaning efficiency of pre-coated Fe₂O₃ composite membranes, alkalescent water was used as backwash fluid to replace deionized water (i.e., pH changing from 6.0 to 8.0). In this case, the surface charge of Fe₂O₃ DM changes from positive to negative according to its pHₚzp (Table 2).

The flux decline was also observed on support membrane alone and pre-coated
Fe₂O₃ composite membranes in O/W emulsion treatment using alkalescent water backwash (i.e., pH = 8.0) (Fig. S4, SI). These two membranes backwashed by deionized water and alkalescent water were compared in terms of flux recovery rates (Fig. 8). The flux recovery rate of Fe₂O₃ composite membranes after alkalescent water backwash (FR₃⁻ = 53.7%) increased by 7.6% compared with that after deionized water backwash (FR₃⁻ = 46.1%). The enhancement of flux recover rate by alkalescent water backwash can be attributed to the reversal of Fe₂O₃ surface charge (i.e., from positive to negative) and subsequently the change of electrostatic interaction.

![Graph](image)

Fig. 8. Decline of flux recovery rates for pre-coated composite membranes and ceramic membrane backwashed at pH = 6.0 and pH = 8.0, respectively.

Scheme 2 shows the possible fouling mechanism. As described above, Fe₂O₃ dynamic membrane was negatively charged when alkalescent water was used as backwash fluid (pH = 8.0). Electrostatic repulsion would occur between Fe₂O₃ DM and similarly charged oil droplets, which contributes to the desorption of oil droplets on dynamic membrane thus causing high recovery rate. Furthermore, electrostatic repulsion would also occur between Fe₂O₃ particles and the support membrane.
surface with the same charge. This would facilitate the detachment of some Fe$_2$O$_3$ particles from support membrane, which carried off some oil foulants also causing higher recovery rate. It should be noticed that oil saponification by alkalescent water had almost no influence on flux recovery, which can be verified by the similar flux recovery rates of ceramic membrane backwashed by deionized water (FR$_3$ = 36.1%) and that by alkalescent water (FR$_3$ = 37.4%) (Fig. 8). The FR values of pre-coated Fe$_2$O$_3$ composite membranes backwashed by deionized water and alkalescent water were both higher than that of ceramic membrane in Fig. 8. This again demonstrates the pre-coated Fe$_2$O$_3$ DM can effectively reduce membrane fouling in O/W emulsion treatment.

Scheme 2. Proposed interaction between Fe$_2$O$_3$ DM and oil droplets, Fe$_2$O$_3$ DM and support membrane during backwash at two pH values

The fouled Fe$_2$O$_3$ particles washed out by alkalescent water can be treated through ozone technology and reused for the preparation of dynamic membrane. Under this
alkalescent condition, ozone oxidation would be more efficient for oil removal from Fe$_2$O$_3$ particles that can act as a oxidation catalyst [32, 33]. In addition, alkalescent water backwash (pH = 8.0 and room temperature 25 °C) has distinct advantage of less corrosion to membrane filtration system and lower cost than alkaline backwash (pH > 10 and high temperature demand 80°C) [34, 35]. Therefore, it could be significantly valuable for the application of alkalescent water backwash for Fe$_2$O$_3$ composite membranes in O/W emulsion treatment to enhance cleaning efficiency and prolong the life of membrane filtration system.

4. Conclusion

1. Pre-coated Fe$_2$O$_3$ dynamic membrane had better performance for O/W emulsion treatment than self-forming dynamic membrane in terms of reducing ceramic membrane fouling. It is a simple and efficient strategy to reduce the fouling of support membrane in oily wastewater treatment.

2. Fouling mechanism for two types of Fe$_2$O$_3$ dynamic membranes was proposed and confirmed, which helps to select appropriate dynamic membrane for oily wastewater treatment.

3. High cleaning efficiency for Fe$_2$O$_3$ composite membranes under mild conditions was obtained through using alkalescent water as backwash fluid, which is essential for sustainable O/W emulsion treatment.
ASSOCIATED CONTENT

Supporting Information.

One table, one scheme and four figures are included in the supporting information.

This information is available free of charge via the Internet at

AUTHOR INFORMATION

Corresponding Author: Jun Ma

*Tel: +86 451 86283010; Fax: +86 451 86283010; E-mail: majun@hit.edu.cn;

majunhit@126.com

ACKNOWLEDGEMENTS

This work was supported by National Key Technology Support Program of China (2012BAC05B02). The authors want to thank Daqing Oilfield Company of China for providing the crude oil for the experiment.
Literature Cited

[15] Y. Zhao, Y. Tan, F. Wong, A. Fane, N. Xu, Formation of dynamic membranes for oily water

[29] A. Asatekin, A.M. Mayes, Oil Industry Wastewater Treatment with Fouling Resistant Membranes

Graphical abstract
HIGHLIGHTS

1. A facile strategy was provided to reduce membrane fouling in O/W emulsion treatment.

2. Antifouling performances of pre-coated and self-forming Fe₂O₃ dynamic membranes were compared.

3. Fouling mechanism for two types of dynamic membranes was proposed.

4. An eco-friendly efficient cleaning method for Fe₂O₃ composite membranes was developed.