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Highlights 

 The motivation of this study is to demonstrate the ability to excite the combination resonances 

near the first and third mode of vibration of clamped-clamped microbeams fabricated using 

surface micromachining techniques. 

 The ability to control the resonator bandwidth and the amplitude of vibration is demonstrated 

experimentally, by controlling the amplitude and frequency of the electrical excitation force. 

 This ability to excite multiple peaks and to control the resonator’s bandwidth has promising 

applications in mass sensing and energy harvesting applications. 

  Another objective is to explore the dynamics of out-of-plane structures made of Polyimide, 

which is bio-compatible material. The surface of these microbeams can be functionalized with 

polymers and other sorbent materials to allow mass/gas detection. The information about the use 

of such material is scarce and is not available for the science community.  

 The final objective of this work is to study in details, the frequency response of these devices at 

the higher-order modes up to the nonlinear regime. Our study has shown interesting jumps and 

hardening effects at the higher-order modes. 
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ABSTRACT 

We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a 

large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The 

investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using 

polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is 

excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or 

third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and 

large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and 

amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. 

1. Introduction 

There is a growing demand to develop tunable resonators with wide frequency band especially at high quality factor range 

and near higher-order modes of vibrations, where high sensitivity is demanded for  gyroscopes [1], energy harvesting [2, 3], 

filtering [4-6], logic gates [7-9], and electron sensing applications [10].  

MEMS gyroscopes rely on exiting a resonator at the maximum peak at resonance for both the driving and sensing modes to 

achieve the highest possible dynamic response, and hence, maximize the sensitivity [1, 11]. Maximizing the peak response 

means that the quality factor of the resonator should be maximized. However, this leads to reduction in the frequency 

bandwidth of high power and large response. Therefore, practically, due to fabrication imperfections, noise, and temperature 

drift problems, catching exactly the maximum peak becomes almost impossible resulting in significant loss of sensitivity. To 

alleviate this effect and to broaden the bandwidth at resonance, mechanically coupled resonators were proposed in the driving 

mode, the sensing mode, and in both [1]. 

To harvest the maximum energy from the ambient vibration, the harvester resonant frequency is designed to match the 

ambient vibration frequency. Any deviation between the two frequencies causes significant decrease in the harvested power. 

Zhu et al. reviewed several strategies to tune and increase the resonator bandwidth for energy harvesting, either by designing 

complicated resonators or introducing a sophisticated conditioning electrical circuit [2]. These methods require external 

power to tune the resonator and have limited controllable frequency range [12].  

Also, tunable and wide band resonators have been investigated for filtering application in transceivers [6], 

multiband/multifrequency applications in communication systems [5], and wireless communication including cellular devices 

[4]. Rhoads et al. designed and analytically studied a tunable band pass filter by coupling two parametrically excited MEMS 

oscillators connected to a logic circuit. They found that using parametric excitation introduces instability problems and might 

excite higher order resonances, which results in a significant response away from the filter operating range [4]. Piazza et al. 
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designed and fabricated peizoelectrically actuated MEMS resonator composed of rectangular plates and circular rings 

electrically cascaded in different configurations to form band pass filters at 93 MHz and 236 MHz [13]. An elctrothermally 

excited resonator is fabricated and tested in [14]. Using the idea of multifrequency excitation, they showed simultaneous 

mixing and filtering behavior. To increase the operating frequency range of carbon nanotube resonator, Cho et al. exploited 

the geometric nonlinearities of the resonator excited at high amplitude. The resonance band was increased up to many 

multiples of the natural frequency [15].  

In previous works, we explored multi-frequency excitations of a micro mirror based resonator [16] and a capacitive switch 

[17]. We showed that due to the inherent quadratic nonlinearity of the electrostatic force, combination resonances can be 

triggered and tuned depending on the voltage loads amplitude and frequency. The nonlinear dynamics of a clamped-clamped 

beam resonator when excited by two frequency sources near its first and third resonance frequency (multimodal excitation) 

has also been investigated theoretically [18]. The complex dynamics of the system has been highlighted through phase 

diagrams, Poincare sections, bifurcation diagrams, and FFTs showing quasi-periodic bifurcation rout to chaos [18]. Clamped-

clamped beams are known to be inherently nonlinear structures due to the cubic nonlinearity of mid-plane stretching, which 

they suffer from during moderate-large motion. When excited by electrostatic forces, their behavior is influenced by 

quadratic nonlinearities as well. In this letter, we aim for the first time to exploit these nonlinearities to trigger several 

combination resonances, which can be tuned and controlled to broaden the bandwidth near resonance and achieve other 

desirable features.   

2. Mathematical model 

 To illustrate the idea, we recall first that the dynamic response of a linear system excited by several harmonic forces is 

composed of the same frequency components as the input forcing. For a nonlinear response, however, several other 

resonances, in addition, can be triggered, including superharmonic, subharmonic, and combination resonances [19, 20]. For 

an electrically excited clamped-clamped microbeam, for the first approximation, quadratic and cubic nonlinearities can be 

assumed to be the most dominant nonlinearities of the system [11]. A simple model of this case can be viewed as a single-

degree-of-freedom system governing the mid-point deflection of the beam, u, with both quadratic and cubic nonlinearities 

excited by multifrequency harmonic forces, which take the form of  

2 32
0( ) 2 ( ) ( ) ( ) ( ) ( )q cu t u t u t u t u t f t           (1) 

 
where ( )f t  is the electrical attraction force between the two electrodes:  
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2f ( t ) V ( t )   (2) 

 

where t is time,  is the damping coefficient, 0 is resonance frequency of the system, q and c are the quadratic and cubic 

nonlinearities coefficients, respectively, coming from electrostatic and mid-plane stretching, and  is a coefficient related to 

the projected electrostatic force on the first mode of vibration. The voltage term V(t) is composed of a DC voltage load DCV  

superimposed to two AC harmonic voltage loads of amplitudes 1ACV  and 2ACV  and of frequencies 1  and 2 , respectively. 

Accordingly, the voltage load term, when entering the electrostatic force term, can be expanded as below 

           

           

22

2

2 2 2
1 1 2 2 1 2 1 1 2 2

2 2
1 1 2 2 1 2 1 1 2 2 1

1 1
( ) cos cos 2 cos 2 cos

2 2

1 1
cos 2 cos 2 2 cos ( ) 2 cos ( )

2 2

DC AC AC DC AC AC DC AC DC AC

AC AC AC AC AC AC

V t V V t V t V V V V V t V V t

V t V t V V t V V t

 
              

 

   
            
   

 (3) 

The excitation frequencies are labeled as 1 1 2 2 3 1 4 2 5 2 12 2, , , ,            and 6 1 2 .  

Next, using the method of straight forward expansion [19] we seek an approximate analytical solution for Eq. (1). Toward 

this, Eq. (1) is scaled as  

2 2 2 3
02 q cu( t ) u( t ) u( t ) u ( t ) u ( t ) f ( t )           (4) 

where   is scaling parameter. Hence, we seek an expanded solution for u of the form  

2
0 1 2u( t ) u u u       (5)

Next, we introduce the derivative notations as 

0 1

d
D D

dt
       

2
2 2 2
0 0 1 1 0 22

2 2
d

D D D ( D D D )
dt

        (6) 

Substituting Eq. (5) and Eq. (6) into Eq. (4) and collecting the terms of order 
0 1,  and 2 we get 

0O( ) : 2 2 2
0 0 0 0D u u V ( t )    (7) 

1O( ) : 2 2 2
0 1 0 1 0 1 0 0 0 02 2 qD u u D D u D u u         (8) 

2O( ) :   
2 2 2 2 3
0 2 0 2 0 1 1 1 0 0 2 0 0 1 1 0 0 1 1 02 2 2 2 2 q q cD u u D D u D u D D u D u D u u u u u                 (9) 

The solution of Eq. (7) can be written in the form 
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0 0 0

6

0 1

1

ni T i( T )
n

n

u ( t ) A(T )e e cc
 



      (10) 

where A is a complex amplitude, T0=t, T1= t , cc denotes the complex conjugate terms, and n is defined as 

2 2 1
0

1

2
n n( )       (11) 

Then, substituting Eq. (10) into Eq. (8) and Eq. (9) yields the so-called secular terms [20], which produce several kinds of 

resonances. Table 1 shows a summary of the most significant triggered resonances by solving Eq. (8). Solving Eq. (9) 

produces more resonances, for example, the subharmonic of order one third.   

TABLE 1. Triggered resonances for a system with quadratic and cubic nonlinearities excited with a multifrequency source. 

 
Frequency Resonance 

Type 

0 1 2,   
 

Primary 

0 1 2

1 2 1 2

2 , 2 ,

3 , 3 ,4 , 4

   

     

Superharmonic 

0 1 2

1 1
,

2 2
   

 

Subharmonic 

1 2

1 2 1 2

1 2 1 2

1

0

2 1 2

,

1
( ), 2( )

2
2 ,

3 ,3

2

  

   

    

    



 

Combination of 

sum type 

1 2

1 2 1 2

1

0

1 2

1 2 1 2

2

,

, ,

3 ,

1
2( ),

2 2

3

( )
2

 

  

 

    

 

   

 

Combination of 

difference type 

 

3. Fabrication process 
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Fig. 1. Top view picture of the fabricated 600 m microbeam and the actuation pad. 

 
Fig. 2. Cross sectional view of the fabricated microbeam. 

The clamped-clamped microbeam resonator, shown in Fig. 1, is fabricated using the in-house process [21, 22] on a 4” in 

silicon wafer coated with 500 nm SiO2. A 250 nm chrome and gold layer is sputtered and patterned to form the lower 

electrode of the resonator. Then, a 2 µm amorphous silicon is deposited using the physical chemical vapor deposition to form 

the sacriftial layer. At the end of the fabrication process, this layer will be etched to release the resonator and create the air 

gap between the two electrodes. The upper electrode is formed by sputtering and patterning a Cr/Au/Cr layer of thicknesses 

50nm/250nm/50nm, respectively. The chrome is used to enhance the adhesion properties between the gold and other 

materials. After that, a 6 µm polyimide layer is spun and cured at gradually increasing temperature from 110 C° to 350 C° in 

one hour and 30 minutes. A 500 nm nickel layer is sputtered and patterned on the polyimide surface to protect the 

microbeams during the reactive Ion etching. Finally, the wafer is diced and the scraficial layer is etched using XeF2 dry 

etchant. When the two electrodes connected to an external excitation voltage, the resonator vibrates in the out-of-plane 

direction. Fig. 2 shows a picture illustrating the various layers of the fabricated resonator. 

4. Characterization  



8 

 

In this section, we describe the experimental characterization setup used for testing the device and measuring the initial 

profile, gap thickness, and the out-of-plane vibration. The experiment is conducted on the 600 m length microbeam with full 

lower electrode configuration. The experimental setup, Fig. 3, consists of a micro system analyzer (MSA), which is a high 

frequency laser-Doppler vibrometer, under which the microbeam is placed to measure the vibration, data acquisition card, an 

amplifier to provide actuation signals of wide range of frequencies and amplitudes, and a vacuum chamber equipped with 

ports to pass the actuation signal and measure the pressure. Also, the chamber is connected to a vacuum pump that reduces 

the pressure as low as 4 .mTorr  

 
Fig. 3. Experimental setup used for testing the MEMS devices. 

The microbeam is excited using the data acquisition card and the vibration is detected using the MSA. The excitation 

signal is composed of two AC signals 1ACV  and 2ACV  superimposed to a DC signal .DCV  The frequency response curve is 

generated by taking the steady state maximum amplitude of the motion max .W  

5. Frequency response curves 

Next, we demonstrate broadening of the high-amplitude response near resonance through multifrequency excitation. The 

generated frequency response curves near the first mode (87kHz) are depicted in Fig. 4. Each curve shows the frequency 

response for different values of 2.ACV The results are obtained by sweeping the frequency of the first AC source 1 around 

the first mode and fixing the second source frequency 2 at 500Hz.  The swept source voltage 1ACV and the DC voltage are 
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fixed at 5V and 5V ,respectively. The chamber pressure is fixed at 4mTorr . Fig. 4 demonstrates clearly the enlargement of 

the response around the primary resonance. As shown, increasing the fixed source voltage enhances the amplitudes of the 

additive 
1 2( )  and subtractive 

1 2( )   resonances. These resonances arise due to the quadratic nonlinearity of the 

electrostatic force and the cubic nonlinearity due to mid-plane stretching. The effect of changing the fixed frequency 
2 on 

the response is illustrated in Fig. 5. As 2 decreases the two resonances get closer and a continuous high amplitude band is 

formed. Also, the excited combination resonances can be easily tuned by properly selecting the value of 
2 in the LabVIEW 

program. 

 
Fig. 4. Frequency response curve near the first mode of vibration for 5 ,DCV V 1 5 ,ACV V and 2 500Hz.    

 

 

 
Fig. 5. Frequency response curve for different values of 2  at ,5DCV V 1 5 ,ACV V and 2 5ACV V near the first mode of vibration. 

Fig. 6 highlights the effect of multifrequency excitation near the third mode (355kHz) where resonance peaks of additive 

type at 1 2( )  , 1 2( 2 )   , 1 2( 3 )    and subtractive type at 1 2( )  , 1 2( 2 )   , 1 2( 3 )    are excited due to the 
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cubic and quadratic nonlinearities coming from mid-plane stretching and the electrostatic force, respectively. As 
2

decreases, these resonances merge into a high amplitude peak near the primary resonance. In addition, a hardening behavior 

due to the cubic nonlinearity is reported near the first and third modes of vibration.  

For practical applications, where broadening of the bandwidth of resonators is required; the resonators need to operate in 

the linear regime. This can be ensured by optimizing the response of the resonator first to a single AC excitation to be linear, 

i.e., adjusting the AC and DC loads, controlling damping if possible, etc. Once a linear response is generated for a single 

harmonic excitation; a second source of excitation can be added. The response due to this mixing will follow qualitatively the 

same behavior as the response to a single excitation; if the latter is linear, the former will be most likely linear. An exception 

of this is for the case when the second frequency source, 
2 , is too small, making the secondary resonances merging with  

the primary resonance. This can lead to significant amplification of the response. In such cases, care must be taken since this 

amplification might lead to a nonlinear response, and may lead to even dynamic pull-in.  

 

 

 
Fig. 6. Frequency response curve for different values of 2  at 50 ,DCV V 1 25 ,ACV V  and 2 40ACV V near the third mode of vibration. 

6. Conclusions  

 This demonstrates that multifrequency excitation can be used to broaden the large amplitude response around the main 

resonance, and hence increases the bandwidth, even for higher order modes, which can have several practical applications.  

Typically resonators of resonant sensors may not be driven necessary at the exact sharp peak due to temperature fluctuation, 

noise, and other uncertainty, which results in significant losses, lower sensitivity, and weak signal to noise ratio. The above 
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results prove the ability to control the resonator bandwidth by properly tuning the excitation voltage frequencies. Also, by 

properly tuning the excitation amplitude and frequencies, the higher order modes of vibration are triggered with high 

amplitudes above the noise level. These capabilities of exciting multiple resonance peak over a wide frequency band with 

ability to control its amplitude and location can have a promising application in increasing the resonator band width for 

applications, such as mixing/filtering, and mechanical logic circuits. The approach can be also promising for energy 

harvesting, where the resonator is excited electrically by a weak electrical signal (in principle should consumes no or little 

power) while the second excitation source comes from the ambient vibration. This widens the band at which the harvested 

energy is maximum. However, such approach needs to be further studied to verify its efficiency. In addition, actuating the 

resonator with multiple AC sources opens the door of multifrequncy/multiband MEMS based filters. 

 

7. Appendix 

The nondimensional equation of motion of a microbeam which is electrostatically actuated by two AC harmonic loads 1ACV

and 2ACV of frequencies 1 and 2 , respectively, superimposed to a DC load
DCV can be written as [18] 

   

 

1

1 1 2 2

0

2

1
1

224 2 2
DC AC AC

4 2 2 2non non

V V cos Ω t V cos Ω tw w w w w
c N dx

t xx x x w




 
                       

 





  (12) 

with the normalized boundary conditions are 

   0, 0 0, 0
w

w t                       t
x


 


 

   1, 0 1, 0
w

w t                       t
x


 


  (13) 

where the nondimensional parameter in Eq. (12) are defined as 

24 4 2

3 3 3 31 2

12 6 12
6non non

cl d l Nl
c ; ; ;N

ETbh h Eh d Ebh


 

 
    

 
  (14) 

Where E is the modulus of elasticity, I is the moment of inertia, c is the damping coefficient, A is the cross-sectional area, 

is the density,  is the air permittivity, d is the air gap thickness, t  is the time, x  is the position along the beam, N is the 

axial force, b is the beam width, h is the beam thickness, l is the beam length, and w  is the microbeam deflection. T is the 

time scale defined as 
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4bhl
T

EI


   (15) 

The undamped and unactuated eigen value problem of Eq. (12) is defined as [11] 

(4) (2) 2( ) ( ) ( ) 0
non non

x N x x        (16) 

To find the mode shape function ( ),i x we solve the eigen value problem Eq. (16) for different values of the nondimensional 

axial force Nnon to match the ratio of experimentally measured resonance frequencies with the nondimensional frequencies 

3 1non non
  [23]. Both ratios are matched for Nnon=41.9. The axial force arises due to the residual stress from depositing the 

different layers at extremely different temperatures. 

In previous work [23], we found 101.06 10EI    for a 400 µm long microbeam. The value of EI is extracted by measuring 

the static deflection of a 400 clamped-clamped microbeam subjected to a gradually increasing DC voltage. Then, the static 

deflection equation is solved for different values of EI until the experimental and simulation results are matched. We 

assumed that beams with the same cross section and fabricated from the same material, but different length will have the 

same EI value. The nondimensional damping cnon is extracted by solving the dynamical equation and matching the simulation 

and experimental results. 

Equation (12) is solved using three modes in the Galerkin approximation. The simulation and experimental results near the 

first mode is shown in Fig.7 where a qualitative agreement can be noticed. The discrepancies in the results can be attributed 

to fabrication imperfection and the use of three modes in the Galerkin approximation.  

 

 

 Fig. 7. Simulation and Experimental result of the microbeam near the first mode VDC = 5V, VAC1 = 5V, VAC2 = 5V, and Ω2 = 1 

kHz. 
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