
Green smartphone GPUs: Optimizing energy
consumption using GPUFreq scaling governors

Item Type Conference Paper

Authors Ahmad, Enas M.;Shihada, Basem

Citation Ahmad, E., & Shihada, B. (2015). Green smartphone GPUs:
Optimizing energy consumption using GPUFreq scaling
governors. 2015 IEEE 11th International Conference on Wireless
and Mobile Computing, Networking and Communications
(WiMob). doi:10.1109/wimob.2015.7348036

Eprint version Post-print

DOI 10.1109/WiMOB.2015.7348036

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal 2015 IEEE 11th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob)

Rights (c) 2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 2024-03-13 09:38:24

Link to Item http://hdl.handle.net/10754/595301

http://dx.doi.org/10.1109/WiMOB.2015.7348036
http://hdl.handle.net/10754/595301


Green Smartphone GPUs: Optimizing Energy
Consumption using GPUFreq Scaling Governors

Enas Ahmad and Basem Shihada

Computer, Electrical and Mathematical Science Engineering Division
King Abdullah University of Science and Technology (KAUST)

{enas.ahmad, basem.shihada}@kaust.edu.sa

Abstract—Modern smartphones are limited by their short
battery life. The advancement of the graphical performance
is considered as one of the main reasons behind the massive
battery drainage in smartphones. In this paper we present a novel
implementation of the GPUFreq Scaling Governors, a Dynamic
Voltage and Frequency Scaling (DVFS) model implemented in
the Android Linux kernel for dynamically scaling smartphone
Graphical Processing Units (GPUs). The GPUFreq governors
offer users multiple variations and alternatives in controlling
the power consumption and performance of their GPUs. We
implemented and evaluated our model on a smartphone GPU
and measured the energy performance using an external power
monitor. The results show that the energy consumption of
smartphone GPUs can be significantly reduced with a minor
effect on the GPU performance.

Index Terms—Smartphones, GPU, DVFS, CPUFreq Gover-
nors, Energy Efficiency

I. INTRODUCTION

The graphical capabilities of mobile devices have advanced
tremendously over the past few years. This leap of im-
provement was only made possible by introducing Graphical
Processing Unit (GPU) chipsets to mobile phones. Instead
of relying on the CPU to process its graphical content,
modern phones use specialized powerful circuits dedicated to
process any graphical data much more efficiently. NVIDIA
[1], predicts that soon enough smartphones will even compete
with game consoles in their graphical performance. However,
mobile phones will still suffer from several limitations such
as size, weight, and most importantly battery power.

A few years back, most mobile phones were able to last
three to four days without requiring a recharge. However,
users today complain about the short battery life of their
smartphones, requiring a daily recharge, if not more often.
According to a study done by [2], 80% of mobile phone users
are searching for various measures to increase their battery
lifetime. Thus, designing energy-efficient smartphones while
keeping up with their newer capabilities is now becoming vital.

Rich graphical interface components and mobile games
continuously push the performance boundaries of smartphone
GPUs. Consequently, smartphone vendors increasingly provi-
sion their phones with more powerful GPUs to ensure smooth
rendering of graphics, which in its turn increases the energy
consumption of the phone. Operating systems such as Android
are now fully hardware accelerated [3]. Every drawing opera-

tion and rendering of both 2D and 3D graphics are carried
out solely by the GPU. Moreover, smartphones nowadays
are equipped with large screens with very high resolution.
That facilitates processing of large, complex graphical data,
leading to more load on the GPU. All of these factors that
effect the energy consumption are considered inevitable, since
they are either related to the underlying hardware, or the
natural progress of mobile graphics. Therefore, one solution to
overcome the poor battery performance is to make smartphone
GPUs more energy-efficient by enabling them to handle the
increasing load with minimum energy consumption. One way
to achieve this is by implementing GPU scaling.

Smartphone applications can vary from simple 2D web
browsers or text based editors, to high resolution 3D gaming.
This large variation in rendered graphics encourages using
dynamic scaling techniques for the GPU based on its real time
utilization. Energy can potentially be saved by dynamically
adjusting any processor’s frequency and voltage to the current
usage instead of running it at its highest performance level
the entire time. The Linux kernel utilizes this methodology for
the CPU by defining what is famously known as ”CPUFreq
Scaling Governors” [4]. Each of these governors offers a
different scaling algorithm for the CPU with a trade-off
between performance and power. The main Linux governors
are: Performance, Powersave, Userspace, On-demand, and
Conservative. The CPUFreq governors of Linux have shown
to be one of the most effective methods to reduce energy
consumption and heat emissions of computer systems. In this
paper, we explore the feasibility of establishing a similar
model for smartphone GPUs.

The power efficiency of mobile GPUs has been studied
in prior work (details in Section II). However, these studies
were of a simulation-based and haven’t been evaluated or
implemented on real mobile GPUs. Moreover, the power
measurements of these studies are only approximations derived
from theoretical energy models. We believe that simulating
smartphone GPUs is not sufficient to reflect the variations,
characteristics, and constraints of a real smartphone environ-
ment. In this work, we practically address the energy consump-
tion of smartphone GPUs, and propose a novel implementation
of the GPUFreq Scaling Governors as a part of the Android
Linux kernel.

Our model allows users to select one of four governors



in order to control the scaling of their phones’ GPU. The
aim is to enhance the power efficiency of smartphone GPUs,
in addition to providing users with similar variations and
alternatives offered to them by the CPUFreq governors. Unlike
previous work in this area, we implemented and evaluated
our approach on a modern smartphone GPU, and acquired
actual energy measurements using an external power monitor.
We show through extensive experimental the feasibility of
inheriting the Linux scaling governors into smartphone GPUs.

The rest of the paper is organized as follows: Section II
presents some related work; Section III explains the concept
of DVFS; Section IV discusses the Linux CPUFreq Governors;
Section V gives an overview of mobile GPU architecture.
Section VI presents the design and implementation of our
new model of GPUFreq Scaling Governors; Section 7 displays
our experimental setup; Section VIII presents the evaluation
results; and finally Section IX concludes our work.

II. RELATED WORK

Due to the limited battery power of smartphones, the design
of their GPUs should consider the energy consumption as a
main factor even prior to the performance [5]. Some recent
studies have looked into the energy efficiency of GPUs in
mobile devices. Authors in [6] analyze the trade-off between
energy and arithmetic precision of mobile graphics processor,
by focusing on the vertex transformation stage in the graphics
pipeline. The goal is to measure the energy savings that can be
achieved by lowering the accuracy of arithmetic operations to
an acceptable level. Their energy model is based on approx-
imating the energy usage of the number of signal transitions
per operation. Using the ATTILA GPU simulation framework
[7], their results show that around 23% of the energy can be
saved by lowering the precision of the arithmetic operations,
while maintaining a good quality of the rendered image.

DVFS is one of the traditional power optimization tech-
niques for general processors. Thus, researchers investigated
the applicability of this method on GPUs. A primary study
in [8] shows that 3D interactive gaming is amendable to
DVFS. They use the open source Quake II game engine [9]
for calculating their measurements, proving that 3D games
have variations in their frames processing workload. Such
variation enables the use of DVFS, which they predict can
save significant amount of energy. Authors in [10] built their
approach upon this conclusion. They present a quantitative
study of the power consumption of mobile 3D games using
three embedded processors to simulate the different stages of a
mobile graphics pipeline. For measuring the power consump-
tion, they employ an instruction level energy model, which is
based on measurements of the current drawn by a commercial
processor. The trace-driven simulation approach they used is
implemented by modifying the OpenGL\ES library adding
trace triggers. Their measurements confirm the existence of
an imbalance of workload between different graphics stages
and applications. They evaluate 6 DVFS schemes each with
a diffident workload prediction algorithm. The results show
that applying DVFS to graphics pipeline saves up to 50% of

energy. However, their energy model is derived from a general
processor rather than a graphics processor, which differ in their
architecture, complexity, thus their power consumption.

Similar work in [11] focuses on enhancing the workload
prediction for tile-base architecture GPUs. They propose two
DVFS schemes, the first based on tile-history prediction, and
the second based on tile-rank prediction. To evaluate the
efficiency of the two approaches, they modify the ATTILA
GPU simulation framework emulating a tile-based mobile
graphics architecture. Their results show that both schemes
save around 58% of energy consumption, with higher quality
achieved by the tile-rank prediction. But unlike the previously
mentioned studies, the method for driving their power model
measurements was not clearly stated.

III. DYNAMIC VOLTAGE AND FREQUENCY SCALING

DVFS is one of the commonly-used techniques for power
saving in electronic devices. The power consumed by any
Complementary Metal-Oxide-Semiconductor (CMOS) compo-
nent is proportional to the voltage and frequency [12], as
shown by

Power / V oltage

2 ⇥ Frequency

Thus, when the frequency is lowered, the consumed power
is decreases proportionally, while lowering the voltage causes
the power consumption to drop quadratically [13]. DVFS takes
the advantage of a common feature across a large number of
computer applications: the average computational throughput
is often much less than the computational peek capacity of
the processor [14]. Therefore, a significant amount of power
can be saved by scaling the frequency and voltage of the
processor according to the real-time load of the running
applications. This power reduction, in turn, reduces the heat
emission in large scale supercomputers, and saves battery in
low-scale embedded processors. As mentioned previously, in
addition to CPUs many studies have shown the applicability
of this method in GPUs as well. These findings encourage
the study of the effectiveness of different DVFS schemes on
real smartphone GPUs. Prior to presenting the design and
implementation of our model, in the next section we introduce
the Linux CPUFreq governors which are the inspiration behind
this work.

IV. LINUX CPUFREQ GOVERNORS

CPU drivers set the CPU frequency to a single value.
Therefore, in order to implement dynamic scaling, an ad-
ditional software layer is needed to inform these drivers of
which frequency to apply at run time. In Linux, the policies
for dynamically controlling the CPU frequency and voltage
are defined in the CPUFreq Governors’ layer [4]. Users can
select the best governor policy that fits their usage patterns.
Since Android is based on Linux, it has also inherited these
scaling governors. Figure 1 explains the flow of the CPUFreq
governors control.

Currently, there are five main official governors in the Linux
kernel:



Fig. 1. CPUFreq governors control flow [4]

Algorithm 1: On-demand CPUFreq Governor
1 for every sampling rate do
2 if cpu load � up threshold then
3 target freq=max load freq
4 else
5 if cpu load � up threshold-down differential then
6 target freq= max load freq /(up threshold-down differential)
7 end
8 end
9 end

• Performance: The Performance governor statically sets
the frequency to the highest value within the minimum
and maximum limits of the frequency policy. This gov-
ernor aims to maximize system performance, regardless
of the energy consumption. Thus, it is mainly used for
benchmarking purposes.

• Powersave: The Powersave governor is the opposite of
the Performance governor, it statically sets the frequency
to the lowest value within the minimum and maximum
limits of the frequency policy. The governor aims to
achieve the lowest energy consumption possible.

• Usersapce: The Userspace governor has no defined al-
gorithm implementation. Rather, it hands out the con-
trol to any rooted user to set the value of the CPU
frequency. This is achieved by making the sysfs file
“scaling setspeed” accessible in the user-space.

• On-demand: The On-demand governor, as defined in
Algorithm 1, sets the CPU frequency dynamically based
on the current utilization of the CPU. The utilization value
is read periodically according to a “sampling-rate”. An
“up-threshold” value is set to decide the average CPU
utilization between two sample readings, at which the
kernel needs to change the CPU frequency. The On-
demand governor ramps up to the maximum frequency
once the “up-threshold” is crossed. This ensures high
responsiveness of the system. Later, it gradually reduces
the frequency when detecting a decrease in the CPU
load. The decrease of the frequency is proportional to
a “down differential” value. This governor is the default
in most Android stock kernels, since it provides a good
level of system performance. However, the fact that the
On-demand jumps to the highest frequency on each load
increase might consume an extra amount of energy which
could be avoided.

• Conservative: The Conservative governor described in
Algorithm 9, also sets the frequency dynamically based
on the current utilization. However, it differs form the On-
demand, that it does not jump to the maximum frequency
on every increase. Instead, it gracefully increases the fre-
quency according to a “freq step” value. The “freq step”
defines the percentage step at which the CPU frequency
will be smoothly increased or decreased by. For example,
if it is set to 5%, the frequency will be increased at 5%
chunks of the maximum frequency each time. Setting the
”freq step” to 100 will theoretically make it behave same
as the On-demand. The Conservative governor is more
battery-friendly since it avoids jumping to the maximum
frequency unless when needed.

Algorithm 2: Conservative CPUFreq Governor
1 for every sampling rate do
2 if cpu load � up threshold then
3 target freq + = (freq step * max load freq ) / 100
4 else
5 if cpu load � down threshold then
6 target freq - = (freq step * max load freq ) / 100
7 end
8 end
9 end

In the following section we will present the architecture and
main components of mobile GPUs.

V. MOBILE GPU ARCHITECTURE

In mobiles, GPUs are located on the same chipset as rest of
the processing cores, which is referred to as System-on-a-Chip
(SoC) architecture [15]. Modern mobile GPUs, like CPUs,
could be multi-core. Figure 2 displays the conceptual overview
of the GPU rendering pipeline. An application running on the
CPU would send requests to the GPU containing triangles
that need to be rendered, along with additional rendering
details. The Vertex Processing unit defines the positions of the
vertices constructing the triangles. The Setup unit then takes
these vertices and assembles a triangle of each three of them
and computes the constant data over the triangle. Following
that, each pixel in the triangle is processed to define its
final visual appearance in the Pixel Processing stage. Finally,
several buffer operations are performed, such as blending and
resolving the different visibility levels of each triangle. The
output may be written into memory if needed [5].

Although the functional design of the mobile GPUs is
similar to the PC’s, the limitations of mobile devices, such
as size and battery, should be considered in the GPU de-
sign. Thus, many power reduction techniques are used on
mobile GPUs to overcome these limitations. Examples of these
techniques include clock gating, lowering memory bandwidth
usage, energy-efficient arithmetic units, and the topic of our
paper, frequency and voltage scaling.



Fig. 2. Conceptual overview of GPU architecture [5]

VI. GPUFREQ SCALING GOVERNORS

In this section, we will introduce the details of our GPUFreq
governors and discuss the various elements and components
of our design model.

A. Design and Architecture

Most silicon vendors of smartphones implement algorithms
for dynamically scaling their devices’ GPU. The algorithms
vary depending on the underlying GPU and its device driver.
However, the main goal of these algorithms is to provide a
stable and consistent performance to maintain a general robust
experience that satisfies majority of the customers. Therefore,
such algorithms do not risk scaling into lower frequencies, and
rather set the minimum at a higher frequency than needed.
Moreover, for commercial purpose, these algorithms do not
consider the vast variations between different usage patterns,
and would only provide a single general interface that fits
all. However, a class of users may be more concerned about
the phone battery life, and are willing to endure a minimum
loss in the graphical performance if it allows them to save
battery. Another class of users that enjoy playing 3D-games
and demand high graphical responsiveness of the system.
Our proposed model of the GPUFreq scaling governors offer
different types of users different alternatives to choose from.
We prove that by giving users the control to tweak and
customize their GPU scaling will result in a more granular
and optimal energy saving, while maintaining the stability and
robustness of the system.

1) Mobile GPU Device Driver: Drivers are the low-level
software that communicates with a certain device providing
an abstraction to the operating system for that hardware. We
consider the device driver of the ARM Mali-400 MP GPU
selected for the experiments in this study. Figure 3 shows
the Mali-400 MP device driver stack. Mali-400 MP is one of
the most powerful GPUs installed in smartphones. It support
both 2D and 3D graphics, and its throughput can achieve 30M
triangles/s, and up to 1.1G pixels/s at 275MHz [16]. There are
two main parts of any GPU driver: the high level user space
libraries, and the low level kernel space driver. The user space
libraries provide APIs for 2D and 3D application developers.
These APIs interact with the low-level kernel space driver
which communicates directly with the GPU. The low level
driver integrates as a layer in the given OS kernel. In this
work we are more interested in this low-level driver, rather
than the user space libraries which are considered out of the
scope of this study.

Fig. 3. Mali device driver stack [16]

The kernel GPU device driver provides low-level memory
management, interrupt handling, and access to the GPU hard-
ware. Moreover, the driver defines the set of accepted frequen-
cies that a GPU can use, but can only accept a single frequency
value at a given time. This leaves the task of dynamic run-
time scaling to the framework or kernel. In addition, the GPU
low-level device driver can be used to provide multiple run
time information about the GPU that can be useful, such as
the current GPU utilization or usage. Acquiring this value
would enable the kernel to design a dynamic scaling algorithm
according to the real-time utilization load.

2) Android Kernel Modification: For designing the
GPUFreq scaling governors model we selected one of the most
well-known and widely used mobile platforms, the Android
OS. Android is a Linux-based operating system created by
Google and Open Handset Alliance for touchscreen mobile
devices. Android is an open source project released publicly
under the Apache license; this allows manufactures, develop-
ers, and researchers to freely modify any part of Android and
redistribute it.

The Android kernel relies on the Linux version 2.6. The
main core system services of Android such as process man-
agement, network stack, and security are all Linux-based. In
addition, the Linux kernel provides Android with its driver
model. Linux acts as an abstraction layer between the software
and the hardware components.

The Mali-400 MP GPU is installed in the Samsung Galaxy
S2 GT-I9100, the phone we selected for our experiments (the
full specifications of Samsung Galaxy S2 can be found on
the official Samsung website). Samsung releases its specific
Android kernel source code, that gave us access to the imple-
mentation of the Mali-400 GPU device driver of the kernel
space. We based our implementation on the eighth update of
the Samsung Galaxy S2 GT-I9100 ICS (Ice-Cream Sandwich)



TABLE I
SAMSUNG STOCK ALGORITHM FREQUENCIES AND VOLTAGES

Frequency (MHz) Voltage (µV)
160 950000
267 1000000

TABLE II
GPUFREQ GOVERNORS FREQUENCIES AND VOLTAGES

Frequency (MHz) Voltage (µV)
50 825000
62 825000
73 825000
80 825000
89 875000

100 875000
133 900000
160 950000
200 950000
267 970000

and kernel, which is the latest release for that particular device
published by the Samsung Open Source Release Center at the
time of the experiments [17].

To implement our model, we modified the source code of
the Android Linux kernel to add a layer of GPUFreq scaling
governors. Our implementation of GPUFreq governors layer
makes it easy to plug in any additional custom governor,
giving flexibility to our model design. The GPUFreq governors
acquire the real time utilization value through an interface
with the low-level GPU driver. Then the utilization is fed
into the currently selected governor, and depending on its
scaling algorithm and parameters, a corresponding frequency
and voltage level will be selected. These two values are then
sent back to the GPU driver to scale the GPU dynamically
at run time. Figure 4 illustrates the design structure of the
GPUFreq governors in Android. The Android kernel is built
separately form the operating system using the gcc prebuilt
tool-chain, and the resulting zImage can be packaged and
flashed into the target device.

3) Frequencies and Voltages Selection: As mentioned pre-
viously, most smartphone silicon vendors prefer general GPU
scaling algorithms that use a small number of scaling levels.
Their aim is to provide the maximum graphical performance
to claim boasting rights in the fiercely competitive smart-
phone spec wars. However, our work shows that allowing for
more granular scaling with precise levels can provide energy-
efficient scaling algorithms, with very minimal effect on the
overall performance.

The original DVFS stock algorithm by Samsung for the
Mali-400 MP in the orion-m400 platform scales between only
two frequency values based on the real-time utilization of
the GPU. The two values are 160 MHz, and the maximum
frequency for that platform which is 267 MHz, as shown
in Table I. This scaling between only two levels does not
cover the wide variations of graphical needs of smartphone
applications. Moreover, the lowest frequency used is 160 MHz,
which we experimentally found to be much higher than what
is required by many applications to run smoothly.

Fig. 4. Design structure of GPUFreq governors in Android

We have selected ten different granular levels of frequencies
and their corresponding voltage to be used by our scaling
governors. The frequencies were experimentally selected from
the set of accepted frequencies of the Mali-400 GPU. Table
II displays the new scaling levels. When the algorithm selects
a frequency value, the corresponding voltage appropriate to
that frequency is applied by the GPU regulator. As discussed
earlier, higher frequencies require higher voltages, and vice
versa.

B. Implementation

In our implementation of the GPUFreq governors, we aimed
to maintain consistency with the original Linux CPUFreq
governors in terms internal structure. The goal is to make it
easy for those familiar with the CPUFreq governor model to
understand and further tweak our implementation, if required.
In addition, our model can easily be further expanded. If more
optimal scaling algorithms are developed, they can easily be
added as new governors options in having the same interface
as the GPUFreq governors.

The governors implemented in this study are the four main
scaling governors, On-demand, Conservative, Performance
and Powersave. We further discuss the abstract details of our
implementation of these four GPUFreq governors.

1) On-demand GPUFreq Governor: The On-demand gov-
ernor provides high responsiveness since it scales up to the
highest frequency whenever the load is increased. However,
it also scales down gradually until reaching the minimum
frequency that is considered sufficient by the current load.
The GPUFreq On-demand resembles the structure of the
CPUFreq governor shown in Algorithm 1. Four main tweak-
able parameters were added: sampling rate, up threshold,
sampling down factor, and freq step. The utilization value of
the GPU is read every 1000 millisecond from the device driver.
This value is then sent to the selected governor to decide on
the next frequency and voltage level form the list in Table II.

Figures 5 and 6 show that the On-demand governor jumps
to the highest frequency when needed and then gradually
decreases the frequency to an acceptable level. We also illus-



Fig. 5. The scaling algorithms in AnTuTu 2D Mode

Fig. 6. The scaling algorithms in AnTuTu 3D Mode

trate the frequency scaling response of the Samsung algorithm
for the same benchmark test, showing that it switches only
between 160 MHz and 267 MHz.

2) Conservative GPUFreq Governor: The Conservative
governor is recommended for battery-based devices, since it
scales gradually and smoothly between frequency levels. The
Conservative governor increases and decreases the frequency
based on the freq step tweakable value. Our implementation
uses a freq step of 5%, though it can adjusted. This implies
that when the GPU utilization value reaches the up threshold
percentage, the frequency increases an additional 5% chunk of
the maximum frequency. The GPU driver is responsible to find
the valid frequency closest to the requested one. This ensures a
gradual, energy-efficient scaling compared to the On-demand
governor. Figures 5 and 6 show how the Conservative governor
scales up and down between the frequency levels in gradual
steps.

3) Performance GPUFreq Governor: To implement the
Performance governor, we disabled the DVFS of the GPU
and set the frequency statically to 267 MHz which is the
highest for the used chipset. This governor is intended for
users who require the maximum graphical performance from
their devices in order to enjoy 3D graphics and games without
any lag. In addition, this governor can be used for ranking and
benchmarking purposes to stress test the performance level of

the GPU.
4) Powersave GPUFreq Governor: The Powersave gover-

nor is the most power efficient, since it sets the frequency
statically to the lowest value. However, we found that setting
the GPU frequency to 50 MHz is not very practical since
it slows down the rendering of some interface components,
and it also fails to run some of the high resolution 3D games.
Therefore, through experimental testing, we decided to choose
a more reasonable frequency of 80 MHz for the Powersave
governor. This governor is suitable for users who do not use
their smartphones for displaying 3D graphics or playing 3D
games. However, setting the frequency at 80 MHz does not
effect any 2D graphic rending of regular mobile applications
or GUI components.

VII. EXPERIMENTAL SETUP

This section presents the testbed setup used in our experi-
ments for evaluating the GPUFreq governors.

A. Benchmarks and User Applications

To evaluate the efficiency of our GPUFreq governors model,
we used both graphical benchmark tests, and regular user
applications. The graphical benchmarks can be considered as
simulating users playing 2D or 3D games on the smartphone.
For this we chose three of the most well-known graphical
benchmark applications: AnTuTu, Passmark, and FPS2D. A
total of 6 different benchmark tests were conducted, which
cover both 2D and 3D modes. The tests were: AnTuTu 2D, An-
TuTu 3D, Passmark Image Filtering, Passmark 3D Simple,
Passmark 3D Complex, and finally FPS2D.

As for the regular user applications, we simulated the usage
of some of the most well-known smartphone applications
using the Android Monkey tool [18]. The Android Monkey
is a command line tool that generates pseudo-random streams
of user events simulating UI interaction. The Monkey tool is
used via the ADB (Android Development Bridge). However,
using the ADB requires connecting the device through USB to
a workstation, which will result in the automatic charging of
the battery, and that would invalidate our power measurements.
As a work-around for the USB charging dilemma, we created
multiple small batch files containing the Monkey script and
used an internal android terminal emulator for executing the

Fig. 7. Experimental setup: Monsoon Power Monitor



Fig. 8. Relation between the GPU frequency and the instantaneous power

batch files from within the device itself without the need for
a USB connection.

We evaluated the following applications: Browser, Gmail,
Facebook, Maps, and playing a HD video in full-screen mode.

B. Power Measurement

The Monsoon Power Monitor was used to measure the total
consumed energy [19], with a sampling rate of 5kHz. The
experimental setup of both software and hardware is displayed
in Figure 7.

In order to eliminate any variations in power consumption
of the testing environment, the following measures were taken:

• SIM card removed (GSM is off)
• Flight mode activated
• Bluetooth, Wifi, and 3G off.
• No running or sync applications in the background
• Lowest brightness of the display, with screen timeout

disabled

C. GPU Monitoring Android App

For monitoring the different GPU and system parameters
without the need for a USB connection, we developed an
Android application with root privileges named the “GPU-
Logger” which can be downloaded for free from our group
website [20]. The GPUlogger is implemented as an Android
service that works in the background, and reads system values
at predefined time interval, then logs these values into a .csv
file stored on the device for later retrieval. Some of these
parameters are: GPU frequency, GPU voltage, CPU frequency,
CPU voltage, CPU usage, used memory, battery state, battery
level, and battery temperature.

VIII. EVALUATION

This section presents the evaluation of the GPUFreq gover-
nors in terms of energy savings and performance using the
previously mentioned experimental setup. However, first in
order to fully understand the mechanism of the GPUFreq
governors, Figure 8 displays a fitting function for varying
the GPU frequency and its effect on the overall instantaneous
power. The data was sampled while running the AnTuTu 2D

using the Conservative governor. We observe that indeed when
gradually increasing the frequency of the smartphone GPU the
overall power of the entire phone increases accordingly.

The following subsections discuss the evaluation results for
the GPUFreq governors in 3D Benchmarks, 2D Benchmarks,
and User Applications. We evaluated each test measuring the
total consumed energy in Joules, and the Frame-Per-Second
(FPS) as our performance metric.

A. 3D Benchmarks

Figure 9 displays the energy and performance results for
3D benchmarks: AnTuTu3D, PassMark 3D Simple, and Pass-
Mark 3D Complex. In all three tests, the Powersave governor
which sets the frequency statically to 80MHz is the most
energy-efficient, saving 61.8%, 36.8%, and 33.2% of total
energy compared with the original Samsung kernel. However,
the Powersave fails to run 3D tests, giving more than 50%
degradation in the FPS for all three tests. Therefore, the
Powersave governor is not recommended for running 3D
graphics or games.

For more moderate scaling, the Conservative governor saves
a considerable energy in 3D tests: 5.4%, 8.5%, and 6.9%
in order, while keeping the FPS in an acceptable level. The
decrease in FPS in the Conservative governor only shows a
slight lag that dose not effect the overall experience for the
user.

The On-demand governor saves around 4.4%, 3.9%, and
5.25% of energy in order, and performs even better than
the original algorithm in terms of FPS. The energy saving
is a result of the granular scaling the GPUFreq governors
having 10 scaling levels instead of 2 which adjusts the power
consumption very precisely.

Finally, the Performance governor consumes around 2%
extra energy compared with the stock algorithm. However, it
offers a very smooth performance experience that gives the
maximum potential of the GPU in 3D mode.

B. 2D Benchmarks

For our 2D benchmark tests, Figure 10 displays the total
energy consumption and performance results of the four



(a) Antutu3D (b) PassMark 3D Simple (c) PassMark 3D Complex

Fig. 9. Energy and performance comparison (3D Benchmarks)

(a) Antutu2D (b) PassMark Image Filter (c) FPS2D

Fig. 10. Energy and performance comparison (2D Benchmarks)

GPUFreq governors. The Conservative governor saves around
13.9% in AnTuTu 2D, as shown in Figure 10a, with less
than 6% impact on the performance. This shows that the
gradual scaling of the conservative governor in 2D can indeed
save energy with minimal impact on the performance. The
On-demand governor for the same test saves 5.5% with
similar performance level as the Samsung stock algorithm.
The Powersave governor saves 35.1% with around 24% drop
in performance. The Performance governor consumes 7.7%
additional energy for the same benchmark test without any
noticeable increase in the FPS.

The PassMark Image filters evaluation results in Figure
10b show that the Powersave governor saves 6%, the Con-
servative 3.9%, and the On-demand 1.9% energy. The Perfor-
mance governor consumes additional 1% of extra energy. In
terms of performance, both the Powersave and Conservative
governors showed less than 0.7% decrease in FPS, the On-
deamnd displayed similar behavior to the stock algorithm,
while the Performance governor showed an increase of 2.6%
compared to the stock algorithm.

Finally, the FPS2D results in Figure 10c show that all
four governors performed similarly in terms of FPS, with
around 13.4% extra energy consumed by the Performance
governor, and around 11% energy savings for the remaining
three governors.

C. User Applications

We also evaluated the effectiveness of the GPUFreq gover-
nors when running regular well-known 2D user applications.
The five applications selected for these tests are shown in
Figure 11. We simulated the usage of each of these appli-
cations for a full minute, and then tested them against each
one of the governors calculating the consumed energy and
average FPS. Interestingly, our experiments showed that the
GPU load required for rendering the GUI and images in these
application did not reach the up threshold defined for the
two dynamically scaling algorithms. This means that both
the On-deamnd and the Conservative governors ran these
applications using their minimum scaling level. However, the
applications were rendered very smoothly without any impact
on the performance that can be noticed with the human eye.
We conclude that the Samsung stock algorithm was utilizing
the GPU at roughly twice the frequency and voltage required
to run these common applications at a similar performance
level.

The variation in the amount of energy saving between the
five user applications depend on the amount and complexity
of images that are requested to be rendered by the GPU.
For the Browser application the Powersave, Conservative,
and On-demand all saved around 5% of energy, while the
Performance governor consumed around 3.6% of extra energy.
The energy saving for the Gmail application for, the On-



(a) Browser (b) Gmail (c) Maps

(d) Facebook (e) HD Video

Fig. 11. Energy and performance comparison (User Applications)

Fig. 12. Total energy saving (%) compared to the stock Samsung algorithm

demand saved 2.9%, the Conservative 5%, the Powersave
3.8%, while the Performance consumed 5% extra energy. For
the Maps application, the Performance governor consumed
only 1.4%, while the On-demand saved 6.6%, the Conservative
6.1% and finally the Powersave 8.4% of energy. For the
Facebook application, the On-demand and Conservative both
saved around 7% of energy, the Powersave saved 8.8%, and
the Performance consumed 3.4% extra energy. Finally, we also
evaluated the governors playing a HD video in full screen.
Unfortunately we were unable to count the FPS while playing
the HD Video since our measurement application views the
video as a single frame. Nevertheless, we show the energy
consumption results keeping in mind that there was absolutely

no difference found running the video using the different
governors in terms of performance. As for the energy savings
the On-demand, Conservative and Powersave saved around
3% of energy, while the Performance consumed 1.9% more.

Figure 12 summarizes the total energy saving for all of our
experimental tests. It is notable to mention that in our daily
usage of the GPUFreq model, the battery lasted twice the time
when using the default system. This practically proves that our
model can save up to twice as much power compared to default
scaling of the manufacturer.

IX. CONCLUSION

Smartphone GPUs are increasing in their computational
and processing power. However, like other components in



a modern smartphone, they do not always need to run at
their full capacity. With stock scheduling algorithms, users
unforutnately pay a price in terms of degraded battery perfor-
mance. We believe that users should be allowed the flexibility
to scale the capabilities of different components of their
phones according to their usage patterns. In this study we
proposed the novel implementation of the GPUFreq scaling
governors, similar to the Linux-based CPUFreq governors, to
dynamically scale the frequency and voltage of smartphone
GPUs. To the best of our knowledge our work is the first to
present a quantitative analysis of the effectiveness of different
DVFS algorithms tested on a real smartphone GPU, with the
energy consumption accurately measured using an external
power monitor device. Our results show that the energy-
efficiency of the GPU can be enhanced up to 13% in 2D
mode, and 9% in 3D mode with less than 7% effect on the
performance using the Conservative governor. Moreover, using
the Powersave governor would save up to 35% of energy in
2D mode, while maintaining an acceptable level of image
rendering. And finally, the On-demand governor can save 11%
in 2D mode and 5% in 3D mode with a higher graphical
responsiveness. Our model was designed in a flexible and
expandable fashion so that newer, and probably more efficient,
governors algorithms can be added in the future.

REFERENCES

[1] Matt Wuebbling. Mobile graphics moving toward console level.
http://blogs.nvidia.com/blog/2012/04/20/mobile-graphics-moving-
toward-console-level/, April 20, 2012.

[2] Ahmad Rahmati, Angela Qian, and Lin Zhong. Understanding human-
battery interaction on mobile phones. In Proceedings of the 9th
international conference on Human computer interaction with mobile
devices and services, MobileHCI ’07, New York, NY, USA, 2007. ACM.

[3] Hardware acceleration. http://developer.android.com/guide
/topics/graphics/hardware-accel.html.

[4] Dominik Brodowski and Nico Golde. Linux cpufreq governors.
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[5] Tomas Akenine-Moller and Jacob Strom. Graphics processing units for
handhelds. Proceedings of the IEEE, 96(5):779–789, 2008.

[6] Jeff Pool, Anselmo Lastra, and Montek Singh. Energy-precision trade-
offs in mobile graphics processing units. In Computer Design, 2008.
ICCD 2008. IEEE International Conference on, pages 60–67. IEEE,
2008.

[7] Victor Moya del Barrio, Carlos González, Jordi Roca, Agustı́n
Fernández, and E Espasa. Attila: a cycle-level execution-driven simulator
for modern gpu architectures. In Performance Analysis of Systems
and Software, 2006 IEEE International Symposium on, pages 231–241.
IEEE, 2006.

[8] Yan Gu, Samarjit Chakraborty, and Wei Tsang Ooi. Games are up for
dvfs. In Design Automation Conference, 2006 43rd ACM/IEEE, pages
598–603, 2006.

[9] Quake ii. http://www.idsoftware.com/gate.php.
[10] Bren Mochocki, Kanishka Lahiri, and Srihari Cadambi. Power analysis

of mobile 3d graphics. In Design, Automation and Test in Europe, 2006.
DATE’06. Proceedings, volume 1, pages 1–6. IEEE, 2006.

[11] BVN Silpa, Gummidipudi Krishnaiah, and Preeti Ranjan Panda. Rank
based dynamic voltage and frequency scaling fortiled graphics pro-
cessors. In Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages
3–12. ACM, 2010.

[12] Dirk Grunwald, Charles B. Morrey, III, Philip Levis, Michael Neufeld,
and Keith I. Farkas. Policies for dynamic clock scheduling. In
Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation - Volume 4, OSDI’00, pages 6–6, Berkeley,
CA, USA, 2000. USENIX Association.

[13] Y. Jiao, H. Lin, P. Balaji, and W. Feng. Power and performance char-
acterization of computational kernels on the gpu. In Green Computing
and Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on
Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pages 221–228, 2010.

[14] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In Proceedings of
the eighteenth ACM symposium on Operating systems principles, SOSP
’01, pages 89–102, New York, NY, USA, 2001. ACM.

[15] R. Zahir and P. Ewert. The medfield smartphone: Intel; architecture in
a handheld form factor, 2013.

[16] Mali gpu device driver model. http://malideveloper.arm.com/develop-
for-mali/drivers/mali-device-driver-model/.

[17] Samsung open source release center. http://opensource.samsung.com/.
[18] Android. Ui/application exerciser monkey.

http://developer.android.com/tools/help/monkey.html.
[19] Power monitor. http://www.msoon.com/LabEquipment/PowerMonitor/.
[20] KAUST Network Lab. Gpulogger android application package.

http://www.shihada.com/packages/GPULogger.apk.


