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Abstract—In this paper, we propose a new cognitive cellular
network architecture based on the coexistence of primary and
secondary networks, (PN) and (SN), respectively. The PN aims to
minimize its energy consumption by switching off the maximum
number of its BSs and offloading its users to the SN’s infrastruc-
ture to maintain its QoS. In return, the PN pays a roaming price
and permits the SN to share or lease the spectrum at a certain
price. We propose a low-complexity algorithm allowing the PN
to minimize its energy consumption by selecting a suboptimal
combination of active base stations. Our algorithm also optimizes
the resource allocation of the SN to maximize its total sum-
rate while respecting the minimal profit constraints for both
networks. In the numerical results, we show that our proposed
algorithm achieves close performances to the optimal exhaustive
search algorithm. In addition, we investigate the impact ofvarious
system parameters in the collaboration decision.

Index Terms—Green cellular networks, underlay cognitive
radio, operators collaboration.

I. I NTRODUCTION

The evolution of wireless communications has led to multi-
ple challenges related to the increasing demand for data rate,
coverage, reliability and energy efficient communication [1].
These challenges need to be considered in the next fifth
generation (5G) of cellular networks in order to meet its
requirements [2]. One of these major challenges is to cope
with this exponential growth of networks’ energy consumption
that currently constitutes a crucial global concern for ICTand
communications fields. Indeed, mobile operators are required
to reduce their energy consumption to not only achieve envi-
ronmental objectives but also economic ones as about half of
their expenses are coming from electricity bills. Consequently,
many mobile operators tend recently to reduce their energy
consumptions by adopting energy-efficient schemes [3].

Another issue is the inefficient spectrum allocation con-
trolled by the regulatory organizations like the Federal Com-
munications Commission (FCC) [4]. The spectrum is be-
coming more and more a scarce resource that prevents new
wireless technologies to evolve rapidly. In traditional cellular
networks, in order to satisfy the increasing data rate demand of
mobile users, the operators tend to either buy more bandwidth
with millions of dollars or deploy new spectral efficient tech-
nologies such as sophisticated modulation or MIMO. However,
theses options come with either high cost or high complexity.
To overcome this issue, the concept of cognitive radio (CR)
introduced by Mitola in [5], presents a flexible spectrum access
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for non-licensed/secondary users (SUs) while respecting the
licensed/primary users (PUs) quality of service (QoS). In [6],
[7], the CR networks were characterized by two main features:
i) cognitive capability through sensing and learning from
the radio environment ii) reconfigurability referring to the
ability to dynamic access to the spectrum and the ability of
transmitting on various frequencies. In the cellular networks
framework, related paradigms such as spectrum sharing or
spectrum trading can be adopted to have a convincement
solution to the increasing demand for bandwidth. The concept
of spectrum trading in a CRN framework is described as
follows: the PU’s share, lease, or sell their vacant spectrum
with a certain price and the SU’s share, rent, or buy the
available spectrum resources. In [8], the authors study the
cooperation between two operators in which the objective isto
minimize the energy cost. However, both operators had equal
priority.

In this paper, we focus on the cooperation between a
primary network (PN) benefiting from a high priority and a
secondary network (SN) aiming to exploit the primary spec-
trum opportunistically. In other words, the available resources
(spectrum, power, etc.) are used to first serve the PN users
then the remaining resources are used to serve the SN users.
In our study, we propose a collaboration scheme between a
green PN and a SN accepting to serve offloaded users. The
PN focuses on activating the minimum number of base stations
(BSs) while offloading its users to the SN’s infrastructure.In
return, the SN accepts to serve PUs in priority while enjoying
the leased spectrum to maximize its total secondary sum-rate.
However, such collaboration can only be possible if the profits
and QoS of both networks are not affected. Therefore, we
propose a low-complexity algorithm to solve our formulated
optimization problems aiming to achieve the primary and
secondary objectives while taking into account the energy,
roaming, and spectrum sharing costs. Finally, we show that
our low-complexity algorithm achieves performance close to
those of the Exhaustive Search (ES) method and outperforms
the performance of a previously proposed on/off switching
algorithm. Furthermore, we identify some criteria promoting
the green collaboration for cognitive radio networks.

The rest of this paper is organized as follows. In Section
II, the system model is described. In Section III, the problem
formulation is described. The proposed PN management and
the SN power allocation schemes are presented in Section IV.
Numerical results are presented in Section V. Finally, the paper
is concluded in Section VI.
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II. SYSTEM MODEL

We consider a geographical area served by two cellular
networks: the PN and the SN. the PN is operating on the
licensed bandwidth while the SN is aiming to communicate
opportunistically while sharing the primary bandwidth. We
denote byNBS the number of BSs assumed to be the same
for both networks. Both the PN and the SN are deployed in a
hexagonal cells model. Each BS adopts a tri-sectoral transmis-
sion in which the area covered by the BS is divided into three
equal areas. In order to have the minimum interference, the
secondary BSs are deployed such as the distance between the
secondary BS and the closest primary BS is equal to the cell
radius. In other words, the secondary BSs are deployed in the
intersection of three primary cells. The BSs are placed to serve
P PUs andS SUs distributed randomly with coordinatesx and
y according to a given joint probability density function (pdf)
denoted byfp(x, y) andfs(x, y), respectively. The proportion
of PUs in a sub-region denoted byω of the considered region
denoted byΩ (i.e.,ω ⊆ Ω) is computed as

∫∫

ω
fp(x, y)dx dy.

For instance, the total number of PUs in this sub-regionω is
denoted byPω and is given by:

Pω =

⌈

P

∫∫

ω

fp(x, y)dx dy

⌉

. (1)

where⌈.⌉ denotes the ceiling function. We denote byPx,j the
consumed power of thejth active BS belonging to the network
x where x∈ {p, s} depending on the considered network (i.e.,
p for the PN and s for the SN). This power is computed as
follows [9]:

Px,j = aP
(tx)
x,j + b, (2)

where the coefficienta denotes the power consumption that
scales with the transmitted power due to the amplifier and the
feeder losses. The parameterb models the offset of site power
consumed independently of the radiated power. This parameter
involves, mainly, the signal processing (analog to digitalcon-
verters (ADC), filters, mixers, amplifiers, etc.), battery backup,
and cooling. In (2),P (tx)

x,j denotes the transmitted power of the
jth BS which depends on the number of users served by this
BS (denoted byPj or Sj for the PN or the SN, respectively).
This transmit power is expressed as follows [10]:

P
(tx)
x,j =

Pj∑

i=1

Pmin

K
dνj,ih

x→y
j,i , (3)

wherePmin is the minimum power to be received by each user
in order to ensure the required QoS,K is a parameter repre-
senting the effects of BS antenna settings, carrier frequency
and propagation environment,ν is the path loss exponent,dj,i
denotes the distance between of thej th BS of network x and
the ith user connected to this BS, andhx→y

j,i models the fast-
fading effect of the channel between thej th BS of network x
and theith of network y. The parameterǫ(x)j is a binary variable
representing the status of thejth BS of network x: if BSj is
switched on,ǫ(x)j = 1, otherwise,ǫ(x)j = 0 andPx,j = 0. We
assume that each BS cannot simultaneously serve a number of
users exceedinḡCx such thatPj ≤ C̄p for the PN andSj ≤ C̄s

for the SN.

Secondary Network

Primary Network

Fig. 1: Primary and secondary base stations distribution.

III. PROBLEM FORMULATION

Our objective is to investigate the mobile operator collab-
oration between the PN and the SN. This collaboration is
performed independently at each BS depending on the system
parameters by following one of the two spectrum trading
approaches:

• Spectrum sharing: This approach is based on the un-
derlay CR scenario where the SN is allowed to share
the primary bandwidth by transmitting over the free
and non-free subcarriers while causing interference not
exceeding a certain level imposed by the PN. In return,
the SN pays a spectrum sharing price, denoted bypss, to
the PN whenever the SN causes interference to primary
communications (e.g., when the corresponding PN’s BS
is active).

• Spectrum leasing: In this approach, the PN can exploit
the existence of the secondary infrastructure in order to
ensure energy savings. If the collaboration is beneficial
for both networks, the PN can decide to turn off a BS
and offload its users to the secondary BS while leasing
the total bandwidth to the secondary transmission. the
SN’s task is first to ensure the PUs connectivity, then to
maximize its secondary sum-rate while paying a spectrum
leasing price, denoted bypsl. In return, the PN pays a
roaming cost.

We assume that both spectrum sharing and leasing prices are
the same for all BSs. Both networks collaborate together in
order to decide either to turn off a BS or to keep it active such
that their utility functions are optimized. We assume that the
optimization is performed by a third-party that can be seen
as a broker. This broker proposes the best solution to both
the PN and the SN depending on the system parameters and
indicates whether the collaboration is possible or not. If not,
the PN operates using all its BSs, and the SN operates under
the spectrum sharing scenario for all the BSs. In the following
subsections, we describe the objectives of both the PN and the
SN by formulating their corresponding optimization problems.

A. Primary Network

The PN’s objective is to ensure energy saving by switching
off the maximum number of BSs without affecting two con-
straints: the QoS and its profit. The QoS is satisfied when the
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users in outage rate are less than a certain outage probability
threshold. A user is considered in outage when it is not being
allocated to any BS (i.e., primary or secondary BS). Thus, the
PN QoS constraint is written as

P −
∑NBS

j=1

(

Pj + P
(roamed)
j

)

P
≤ Pout. (4)

wherePout is the percentage of users allowed to be in outage.
On the other hand, the PN’s profit, denoted byΠp, is expressed
as

Πp =

NBS∑

j=1

Πp,j =





NBS∑

j=1

pop

(

Pj + P
(roamed)
j

)





︸ ︷︷ ︸

Service revenue

+

NBS∑

j=1

(1− ǫ
(p)
j )
(

psl − proamP
(roamed)
j

)

︸ ︷︷ ︸

Collaboration profit

+

NBS∑

j=1

ǫ
(p)
j (pss− pePp,j)

︸ ︷︷ ︸

Non-collaboration profit

, (5)

whereΠp,j is the profit gained by the PN using thej th BS,
wherepop is the operation price paid by all served users of
the PN independently of the serving infrastructure,P

(roamed)
j

is the number of roamed users offloaded from thej th BS to
the neighbor BS belonging to the SN,proam corresponds to
the price paid by the PN for the SN roaming service, and
pe represents the energy cost that scales with the BS power
consumption during a unit of time. Note that ifǫ(p)j = 1, the
operator pays the energy cost and gains the spectrum sharing
revenue since thejth BS is active. However, if thej th BS is
turned off, i.e.,ǫ(p)j = 0, the operator pays the roaming service
and gains the spectrum leasing revenue. The objective of the
PN is to determine which BS should be turned off in order to
reduce its energy consumption, denoted byEp, while ensuring
a certain minimum profit denoted byΠmin

p . Hence, the PN’s
optimization problem can be formulated as follows

minimize
P

(roamed)
j

,ǫp∈[0,1]

Ep =

NBS∑

j=1

ǫ
(p)
j Pp,j . (6)

Subject to:

•
P −

∑NBS

j=1

(

Pj + P
(roamed)
j

)

P
≤ Pout, (7)

• Πp ≥ Πmin
p , (8)

where (7) and (8) represent the QoS and profit constraints,
respectively.

B. Secondary Network

As per the cognitive concept, the main objective of the
SN is to maximize its users’ sum-rate, denoted byRs by
either sharing the primary channel in an underlay mode or
freely exploiting the channel after serving PUs in a spectrum
leasing scenario. Hence, the SN optimization problem is given

as follows

maximize
π,P

Rs =

NBS∑

j=1




∑

v∈Ij

log2
(
1 + πs,j(v, i)Ps,j(v)h

s→s
j,i (v)

)

+
∑

v∈Īj

log2

(

1 +
πs,j(v, i)Ps,j(v)h

s→s
j,i (v)

1 + Pp,j(v)h
p→s
j,i (v)

)

 . (9)

Subject to:

•

Sj∑

i=1

∑

v∈Ij∪Īj

πs,j(v, i)Ps,j(v) ≤ P̃j , ∀j = 1, · · · , NBS,

(10)

• ǫ
(p)
j πs,j(v, i)Ps,j(v)h

s→p
j,i (v) ≤ Ith, ∀i ∈ Īj , (11)

• Sj + P
(roamed)
j ≤ C̄s, ∀j = 1, · · · , NBS, (12)

• Πs ≥ Πmin
s , (13)

•

Sj∑

i=1

πs,j(v, i) ≤ 1, ∀v ∈ Ij ∪ Īj , ∀j = 1, ..., NBS. (14)

whereIj represents the set of free subcarriers belonging to
the j th BS not allocated to the PN users whilēIj corresponds
to the set of subcarriers used by thej th BS. P and π are
the vectors containing the elementsPs,j(v) and πs,j(v, i)
representing the status of each subcarrierv of the j th BS
whether it is allocated to useri (i.e., πs,j(v, i) = 1) or not
(i.e., πs,j(v, i) = 0). The constraint (10) indicates that the
SN’s BS transmit power cannot exceed the BS power budget
denoted byP̃j . The parameterIth denotes the interference
threshold tolerated by the PN during the spectrum sharing
scenario as imposed in (11). The constraint (12) forces the
number of served users by a BS to be less than the BS capacity.
Finally, Πs is the SN achieved profit that should be greater
than the minimum required profits, denoted byΠmin

s in (13).
The constraint (14) indicates that a user can be served by
only one subcarrier from one BS. Note that the total power
budget of a BS used for secondary transmission is reduced
during the spectrum leasing mode since priority is given to
primary communication. Hence, the power budget is expressed
as follows

P̃j = P̄ − (1− ǫ
(p)
j )

P
(roamed)
j∑

i=1

Pmin

K
dνj,ih

s→p
j,i , (15)

whereP̄ is the fixed maximum BS power budget. On the other
hand, the SN profit is expressed as follows

Πs =

NBS∑

j=1

prate Rs

︸ ︷︷ ︸

Service revenue

+

NBS∑

j=1

(1− ǫ
(p)
j )
(

proamP
(roamed)
j − psl

)

︸ ︷︷ ︸

Collaboration profit

−

NBS∑

j=1

ǫ
(p)
j pss

︸ ︷︷ ︸

Non-collaboration cost

−

NBS∑

j=1

pePs,j

︸ ︷︷ ︸

Energy cost

, (16)

whereprate is the unitary cost of the secondary achieved rate.
Note that the non-collaboration cost corresponds, here, tothe
spectrum sharing cost under the underlay mode.



4

IV. PRIMARY BS ON/OFF SWITCHING AND THESN
RESOURCEALLOCATION

In this section, we describe the green collaboration mecha-
nisms between the PN and the SN. As mentioned earlier, the
optimal BS combination, as well as the SN power allocation
at the different BSs, are determined at the common broker that
proposes the determined collaboration schemes. The PN and
the SN problems are combinatorial problems as their solutions
cannot be determined analytically due to the existence of the
binary variablesǫ(p). Therefore, we propose to solve them into
two steps. The first step is deciding which PN BSs should be
switched off. The second step involves the determination of
the power allocation of the SN.

A. The Proposed PN Network Management

We propose, in this part, a suboptimal algorithm involving
switching off a certain number of BSs without falling below
the PN or the SN minimal profits or the PN outage. The
proposed algorithm starts by computing different PN and SN
revenues for the two extreme cases, i.e., the case when all the
PN BSs are switched on, denoted by “All On” and the case
when all the PN BSs are switched off, denoted by “All Off”.
We compute for eachj th BS the corresponding primary and
secondary revenue when it is switched on or off. The next
step is to switch off the BSs one by one and to check, in each
step, whether or not the constraints are infringed. If so, the last
switched off BS should be kept active. However, the BSs to
be switched off should be chosen smartly in order to reach a
solution close to the optimal one. Intuitively, the first BS to be
switched off is the one that consumes the highest energy and
produces the lowest profit then do the same for the remaining
BSs if the constraint is respected. Note that, with this method,
if switching off a BS infringes the minimum profit constraint,
this BS and the remaining BSs should remain active since any
other active BS will infringe the profit constraint. However,
the BS with minimum profit does not necessarily correspond
to the one with maximum energy. Consequently, we define
the profit per energy metric as the ratio between the profit and
the energy ($/Watt). Then, we propose to switch off the BS
with the minimum profit per energy, i.e. the BS that provides
the least profit per Watt. Our proposed sub-optimal BS on/off
switching is summarized inAlgorithm 1

B. Secondary Resource Allocation

In order to optimize the power allocation of the SN, we
assume that the value ofǫ(p) is given. Thus, the number
of primary roamed usersP (roamed)

j in addition to the power
allocated per each active primary BS could be determined
using (3). Hence,Pp,j(i), ∀i, j and P̃j are known and the
SN’s optimization problem could be solved using the dual
decomposition method [11] as it is satisfying the dual time
sharing condition investigated in [11]. Thus, the duality gap of
the non-convex resource allocation problem in the multicarrier
system is negligible as the number of subcarriers is sufficiently
large compared to the number of users. Hence, the dual

Algorithm 1 BS management based on minimum profit per
energy unit.

1: Initialize ǫ(p) = [1, · · · , 1], (i.e., all the PN BSs are
active).

2: Compute the primary power allocation using (3).
3: Find the corresponding optimal the SN resource allocation

using the method described in Section IV-A.
4: Compute the PN and the SN revenues, the PN energy, and

outage of the “All On” case.
5: Compute profit per energy unit for each BSj.
6: Continue = TRUE.
7: while Continue do
8: Switch off the BS with minimum profit per energy.
9: Find the power allocation for the PN and the SN BSs.

10: Compute the new the PN and the SN revenues.
11: Determine the corresponding the PN energy and out-

age.
12: if Πp ≤ Πmin

p or Πs ≤ Πmin
s or outage≥ Pout then

13: Continue = FALSE.
14: Switch on the last switched off BS.
15: end if
16: end while

optimization problem associated with the primal problem is
given by

maximize
λ,µ≥0

g(λ, µ), (17)

subject to: (14),

where λ = [λ1, λ2, ..., λNBS] is the Lagrangian vector that
contains the Lagrangian multipliers associated to constraints
(10) whileµ is the Lagrangian multiplier related to constraint
(13). The dual functiong(λ, µ) is defined as follows

g(λ, µ) = minimize
π,P≥0

L(λ,µ), (18)

whereL(λ, µ) is the Lagrangian function of the secondary
optimization problem. The steps to solve the dual problem
can be described as follows:

• Step 1: Initialize the Lagrangian multipliersλ andµ.
• Step 2: Find the optimal value ofPs,j(v) for each

pairs (j, v) by solving the problem (17) for the fixed
Lagrangian multipliers andǫ(p)j = 1. Hence, the optimal
powerP ∗

s,j(v) can be given as follows

P ∗
s,j(v) =







min
{[

1
λj

−
1+Pp,j(v)h

p→s

j,i
(v)

hs→s
j,i

(v) )
]+

, Ith
h
s→p

j,i
(v)

}

, ∀i ∈ Īj ,
[

1
λj

− 1
hs→s
j,i

(v)

]+

, ∀i ∈ Ij

(19)
where[x]+ = max(0, x).

• Step 3: Substitute the optimal powers derived in (19)
into (17). Thus, we obtain a linear assignment problem
with respect to elementsπs,j(v, i) and can be solved
efficiently by using the Hungarian algorithm [12]. The
solution obtained by the dual method is an asymptotically
optimal solution [11].

• Step 4: After finding the optimal solutionsPs,j(v)
∗ and

πs,j(v, i)
∗ corresponding to the initialized Lagrangian

multipliers in Step 1, we can employ the subgradient
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method to find their optimal values and thus the opti-
mal solution of the problem [13]. Hence, to obtain the
solution, we can start with any initial values for the
Lagrangian multipliers and evaluate the optimal solutions
(i.e., Ps,j(v)

∗ and πs,j(v, i)
∗). We then update the La-

grangian multipliers at the next iteration(i+1) as follows

λ(i+1)
s = λ(i)

s −δi



P̃j −

Sj∑

i=1

∑

v∈I∪Īj

πs,j(v, i)Ps,j(v)



 , ∀j,

(20)

µ(i+1) = µ(i) +̟i
(
Πs(Ps,j(v), πs,j(v, i))−Πmin

s

)
, ∀u,

(21)

whereδi and̟i are the updated step size according to the
non-summable diminishing step length policy (see [13] for
more details). The updated values of the optimal solution and
the Lagrangian multipliers are repeated until convergence.

V. NUMERICAL RESULTS

We consider a geographical area covered by the PN and
the SN possessing 12 BSs. The users distribution over the
area could follow a uniform distribution. Table 1 summarizes
the different parameters and prices adopted in our numerical
results. We denote by $ the monetary unit.

TABLE I: Adopted prices and network parameters.

Parameter Value Parameter Value
Number of BSs 12 Cell radius (m) 500
Number of subcarriers 50 Allowed outagePout 5%
Sharing pricepss($) 30 Leasing pricepsl($) 30
Service pricepop($) 2 Rate priceprate($) 0.75
Roaming priceproam($) 2 Energy pricepe($) 0.15
Minimal profit percentageτ 90% BS transmit power(W ) 2
Minimal powerPmin (dB) -10 Scaling parametera 7.84
BS constant powerb (W ) 71.5 Interf. thresholdIth (dB) 0
Pathloss exponentν 3.76 Pathloss constantK 10−4

In Fig. 2, we plot the performances of the PN and the
SN as a function of the roaming price. In Fig. 2, we study
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Fig. 2: Evolution of the PN and the SN performances with
the roaming price variation.

the effect of the roaming price,proam on the PN and the
SN performances. In Fig. 2.a, we show that the PN energy

consumption increases withproam under a discrete stagnation
levels. This slope of the energy consumption is related of the
number of BSs switched on. In fact, asproam increases, the
profit decreases, and the PN needs to switch on an additional
BS to meet the profit requirement. In Fig. 2, we also compare
the performance of the proposed algorithm with those of the
ES method and an iterative algorithm presented in [14] and
denoted by ’IA’. ES consists in evaluating the achieved utility
functions for all possible combinations and then selectingthe
combination providing the minimum PN energy consumption
while respecting the PN and the SN profit constraints. This
method is very complex mainly for large-scale networks since
it requires2NBS tests till reaching the optimal solution. IA
is a less complex approach consisting in turning off one BS
every iteration. The selected BS is the one, when it is turned
off, helps the PN achieving the lowest energy consumption
without compromising the profit constraints of both networks.
The algorithm converges when no more BSs can be eliminated
as their elimination will affect the system constraints. Hence,
IA needsN2

BS tests before reaching its suboptimal solution
(For more details, see [14]).

We show that our algorithm performances are very close to
ES, whereas IA achieves higher energy consumption. This is
because IA turns off at each iteration the BS having the highest
transmit power consumption as at each time, it eliminates the
BS that contributes the most to the network energy reduction.
Hence, the BSs with the highest number of users are turned
off first.

In Fig. 2.b, we plot the PN profit as a function ofproam,
and we notice that the ES algorithm gives the closest profit
to the minimal profit whereas our algorithm is relatively far.
However, since the corresponding energy consumption of the
two algorithms is almost the same, our algorithm is considered
to be better than the ES in terms of profit and low-complexity.

In Fig. 2.c, we show that the SN rate is increasing when
proam increases which mean that the roaming price enhances
the achievable SN rate. In addition, the maximum SN rate that
can be achieved is the rate of the “All On” case since the rate
used in serving the roamed PUs is not considered in the SN
rate. In Fig. 2.d, we plot the SN profit and we show that it
decreases withproam. This contradictory observation can be
explained by the fact that whenproam is high, the PN needs
to switch on more BSs to meet its profit requirement which
means lower roaming revenue in addition to the spectrum
sharing cost. This fact means thatproam is a key parameter
that affects both the PN and the SN performances.

In Fig. 3, we show that the sum profit of both the PN and
the SN is also decreasing with the energy price,pe. However,
we show that the sum profit of our proposed algorithm is
either equal or higher than the sum profit of the case of no
cooperation, i.e. “All On”. Consequently, cooperation between
the PN and the SN produces a higher global profit even if the
problem is not about maximizing the profit.

In Fig. 4, we analyze the energy price effect on the PN
energy consumption and profit. In Fig. 4.a, we show that the
PN profit and the minimal profit decrease linearly with the
energy price where the minimal profit has the steepest slope.
When the energy price increases to a certain level, the PN is
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Fig. 4: Primary energy consumption and profit versus the
energy price.

able to switch off an additional BS as the corresponding profit
stays aboveΠmin

p which also corresponds to a drop in energy
consumption as shown in Fig. 4.b. In Fig. 4.b, we also show
that as far as the same number of BSs are switched on, the
energy consumption is not changing. After deactivation of the
BS, the drop in energy consumption reaches a new constant
level regardless of the variation of the energy price.

In Fig. 5, we plot the SN rate as a function of the PN
energy consumption with various values ofproam to show the
performance region. Overall, there is a trade-off between the
PN energy and the SN rate. Note that the best region is the
upper-left in which the PN energy is minimized, and the SN
rate is maximized. Note that the non-cooperation “All On”
case is located in the upper right part with high the PN energy
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Fig. 5: PN energy versus the SN rate with various values of
proam.

consumption and high the SN rate. We show that our proposed
algorithm is close to the ES and offers better regions at low
rate-energy.

VI. CONCLUSION

In this paper, we addressed a novel energy-saving manage-
ment for cellular networks in the cognitive radio spectrum
trading framework. The novel cells management is based on
switching off some of the primary network (PN) base stations
(BSs) without affecting profit or outage constraints. The PN
offloads its users to the secondary network (SN) that receives
a roaming revenue in return. The SN either shares or leases
the spectrum if available and maximizes its rate. We proposea
low-complexity algorithm based on switching off the BSs with
the minimal profit per energy unit if the profit and outage
constraints are respected for both the PN and the SN. In
the numerical results, we showed that our proposed on/off
switching approach performs close to the high-complexity
exhaustive search. We also show that the roaming price is
an important parameter to decide either or not to switch off
the PN BSs.
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