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Ozone Measurements Monitoring Using Data-Based Approach

Abstract

The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone

very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as

a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection

indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting

small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially

weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection

performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect

small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to

ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring

stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring

association.

Keywords: Anomaly detection; MEWMA statistic; MSPC; Principal components analysis; Ozone pollution;

Data-driven strategy.

1. Introduction

Atmospheric pollution is one of the most serious problems confronting our modern world. The impact of atmo-

spheric pollution on human health is now forefront of population concerns [1]. Numerous epidemiological studies

highlight the influence on the health of certain chemical compounds such as sulfur dioxide (SO2), nitrogen dioxide

(NO2), ozone (O3) or dust particle in the air [1]. The influence of this pollution is noticeable on sensitive populations

such as asthmatics, children, and elderly. Currently, among the monitored compounds, ozone is one of the greatest

concern. Ozone is one of the most important photochemical oxidant that exerts adverse effects on human health as

well as damages ecosystems, agricultural crops and materials at certain concentration levels [2, 3, 4]. France, like

most European countries, has often known during the last summer seasons (2003 especially) episodes of ozone pol-

lution, affecting a large part of the territory. The detection of abnormal pollution in the measured concentrations of

these compounds is therefore an important issue for health.

The acceptable concentrations of these pollutants, harmful for human health and the environment, are defined by

European standards. Air quality monitoring networks have the following main missions: the measurement network

management (recording of pollutant concentrations and a range of meteorological parameters related to pollution
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events) and the diffusion of data for permanent information of population and public authorities in reference to norms.

The objective of this work is to propose a statistical detection method able to detect abnormal ozone measurements

caused by air pollution or any incoherence between the different network sensors or sensor dysfunction. The com-

plexity of ozone (O3) formation mechanisms in the troposphere [5], the complexity of meteorological conditions in

urban areas and the uncertainty in the measurements of all the parameters involved, make the fast and accurate mod-

eling of O3 very challenging. As an alternative, implicit modelling approaches, which are data-based techniques (like

principal component analysis), are particularly well adapted to reveal linear relationships among the process variables

without formulating them explicitly. To overcome this difficulty, the principal component analysis (PCA) (a basic

method in the framework of multivariate analysis techniques) can be used because they need no prior knowledge

about the process model [6]. PCA is one of the most popular multivariate statistical technique used in extracting in-

formation from data and is widely used by scientists and engineers in various disciplines, such as in face recognition,

data compression, image analysis, visualization, as well as in anomaly detection [7, 8, 9]. In the absence of a process

model, principal component analysis (PCA) has been successfully used as a data-based anomaly detection technique

for highly correlated process variables [7]. Due to its simplicity and efficiency in processing huge amount of process

data, it is recognized as a powerful tool of statistical process monitoring [10, 11]. PCA and its extensions has been

successfully applied in a wide range of applications, such as in chemical processes [12], water treatment [13] and

hospital management [14].

Generally, in PCA based process monitoring, PCA develop a reference model using the normal data collected

from the normal process. The new process behavior can thus be compared with the predefined one by the monitoring

system to ensure whether it remain under normal operating conditions or not. When anomaly occur, the process

moves out of the normal operation regions indicating that the change in the process behaviors has occurred. Typically,

Hotelling T 2 statistic [15] and the sum of squared residuals SPE [16] which is also known as the Q statistic [17] are

used in PCA-based monitoring to elucidate the pattern variations in the model and residual subspaces, respectively.

The T 2 statistic is defined by the Mahalanobis distance whereas the Q statistic is defined by the Euclidean distance

to avoid ill-conditioning due to small eigenvalues [18, 19, 20, 7, 21]. In other words, the T 2 statistic is a measure of

the variation in the PCA model and the Q statistic is a measure of the amount of variation not captured by the PCA

model. The main disadvantage of using PCs in process monitoring is the lack of physical interpretation [22, 23]. In

addition, in a previous study, [17] have shown that the T 2 statistic can result in false negatives (missed detection) due

to the latent space sometimes being insensitive to moderate process upsets, which is because each latent variable is

a combination of all process variables. Additionally, the disadvantage of T 2 statistic is that anomalies in the process

mean that are orthogonal to the first PCs cannot be detected by using the T 2 [24]. The Q statistic, however, is

more sensitive to additive anomalies than the T 2 statistic because additive anomalies propagate to the model error.

However, the Q statistic can better detect changes in the correlations between the process variables than T 2 [25],

and is also more sensitive than T 2 to modeling errors [25]. Nevertheless, the major disadvantage of the conventional
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PCA-based detection indices, is that use only the information enclosed about the process in the last observation and

they ignore information given by the sequence of all observations. Consequently, this make these detection indices

relatively insensitive to small changes in the process variables [26]. These shortcomings of the T 2 and Q statistics

motivate the use of other alternatives in order to mitigate these disadvantages. To overcome the previous shortcomings,

an alternative approach is proposed in this paper, in which PCA is used as a modeling framework in a model-based

anomaly detection method. In this approach, PCA is used to express a process data matrix as the sum of approximate

and residual matrices. After a model is obtained using PCA, various methods for anomaly detection can be applied,

such as the multivariate exponentially weighted moving average (MEWMA) monitoring scheme, which is utilized in

this work to improve anomaly detection. Therefore, the main contribution of the paper is to exploit the greater ability

of the MEWMA monitoring scheme to detect small shifts in the process mean for improved anomaly detection of

conventional PCA. More specifically, this paper proposes PCA based-MEWMA anomaly detection methodology for

detecting abnormal ozone measurements.

The rest of this paper is organized as follows. Section 2 provides a brief overview of ground-level ozone (i.e.,

tropospheric ozone) pollution. The used data sets and study site are described in Section 3. Then, PCA and a

description of how it can be used in anomaly detection is presented in Section 4. Next, the multivariate EWMA which

is commonly used in quality control is described in Section 5. Then, the proposed PCA-based MEWMA anomaly

detection approach, that integrates PCA modeling and MEWMA monitoring scheme, is presented in Section 6. In

Section 7, we present the application of the PCA-based MEWMA anomaly detection approach to detect abnormal

ozone measurements of an air quality monitoring network in Upper Normandy, France. Conclusions and future works

are finally presented in the last Section.

2. Ozone pollution

Generally, two types of ozone are distinguished: 1) Stratospheric or good ozone, present at around 13 to 30

kilometers of altitude, is a natural filter that protects life on earth from the harmful (ultraviolet) rays of the sun [3].

The ozone hole is a partial disappearance of this filter, linked to the ozone destroying effects of certain pollutants

emitted into the troposphere and that move slowly into the stratosphere. 2) Tropospheric ozone or ground-level ozone,

present in the air we breathe, is bad: it causes eye irritation, bronchial, and can cause respiratory problems, especially

among vulnerable persons (children, elderly) or asthma. The Tropospheric ozone (O3) is a pollutant that has attracted

growing interest in recent years [27, 28]. Unlike other pollutants, ozone is not directly emitted to the atmosphere.

It is a pollutant called secondary formed as a result of complex chemical reactions involving two large families of

pollutants known as primary: volatile organic compounds (VOC) and industrial emissions release a family of nitrogen

oxides (NOx) [29]. It is formed gradually under the action of solar radiation (NOx and VOC combine chemically with

oxygen to form ozone during sunny) and ozone important peaks can be seen in the summer. High levels of ozone are

usually formed in the heat of the afternoon and early evening, dissipating during the cooler nights. The tropospheric

3
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ozone is a pollutant that must be monitored. Ozone, O3, is produced by the reaction represented by the following

equation:

NO2 + O2 −→ NO + O3

where NO2 is the nitrogen dioxide, NO is nitrogen monoxide and O2 is the oxygen. The nitrogen oxides (NO2) result

from the combination of oxygen (O2) with nitric oxide (NO) induced by human activities (combustion of hydrocar-

bons, for transportation or heating. . . ) and volatile organic compounds (VOCs) mainly coming from industries. Solar

radiation of wavelengths less than 430nm are capable of dissociating NO2 into a molecule of nitric oxide (NO) and

oxygen (O). This last is combined with the oxygen to form the molecule of ozone (O3).

This reaction provides two essential information: (i) Ozone photochemical pollutant is formed only during day-

light hours under appropriate conditions, but is destroyed throughout the day and night. Ozone concentrations are

higher on hot, sunny, calm days. Generally, ozone concentration are highest in the rural sites than the urban sites.

Higher concentrations in rural areas can be result from nitrogen oxides and volatile organic compounds being trans-

ported from upwind urban or industrial areas, by natural ozone being transported to ground-level from the upper

atmosphere, or from natural volatile organic compounds emitted from vegetation [30, 31]. (ii) At night, ozone pro-

duced in the light of day (due direct solar radiation), disappears. This is due to the destruction of ozone by nitric

oxide, which is emitted by vehicles. Nitric oxide can remove ozone by reacting with it to form nitrogen dioxide (3NO

+ O3 → 3NO2). Ironically, the concentrations of nitric oxide are very low in most rural areas to completely destroy

ozone, so ozone remains in the atmosphere for a longer period. Ozone levels tend to be higher in rural areas where

there are less local emissions of nitrogen dioxides to destroy any ozone that has formed in the atmosphere [32].

2.1. Diurnal variation of ground-level ozone

Diurnal variations of ozone concentrations follow a typical cycle, with a minimum in late night and a maximum

around mid afternoon [33], as shown in Figure 1. This figure shows the measurements of 7 different stations (located

in the same network) for the same day. The 7 curves have a daily behavior very similar. The ozone concentration

begins to increase just after sunrise, and attains its maximum level in the afternoon due to photochemical production

of O3 mainly from oxidation of natural and anthropogenic hydrocarbons, carbon monoxide (CO), and methane (CH4)

by hydroxyl (OH) radical in the presence of a sufficient amount of NOx.

2.2. Anomalies in ozone measurements

Two types of anomalies in ozone measurements (atypical ozone peaks) can be distinguished: true and false anoma-

lies. True anomalies correspond to peaks in the ozone levels due to the production of photochemical ozone. The

formation of a true peak of ozone requires certain conditions, such as sunny days under stagnant and humid air con-

ditions, high humidity and high temperatures to promote the formation of ozone, and low wind speeds to accumulate

4
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Figure 1: Example of daily ozone concentrations.

high pollution levels. These peaks are usually large with a duration of several hours (due to long reaction times needed

for a gradual formation of the photochemical ozone). Therefore, this type of anomalies usually exhibit bell shaped

curves. Furthermore, false anomaly are usually observed outside the summer period, where the ozone concentration

abruptly increases with very high ozone concentrations (to be in the range of 150µg/m3 to 600 µg/m3) for short pe-

riods of time (around one hour). These abnormal measurements are sharply pointed, which are different from those

observed in the case of photochemical ozone. The presence of this type of anomalies can be due to different phe-

nomena: (a) malfunctioning sensor(s), (b) transported ozone produced elsewhere in the region, (c) transported ozone

produced elsewhere in the region, and others [34].
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Figure 2: Types of ozone anomalies: (a) true anomaly, (b) false anomaly.

3. Air quality monitoring in French using network of measurement stations

Pollution of the lower atmosphere by ozone is a growing problem in industrialized countries. In France, the law

on air quality and rational use of energy (LAURE, law n◦ 96-1236, 30th December 1996) provides a set of measures to

guarantee for citizens the best air quality. Hence the fight against air pollution become a priority. Today, according to

this law, all cities in France, with more than 100 000 inhabitants, have an air quality monitoring network. Actually in

France, we have 40 networks where each of them is managed by a local association. Fourteen air quality monitoring
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associations (AASQA) have been created and approved by the ministry of environment to monitor air quality in

France. Atmo federation groups all these forty approved associations. These associations measure, collect, monitor

and observe air quality. AASQA continuously monitor the presence in the ambient air of 13 pollutants regulated

by European directives and national legislation. Ozone (O3) forms part of the pollutants which are measured by

monitoring associations, because it can cause a number of respiratory health effects. Monitoring networks for air

quality generally consist of several measuring stations spread over the geographical area concerned. When the air

pollutant concentration exceed a certain threshold (defined by decree in air quality regulations) or there is a risk to

exceed it, the association is in charge to inform general public with information on the measured values and to give

advices/recommendations for the exposed populations.

The heat wave of summer 2003 in France, was linked with an exceptional ozone pollution, that affected the

whole European community. These levels were specially high and related to the weather conditions and exceptional

temperatures. The consequences of this heat wave demonstrated the importance to dispose of reliable warning systems

for detection of unexpected pollution and unforeseeable events. Considerable efforts have been deployed (and still are)

to equip AASQA by descriptive models of ozone dispersion. However, we can notice that these so-called deterministic

models are sometimes far from reality. Hence, it is important to propose new optimal descriptive models and statistical

methodology for the detection of peak ozone levels. This will be the principal objective of this study. In the next

subsection the ozone data set used in this study will be briefly described.

3.1. Data sets and study region

In this study, the Upper Normandy region was selected for data collection. Upper Normandy is located at northwest

of Paris, near the south side of Manche sea and is one of the most highly industrialized areas in France. This city,

like most large European cities, faces air pollution problems. The association Air Normand is the official association

responsible for monitoring air quality over Upper Normandy region, and providing with information on the results.

Generally, there are different types of air quality monitoring stations: local, urban, rural and industrial. The local

stations, directly exposed to industrial locations or positioned close to traffic, convey the concentration of pollutants

emanating from an identified source. The urban stations measure the ambient air pollution to which the majority of

the population is exposed. Finally, the rural stations are representative of the levels observed in the sparsely populated

areas and enable the long distance consequences to be assessed. Each station consists of a set of sensors, dedicated to

the acquisition of pollutants (ozone O3, nitrogen oxides NO, sulfur dioxide SO2,. . . ).

In order to measure and control tropospheric ozone pollution the Air Normand association consists of 7 stations

placed in industrial, peri-urban and urban sites, across the region. Ozone concentrations have been measured every

fifteen minutes by Air Normand network. Figure 3 shows a map of France and the location of study sites (Champagne-

Ardenne and Upper normandy).

The aim of this study is to apply the proposed PCA-based MEWMA anomaly detection algorithm in order to

6
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Figure 3: Location of study sites in France (http://education.francetv.fr/CartesInteractives).

detect abnormal measurements of ozone, both of anthropogenic origin (pollution peaks caused by human activity) or

the result of dysfunction of sensors (anomalies, interference,. . . ). A brief introduction to the principles of PCA, and

how it can be used in anomaly detection is presented next.

4. Principal component analysis (PCA)

PCA is a linear dimensionality reduction modeling method, which can be helpful when handling data with a high

degree of cross correlation among the variables. The main idea behind PCA is briefly introduced in this section, and

more details can be found in [35, 20].

4.1. PCA modeling

Let us consider the following raw data matrix X =
[
xT

1 , . . . , x
T
n

]T
∈ Rn×m consisting of n observations and m

correlated variables. The data are collected when the monitored process is under normal operating condition so

that the PCA’s model that will be built represents a reference of the normal process behavior. Before computing

the PCA model, the raw data matrix X is usually pre-processed by scaling every variable to have zero mean and

unit variance. This is because variables are measured with various means and standard deviations in different units.

This pre-processing step puts all variables on an equal basis for analysis [36]. Let Xs denote the autoscaled ma-

trix of X. By using singular value decomposition (SVD), PCA transforms the data matrix Xs into a new matrix

T = [t1 t2 · · · tm] ∈ Rn×m of uncorrelated variable called score or principal components (PCs). Indeed, PCs are just

mathematical constructs chosen to represent the variance as efficiently as possible, even if their physical meaning is

obscure. Each principal component is a linear combination of the original variables, so that T is obtained from Xs by

7
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an orthogonal transformations (rotations) designed by P =
[
p1 p2 · · · pm

]
∈ Rm×m which is given as following:

T = XsP and Xs = TPT =

m∑
i=1

ti pT
i . (1)

where the column vectors pi ∈ Rm of the matrix P ∈ Rm×m (also known as the loading vectors) are formed by the

eigenvectors associated with the covariance matrix of Xs, i.e., Σ. The covariance matrix, Σ, is defined as follows:

Σ =
1

n − 1
XT

s Xs = PΛPT with PPT = PT P = In, (2)

where, Λ = diag(λ1, . . . , λm) is a diagonal matrix containing the eigenvalues in a decreasing order (λ1 > λ2 > · · · >

λm), In is the identity matrix, and and the ith eigenvalue equals the square of the ith singular value (i.e. λi = σ2) [37].

Note that the PCA model results in the same number of principal components as the number of originals variables

(m). In the case of collinear process variables, however, a smaller number of principal components (l) are needed to

capture most of the variations in the data. Often, a small subset of the principal components (corresponding to the

largest eigenvalues) can extract most of the important information in a data set, and thus simplify its analysis. The first

PC indicates the direction of largest variation in data, the second PC indicates the largest variation unexplained by the

first PC in a direction orthogonal to the first PC, and so on. Figure 4 shows how a 3-dimensional collinear data set can

be represented in a reduced 2-dimensional space using only 2 principal components. The number of the retained PCs

is usually less than the number of measured variables.

Figure 4: Principle of PCA.

A key step in the building of PCA model is to determine the number of PCs, l, that are required to adequately

capture the major variability in the data sets. The goodness of the PCA model depends on a good choice of how many

PCs are retained [38]. The first (l) largest principal components normally describe the most of the variance of the

data. On the other hand, the smallest principal components are considered as a noise contributor. Too few components

implies that there are not enough dimensions to represent the process variability, which degrades the prediction quality

of the PCA model. While too many components implies that one can introduce noise and the model fails to capture

some of the information. A number of techniques have been proposed to determine the number of PCs to be retained

in a PCA model including cross validation [39], Scree plot [40], and cumulative percent variance (CPV). In this study,

8
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the CPV technique will be used to determine the number of PCs for PCA model. The CPV is defined as follows:

CPV(l) =
∑l

i=1 λi

trace(Σ) × 100. Once the number of principal components l is determined, the PCA algorithm decomposes

Xs into two orthogonal parts: an approximated data matrix X̂ and a residual data matrix E, i.e.,

Xs =

l∑
i=1

ti pT
i +

m∑
i=l+1

ti pT
i = X̂ + E (3)

Of course, if some of the variables in the data set are collinear or highly correlated, then a smaller number of

principal components l are required to explain the majority of the variance in the data. In practice, the variance left

unexplained by the PCs is captured by the residual subspace, which are often associated with the instrument or process

noise.

4.2. PCA-based detection indices

As shown in equation (3), any measured vector x can be expressed using PCA as the sum of two orthogonal parts,

approximated vector x̂ and residual vector e (see Figure 5), corresponding to the projection onto the PC subspace S p

and residual subspace S r respectively. In anomaly-detection using PCA, a PCA model is constructed using fault-free

data, and then the model is used to detect faults using one of the detection indices, such as the Hotelling’s T 2 and Q

statistics, which are described next.

Figure 5: Geometric principle of PCA

4.2.1. Hotelling’s T 2 statistic

The T 2 statistic measures the variations in the principal components or score vectors at different time samples. T 2

at any instance of time is defined as follows [15]:

T 2 = xT P̂Λ̂−1P̂T x =

l∑
i=1

t2
i

λi
(4)

9



Page 12 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

where the matrix Λ̂ = diag(λ1, λ2, . . . , λl), is a diagonal matrix containing the eigenvalues associated with the l

retained principal components. The threshold value used for the T 2 statistic can be computed as follows [15]:

T 2
l,n,α =

l(n − 1)
n − l

Fl,n−l,α (5)

where n is the number of samples in the data, l is the number of retained PCs, α is the level of significance (α usually

takes values between 1% and 5%), and Fl,n−l is the Fisher F distribution with l and n− l degrees of freedom. When the

number of observations, n, is rather large, the T 2 statistic threshold can be approximated with a χ2 distribution with l

degrees of freedom, i.e., T 2
α = χ2

l,α. These threshold values are computed using fault-free data. For new testing data,

when the value of T 2 exceeds the value of the threshold, T 2
l,n,α or T 2

α, a fault is declared.

4.2.2. Q statistic or squared prediction error (SPE)

The Q statistic or Rao-statistic (also referred to as the squared prediction error, SPE) measures the projection of a

data sample on the residual subspace, which provides an overall measure of how a data sample fits the PCA model. Q

is defined as the sum of squares of the residuals obtained from the PCA model, i.e., [7]:

Q = eT e (6)

The upper control limit of this statistic is defined as [37]:

Qα = ϕ1

h0cα
√

2ϕ2

ϕ1
+ 1 +

ϕ2h0(h0 − 1)
ϕ2

1

 (7)

where, cα is the value of the normal distribution with α level of significance, ϕi =
∑m

j=l+1 λ
i
j for i = 1, 2, 3, and

h0 = 1 − 2ϕ1ϕ3

3ϕ2
2

. This value of threshold is calculated based on the assumptions that the measurements are time-

independent and multivariate normally distributed. The Q fault detection index is very sensitive to modeling errors

and its performance largely depends on the choice of the number of retained principal components, l, [7]. The PCA

fault detection algorithm is summarized next.

1) Given:

• A training fault-free data set that represents the normal process operations and a testing data set (possibly

faulty data),

2) Data preprocessing

• Scale the data to zero mean and unit variance,

3) Build the PCA model using the training fault-free data

• Compute the covariance matrix, Σ, using equation (2),

• Calculate the eigenvalues and eigenvectors of Σ and sort the eigenvalues in decreasing order,

10
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• Determine how many principal components to be used. Many techniques can be used in this regards. In

this work, the CVP criterion is used,

• Express the data matrix as a sum of approximate and residual matrices as shown in equation (3),

• Compute the control limits for the statistical model (e.g., the Qα statistic limits)

4) Test the new data

• Scale the new data,

• Generate a residual vector, e, using PCA,

• Compute the monitoring statistic (Q or T 2 statistics) for the new data using equation (4) or (6),

5) Check for anomalies

• Declare an anomaly when new data exceeds the control limits (e.g., Q ≥ Qα).

Unfortunately, the T 2 and Q statistics use only the observed data at the current time point alone for making

decision about the process performance at the current time point. They take into account only the present information

of the process thus they have a short memory. For this reason the T 2 and Q statistics are also called detection indices

without memory. Consequently, these detection indices are relatively insensitive to small changes in the process

variables, and thus may result in missed detections [26]. These drawback of the T 2 and Q statistics motivate the

use of other alternatives in order to surmount these disadvantages. Note that the ability to detect smaller parameter

shifts can be improved by using a chart based on a statistic that corporate information from past samples in addition

to current samples. In this study, anomaly detection technique which is based on PCA model and MEWMA control

scheme will be developed in order to surmount these drawbacks and improve detection performance compared to

the conventional PCA based anomaly detection method. A succinct introduction to the basic ideas behind MEWMA

monitoring scheme is exposed in the subsequent section.

5. Multivariate EWMA statistical control scheme

Control charts are one of the most frequently used procedures in statistical process control (SPC), and have been

widely used as a monitoring tool in quality engineering to detect the existence of possible anomalies in the mean or

variance of process measurements. Many control charts are referenced in the bibliography, and they can be broadly

categorized into main classes: univariate and multivariate techniques [26, 41]. The univariate control charts such as

Shewhart, cumulative summation (CUSUM) [42], and EMWA [26] have been designed to essentially to monitor only

one process variable. However, modern industrial processes often present a large number of highly correlated process

variables. This is the area where univariate control charts are unable to explain different aspects of the process and,

therefore, it is not appropriate for modern day processes. Moreover, to monitor several different process variables

in the same time multivariate statistical monitoring charts such as Multivariate Shewhart [26], Multivariate EWMA

11
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(MEWMA) [43] and Multivariate CUSUM (MCUSUM) [26] were developed in analogy with the univariate charts.

In fact, most commonly used multivariate control charts are the natural extension of the univariate charts, e.g. the

Hotelling’s T 2 charts [44], MEWMA charts and MCUSUM charts [26, 43]. A multivariate SPC charts take into

account the additional information due to the correlation between a process variables while univariate SPC charts do

not. These concepts may be used to develop more efficient control charts than the simultaneous operation of several

univariate control charts.

The MEWMA chart was first proposed by Lowry et al [43] to monitor mean shifts of a multivariate process. This is

a multivariate extension of the univariate EWMA chart proposed by Roberts [45]. This monitoring chart is constructed

based on a weighted moving average of all observed data and available at the current time point. The MEWMA is

utilized when there are several correlated process variables to be monitored simultaneously where detecting faults with

small magnitudes is of interest. Suppose that we observe Xt = (X1, X2, . . . , Xm)T , a m-dimensional set of observations

at time t. A MEWMA control chart is proposed by Lowry et al [43] as follows:

Zt = RXt + (Im×m − R)Zt−1. (8)

Where R = diag(r1, r2, . . . , rm) which is a diagonal matrix with r1, r2, . . . , rm on the main diagonal, and m is the

number of variables; 0 < r j ≤ 1 is a weighting parameter for j-th component of X, for j = 1, 2, . . . ,m, Im×m is the

identity matrix, Zi is the ith EWMA vector, and Xi is is the the ith observation vector i = 1, 2, . . . , n. The initial value

Z0 is usually obtained as equal to the in-control mean vector of the process. Generally, in quality control, a smaller

value of r leads to quicker detection of smaller shifts [46]. Indeed, r should be adjusted to a value appropriate for the

characteristic of the monitored process. Usually, the larger the shift is, the greater the, r is. The value of r is usually

set between 0.2 and 0.3 [47]. It can be noticed that if R = I, then the MEWMA control chart is equivalent to the T 2

Chart. In this case, a MEWMA chart has been automatically changed into T 2 chart.

In practice, if there is no priori reason to weight different components differently, then we can simply choose

r1 = r2 = · · · = rm = r. In this case the equation 8 can be written as follows:

Zt = rXt +
(
1 − r

)
Zt−1. (9)

The MEWMA decision function, V2
t , can be calculated recursively as follows [43]:

V2
t = ZT

i Σ
−1
Zt

Zt (10)

where ΣZt is the variance-covariance matrix of Zt. When r1 = r2 = · · · = rp = r, the variance-covariance matrix of Zt

can be simplified to:

ΣZt =
r

(2 − r)

[
1 − (1 − r)2n

]
Σ (11)

12
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where Σ is the covariance matrix of the input data. The MEWMA chart statistic is usually constructed in terms of the

asymptotic covariance matrix. When t becomes large, the covariance matrix converges to: ΣZi =
( r

(2−r)
)
Σ.

Under nominal conditions, the statistic Z is distributed according to the gaussian law with zero mean and variance-

covariance matrix ΣZi , Z ∼ N(0,ΣZi ). The distribution of the statistic Z in the presence of additive mean shift µ1 is

given as: Z ∼ N
(
r
∑n

j=1
[
(1− r)n− jθ

]
,ΣZi

)
. The MEWMA chart declares the presence of anomaly when V2

t > h, where

h is the control limit. The distribution of V2
t under in-control condition is χ2

p. However, because the variables in the

time series V2
t , t = 1, 2, . . . are correlated, the control limit h cannot simply be chosen to be (1 − α-th) quantile χ2

1−α,p

of the χ2
P distribution. One of the main troubles on this chart is the selection of the h. The value of h can be calculated

by simulation to achieve a specific control limits. Various authors have used theoretical derivation, Markov chain

approximation, integral equation approximation, and monte Carlo simulation, or combinations of the three techniques

to compute the control limit h according to the parameters r, p, and α [48, 49]. Bodden [50] proposed an algorithm to

find the control limit h in order to respect a given number of false alarm and a given r.

6. Anomaly detection using a PCA-based MEWMA control scheme

In this section, PCA is integrated with MEWMA to develop a new anomaly detection scheme with a higher

sensitivity to small or moderate anomalies in the data. Towards this end, PCA is used to represent a matrix of the

process measurements as the sum of two orthogonal parts (an approximated data matrix and a residual data matrix) as

shown in equation (3). In PCA model, the principal components associated with large eigenvalues capture most of the

variations in the data, where, ones associated with small eigenvalues mostly represent noise and are sensitive to the

observations that are inconsistent with the correlation among the variables [51, 52]. Therefore, the smallest principal

components (i.e., associated with small eigenvalues) should be useful in anomaly detection. The smallest ignored PCs

can be used as an indicator about the existence or absence of faults. When the monitored process is under healthy

conditions (no anomaly), the least important principal components are close to zero. However, when a anomaly

occurs, then they tend to largely deviate from zero indicating the presence of a new condition that is significantly

distinguishable from the normal healthy mode. In this paper, MEWMA is used to enhance process monitoring through

its integration with PCA. Because of the ability of the MEWMA control scheme to detect small/moderate changes

in the data, this technique is appropriate to improve the detection of moderate anomalies. Thus, this work exploits

the advantages of the MEWMA control scheme to improve anomaly detection over the conventional PCA-based

methods. Towards this end, the MEWMA control scheme is used to monitor the ignored principal components, which

correspond to the small eigenvalues of the PCA model.

6.1. PCA-based MEWMA process monitoring algorithm:

In this approach, the MEWMA monitoring scheme is applied using the principal components ignored (which

have smallest variances) from the PCA model. If the matrix of ignored principal components is defined as T̃ =

13
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[tl+1, . . . , t j, . . . tm], where t j ∈ Rn, i.e., t j = [t j
1, . . . , t

j
t , . . . , t

j
n], then the MEWMA function can be computed using the

residuals of the jth principal component as follows:

z j
t = rt j

t + (1 − r)z j
t−1, j ∈ [1, m − l]. (12)

The MEWMA decision function, V2
t , can be calculated recursively as follows [43]:

V2
t = ZT

i Σ
−1
Zt

Zt (13)

where ΣZt is the variance-covariance matrix of Zt.

In this case, since the MEWMA control scheme is applied on the ignored m − l principal components, one

MEWMA decision function will be computed to monitor the process. However, this approach can only detect the

presence of anomalies, i.e., it can not determine their locations. This approach is summarized in Table 1.

Table 1: PCA-based MEWMA fault detection algorithm.

Step Action
1. Given:

• A training fault-free data set that represents the normal process operations and a testing data set (pos-

sibly faulty data),

• The parameters of the MEWMA control scheme: smoothing parameter r and the probability of false

alarm α,

2. Data preprocessing

• Scale the data to zero mean and unit variance,

3. Build the PCA model using the training fault-free data

• Express the data matrix as a sum of approximate and residual matrices as shown in equation (3),

• Compute the ignored principal components t̃ j, using PCA,

• Compute the MEWMA control limits,

4. Test the new data

• Scale the new data,

• Compute the principal components t̃ j, using PCA,

• Compute the MEWMA decision function, V2
t ,

5. Check for anomalies

• Declare a fault when the MEWMA decision function, V2
t , exceeds the control limits.
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In the next section, the performance of the proposed PCA-based MEWMA fault detection method will be evaluated

and compared to that of the conventional PCA anomaly detection scheme through their application to monitor would

rotor induction machines.

7. Results and discussion

In this section, the proposed PCA-based MEWMA anomaly detection scheme is applied in order to detect ab-

normalities in ozone measurements caused by air pollution or any incoherence between the different network sensors

or sensor faults in the framework of regional ozone surveillance network in Upper Normandy. The performance of

the proposed method is compared to that obtained with the conventional PCA approach and to that declared by Air

Normand air monitoring association.

7.1. Problem setting

In this study, the data that we use was extracted from the Upper Normandy region. The ozone concentrations data

are measured each fifteen minutes in order to limit spatial and temporal sampling problems. The data series of ozone

concentrations measured from 11 August to 19 August, 2006 with a total number of 773 observations were used to

develop a PCA model without faults. Plots of the original ozone concentration times series and of the corresponding

auto-correlation functions (ACF) are shown in Figures 6. Only the curves of the three stations ’SRC’, ’QUI’ and

’ND2’ are plotted for better readability of the figures. These three stations behave like the others network stations.
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Figure 6: (a) Quarter-hourly ozone time series and (b) ACF of ozone time series.

From Figures 6, the ACF graphics shows an apparent periodicity of 24 hours. It is well known that the distance

between extremum points in the autocorrelation functions gives the period of the time series. We suspect that this

periodicity is related to the diurnal cycle of ozone which is primarily caused by the diurnal temperature cycle. This

periodic variation is due to the cycle of solar radiation (day/night) which is closely related to the mechanism of for-

mation of this pollutant. We also can see the similarity between the autocorrelation functions of ozone concentrations
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of the majority of network stations. Monitoring such data therefore requires an initial processing step where such ex-

plainable patterns and seasonality are removed. PCA can handle the high dimension of the measurement network and

the high degree of correlation among some variables. The purpose is to detect abnormalities in ozone measurements.

7.2. PCA modelling

Firstly, a PCA model is build using training data set. The fault-free data used to develop the model was arranged

in a matrix X with 773 rows (samples) and 7 columns (ozone concentration variables). These data matrix are scaled

(to be zero mean with a unit variance), and then used to construct a PCA model.

The scaled fault-free data matrix is used to construct a PCA model, and the computed principal components

are shown in Figure 7. Indeed, the principal components (PCs) are linear combinations of the original ones and

are uncorrelated. Although PCs represent directions (or patterns) that explain most of the observed variability, their

interpretation is, however, not always simple. More specifically, they are just mathematical constructs chosen to

represent the variance as efficiently as possible and to be orthogonal to each other. It can be noticed from figure 7 that

the principal components t3, . . . , t7 represent mainly noise while the first two principal components t1 and t2 capture

most of the important variations in the data. More specifically, the first principal component, t1, is the direction

of greatest variability in the data (capture 86:88% of the total variations in the data). The second, t2, is the next

orthogonal (uncorrelated) direction of greatest variability (capture 4:34% of the total variations in the data). In this

case study, t1 and t2 capture most of the important variations in the data.
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Figure 7: The principal components of the fault-free data.

16



Page 19 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

In PCA, most of the important variations in the data are usually captured in few principal components correspond-

ing to the largest eigenvalues. In this work, the cumulative percent variance (CPV) method is used to determine the

optimum number of retained principal components. Using a CPV threshold value of 90%, only the first two principal

components will be retained since they capture 86.88% and 4.34% of of the total variations in the data.

Indeed, the principal components are linear combination of the original ones, and are uncorrelated with one an-

other. To determine whether principal components are uncorrelated, the scatter plot of PC1 and PC2 is examined. If

there were a noticeable relationship in this plot, it would be attributed to non-linear relationships in the data. The PC

technique removes all linear correlations and results in a scatter plot when the non-linear relationships are small or

nonexistent. Figure 8 shows the bivariate scores plot of PC1 versus PC2 and shows that PC1 and PC2 are uncorrelated.

The PCA technique removes all linear correlations.
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Figure 8: PC1 versus PC2.

Figure 9 present standardized measurements and estimation for of the whole measurements network , the esti-

mations being given by the PCA model. By taking into account the nature of considered process, the results are

very satisfactory. With this PCA model based on the first two PCs, the ozone concentrations is generally correctly

estimated. However, for some variables we can have modelling errors as shown in Figure 9 (stations ND2, TAN and

QUI). In conclusion, the linear PCA was able to model the relations between the various variables. However as we

could not it, certain variables being less better estimated than others, we now will examine the effect of the medelling

errors on the fault detection phase.

7.3. Detection results

In this section, the anomaly detection abilities of the developed PCA-based MEWMA anomaly detection approach

will be assessed using the Upper Normandy ozone data which are completely independent from the training data used

to construct the reference PCA model. To evaluate the performance of the developed method, the detection results of

the proposed method are compared to that declared by Air Normand, and to that of conventional PCA. Three different

testing data sets have been used to evaluate the performance of the PCA-based MEWMA anomaly detection scheme.

The first sample covers the period from 11 June 2006 to 09 July 2006, a period of 27 days. The second sample
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Figure 9: Measurements and estimation of ozone level for the three station.

covers the period from 19 August 2006 to 8 September 2006, a period of 21 days. The latter covers the period from 9

September 2006 to 10 October is a period of 29 days.When the developed PCA-based MEWMA anomaly detection

scheme is applied using the fault-free data, the MEWMA threshold value is found to be h(α) = 9.65 for a smoothing

parameter r = 0.25 and a false alarm probability of α = 0.005. The detection results are given in Table 2 and are

visually illustrated in Figure 10.

In Table 2, the first seven columns present the results of analysis given by Air Normand experts. The first column

presents the date of an anomaly observed by experts of Air Normand. The second and third column present the

time and the maximum peak intensity. The column 4 presents the station name where the anomaly has occurred and

columns 5, 6 and 7 show the beginning, the end and the duration of this anomaly. The column 8 shows the results

of detection given by PCA-based MEWMA anomaly detection scheme. The columns 9 and 10 show the results of

detection given by the conventional PCA detection indices, T 2, and Q respectively. If the result is yes, then it is a
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correct detection. If the result is no, then it is a missed detection. For example take the first two lines to describe

how to read this table. The first line indicates that the station ’LIL’ has measured abnormal level ozone 12/06/2006

between 11:30 and 12:45 for a total duration of 0:45 minutes and the anomaly peak has occurred at 11:45 with a

maximum intensity level in 141.3µg. The developed PCA-based MEWMA anomaly detection scheme does not detect

this anomaly (see column 8 detection). The results of the T 2 and Q statistics shown in columns 9 and 10, respectively,

show that the conventional PLS was unable to detect this anomaly. In the second line, ND2 and LIL stations have

presented abnormalities on 13/06/2006. The PCA-based MEWMA scheme has correctly detected these anomalies.

The results using the Q statistic given in column 10 show that it could successfully detect this anomaly. However,

Hotelling’s T 2 statistic was unable to detect this anomaly. This result may be explained by the fact that the T 2 statistic

provides a measure of the deviation in the PCs that are of greatest importance to the normal process condition. Thus,

the normal operating region defined by the T 2 control limits is usually larger than that defined by the Q control limits.

Therefore, anomalies with moderate magnitudes can easily exceed the Q threshold, but not the T 2 threshold, which

makes the Q statistic usually more sensitive than T 2 for this anomaly. By comparing the results obtained by the PCA-

based MEWMA detector and results declared by Air Normand, we note that the PCA-based MEWMA detector has

detected almost the totality of anomalies (see Table 2 and Figure 10). For our application, the proposed fault anomaly

algorithm improves the anomaly detection compared to classical detection indices Q and T 2. The developed PCA-

based MEWMA anomaly detection algorithm takes very little time to give its verdict. Hence, the proposed algorithm

can be used as an automatic tool of abnormal ozone peaks (or sensors faults) detection in the framework of regional

air quality monitoring networks.
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Figure 10: Compare detection results.

8. Conclusion

In this paper, an anomaly detection scheme based on principal component analysis is proposed to monitor the

ozone concentrations in the Upper Normandy region, France. To enhance anomaly detection a new PCA-based moni-

toring strategy combining PCA with the multivariate exponentially weighted moving average (MEWMA) monitoring
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Table 2: detection results.

Date Air Normand detection PCA-MEWMA PCA-T 2 PCA-Q

Hour Intensity Places Beginning End Duration

12/06/2006 11:45 141 LIL 11 :30 12 :15 0 :45 no no no

13/06/2006
13 :15 168 LIL 12 :30 13 :45 1 :15 yes no yes

181 ND2 12 :15 14 :15 2 :00 yes no no

17/06/2006

08 :00 132 SRC 7 :15 10:15 3 :00 no no no

08 :30 141 TAN 8 :00 9 :00 1 :00 yes no no

23 /06/2006

14 :15 137 LIL 13 :00 15 :00 2 :00 no no no

14 :30 126 ND2 13 :00 15 :15 2 :15 no no no

14 :45 127 QUI 13 :15 15 :15 2 :00 no no no

30/06/2006 08 :00 144 TAN 7 :15 8 :15 1 :00 yes no no

03/07/2006

08 :15 244 TAN 8:15 9 :15 1:00 yes yes yes

10 :15 242 TAN 9 :15 11 :15 2 :00 yes yes yes

9 :30 179 LIL 9 :00 10 :15 1 :15 yes no yes

10 :00 166 QUI 9 :15 10 :15 1 :00 yes no no

04/07/2006 07 :45 201 ND2 6 :30 10 :00 3 :00 yes no yes

05/09/2006
09 :45 180 LIL 7 :45 10:45 3:00 yes no no

09 :45 115 TAN 8 :15 11 :00 2 :45 no no no

06/09/2006

09 :45 182 LIL 8 :15 10 :30 2 :15 yes no yes

11 :15 168 LIL 10 :30 13 :15 2 :45 yes no no

14 :00 168 ND2 13 :15 15 :00 1 :45 yes no no

14 :30 168 GRV 13 :45 15 :00 1 :15 yes no no

10/09/2006

09 :30 167 QUI 7 :30 10 :00 2 :30 yes no no

09 :45 146 LIL 8 :45 10 :30 1 :45 yes no no

11 :00 180 TAN 10 :15 11 :30 1 :15 yes no no

12 :00 166 GRV 11 :30 12 :45 1 :15 no no no

scheme is proposed. In the proposed approach, MEWMA control scheme is applied on the ignored principal com-

ponents (which have smallest variances) to detect the presence of anomalies. The proposed PCA-based MEWMA

anomaly detection scheme is successfully applied to data of the ozone concentrations collected from the Upper Nor-

mandy region, France. For this application, the PCA-based MEWMA scheme improves the anomaly detection com-

pared to that or the conventional PCA-based monitoring charts. The results indicate that the PCA-based MEWMA

test can be used as an automatic tool to detect abnormal ozone measurements.
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