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Abstract—In this paper, we propose a new cognitive cellular for non-licensed/secondary users (SUs) while respectieg t
network architecture based on the coexistence of primary ath licensed/primary users (PUs) quality of service (QoS).aJ [

secondary networks, (PN) and (SN), respectively. The PN aro 171 1he CR networks were characterized by two main features
minimize its energy consumption by switching off the maximun

number of its BSs and offloading its users to the SN’s infrastic- i) COgn'.“Ve C"_"pab'“ty thrOUQh sgnsmg .and Iearnlng from
ture to maintain its QoS. In return, the PN pays a roaming price  the radio environment ii) reconfigurability referring toeth
and permits the SN to share or lease the spectrum at a certain ability to dynamic access to the spectrum and the ability of
price. We propose a low-complexity algorithm allowing the N transmitting on various frequencies. In the cellular nekso
to minimize its energy consumption by selecting a suboptirma framework, related paradigms such as spectrum sharing or
combination of active base stations. Our algorithm also opitnizes o .
the resource allocation of the SN to maximize its total sum- SP€ctrum trading can be adopted to have a convincement
rate while respecting the minimal profit constraints for both ~ Solution to the increasing demand for bandwidth. The concep
networks. In the numerical results, we show that our proposd of spectrum trading in a CRN framework is described as
algorithm achieves close performances to the optimal exhative  fgllows: the PU’s share, lease, or sell their vacant spettru
search algorithm. In addltlon,we investigate t_h_elmpactoﬁlarlous with a certain price and the SU’s share, rent, or buy the
system parameters in the collaboration decision. .
available spectrum resources. In [8], the authors study the

Index Terms—Green cellular networks, underlay cognitive cooperation between two operators in which the objective is

radio, operators collaboration. minimize the energy cost. However, both operators had equal

I. INTRODUCTION priority.

The evolution of wireless communications has led to multi- In this paper, we focus on the cooperation between a

ple challenges related to the increasing demand for data raymary network (PN) ben_efrgng from a h|gh prlc_)rlty and a
o . I secondary network (SN) aiming to exploit the primary spec-
coverage, reliability and energy efficient communicatiah [

These challenges need to be considered in the next fi {H™ opportunistically. In other words, _the available r@ses
) . . (Spectrum, power, etc.) are used to first serve the PN users
generation (5G) of cellular networks in order to meet it

. . . en the remaining resources are used to serve the SN users.
requirements [2]. One of these major challenges is to cope

. : . , . In"our study, we propose a collaboration scheme between a
with this exponential growth of networks’ energy consurapti reen PN and a SN accenting to serve offloaded users. The
that currently constitutes a crucial global concern for I&Wd 9 pting :

communications fields. Indeed. mobile operators are requirPN focuses on activating the minimum number of base stations
' ' P BSs) while offloading its users to the SN’s infrastructure.

to reduce their energy consumption to not only achieve envi-

.. . re%urn, the SN accepts to serve PUs in priority while enjgyin
ronmental objectives but also economic ones as about halfﬁ L g

their expenses are coming from electricity bills. Consetjye the leased spectrum to maximize its total secondary suen-rat

pen: 9 y ' s However, such collaboration can only be possible if the pofi
many moplle operators_ tend recently FO reduce their energxd QoS of both networks are not affected. Therefore, we
consumpno_ns by _adoptm_g er_1e_rgy-eff|0|ent schemes_ [3] r{Jropose a low-complexity algorithm to solve our formulated

Another issue is the inefficient spectrum allocation coo— timizai - : :

o ; ptimization problems aiming to achieve the primary and
trolled by the regulatory organizations like the Federainzo secondary objectives while taking into account the energy
munications Commission (FCC) [4]. The spectrum is be- :

: roaming, and spectrum sharing costs. Finally, we show that
coming more and more a scarce resource that prevents new

wireless technologies to evolve rapidly. In traditionalldar our low-complexity algorithm achieves performance clase t

networks, in order to satisfy the increasing data rate deioén those of the Exhaustive Search (ES) method and outperforms

mobile users, the operators tend to either buy more banUwiHﬁe performance of a previously proposed on/off switching

with millions of dollars or deploy new spectral efficient iec dlgorithm. Furthermore, we identify some criteria promgti

nologies such as sophisticated modulation or MIMO. Hovv,eveﬂr1e green collaboration for cognitive radio networks.

theses options come with either high cost or high complexity The rest of this paper is organized as follows. In Section
To overcome this issue, the concept of cognitive radio (CR) the system model is described. In Section IlI, the prable
introduced by Mitola in [5], presents a flexible spectrumessc formulation is described. The proposed PN management and
. , the SN power allocation schemes are presented in Section IV.
This work was made possible by NPRP grant # 6-001-2-001 flerQtatar

National Research Fund (A member of The Qatar Foundatidrg.statements Numencal reS_UItS arg presented in Section V. Flnally, m%p
made herein are solely the responsibility of the authors is concluded in Section VI.




Il. SYSTEM MODEL

We consider a geographical area served by two cellular
networks: the PN and the SN. the PN is operating on the
licensed bandwidth while the SN is aiming to communicate
opportunistically while sharing the primary bandwidth. We
denote byNgs the number of BSs assumed to be the same
for both networks. Both the PN and the SN are deployed in a @ Primary Network
hexagonal cells model. Each BS adopts a tri-sectoral tresasm (g Secondary Network
sion in which the area covered by the BS is divided into three e
equal areas. In order to have the minimum interference, the
secondary BSs are deployed such as the distance between the . . o
secondary BS and the closest primary BS is equal to the celf19- 1: Primary and secondary base stations distribution.
radius. In other words, the secondary BSs are deployed in the n
intersection of three primary cells. The BSs are placediteese L ) ) _
P PUs andS SUs distributed randomly with coordinatesind O ©bjective is to investigate the mobile operator collab-
y according to a given joint probability density function fpd oration between the PN and the SN. Thls.collaboratlon is
denoted by, (z, y) and f,(z, y), respectively. The proportion performed mdependently at each BS depending on the sy;tem
of PUs in a sub-region denoted hyof the considered region Parameters by following one of the two spectrum trading
denoted by (i.e.,w C Q) is computed ag[,, f,(x,y)da dy. approaches:

For instance, the total number of PUs in this sub-regiois ~ « Spectrum sharing This approach is based on the un-

. PROBLEM FORMULATION

denoted byP,, and is given by: derlay CR scenario where the SN is allowed to share
the primary bandwidth by transmitting over the free
F,= {P // fo(z, y)dx dyw ~ ) and non-free subcarriers while causing interference not

exceeding a certain level imposed by the PN. In return,
the SN pays a spectrum sharing price, denotegdgyto
the PN whenever the SN causes interference to primary
communications (e.g., when the corresponding PN’s BS
is active).

« Spectrum leasing In this approach, the PN can exploit

o (tx)
o Bej =ab +, ] 2) the existence of the secondary infrastructure in order to
where the coefficient. denotes the power consumption that  ensyre energy savings. If the collaboration is beneficial

scales with the transmitted power due to the amplifier and the oy poth networks, the PN can decide to turn off a BS
feeder losses. The paramebanodels the offset of site power and offload its users to the secondary BS while leasing

consumed independently of the radiated power. This pagmet  the total bandwidth to the secondary transmission. the
involves, mainly, the signal processing (analog to digta- SN’s task is first to ensure the PUs connectivity, then to
verters (ADC)), filters, mixers, amplifiers, etc.), batteachkup, maximize its secondary sum-rate while paying a spectrum
and cooling. In (2),Px(fj‘) denotes the transmitted power of the  |easing price, denoted bys. In return, the PN pays a
jt" BS which depends on the number of users served by this roaming cost.

BS (denoted byP; or S; for the PN or the SN, respectively).\we assume that both spectrum sharing and leasing prices are
This transmit power is expressed as follows [10]: the same for all BSs. Both networks collaborate together in
() 7 Poin &Y 3 order to decide either to turn off a BS or to keep it active such
X T 2 - K aalai o @) that their utility functions are optimized. We assume tfet t
. L= . optimization is performed by a third-party that can be seen
where iy iS the minimum power to be received by each US%'IS) a broker. This broker proposes the best solution to both

in order to ensure the required Qak, is a parameter repre- .
senting the effects of BS antenna settings, carrier frequerghe PN and the SN depending on the system parameters and

and propagation environmentjis the path loss exponert, , Indicates whether the collaboration is possible or not.df, n

denotes the distance between of #ffeBS of network x and :Ez El\é;ff,;atsfaﬁﬁlngcaelgﬁoﬁ ?,aﬁqg;hlsesil\:no&(z?;minder
the i user connected to this BS, arh@jy models the fast- P 9 '

fading effect of the channel between t}i& BS of network x lehlbks)e(:ft;?rr;lsljIz\;\f[(iand?ﬁzzlbfo:?ssogfgit;veé Ot]icrg;tgﬂtgf F:glbgd th
and thei™ of network y. The parametef() is a binary variable y 9 P gop P

representing the status of th# BS of network x: if BSj is .

switched on,e§x) =1, otherwise,e§x) =0andP; = 0. We A. Primary Network

assume that each BS cannot simultaneously serve a number dfhe PN’s objective is to ensure energy saving by switching
users exceedingy such thatP; < C,, for the PN andS; < Cs  off the maximum number of BSs without affecting two con-
for the SN. straints: the QoS and its profit. The QoS is satisfied when the

where[.] denotes the ceiling function. We denote By, the
consumed power of thg" active BS belonging to the network

x where xe {p, s} depending on the considered network (i.e.,
p for the PN and s for the SN). This power is computed as
follows [9]:



users in outage rate are less than a certain outage prapabds follows

threshold. A user is considered in outage when it is not being Nes
allocated to any BS (i.e., primary or secondary BS). Thus, th maximizeR,, = DD tog, (1+ e (v, 8) Py j(v)h37* (v))
PN QoS constraint is written as ™ =1 \wez,

D ZNBS (Pj i P](roamed))

Jj=1

7o, (0,8) Ps i (0)h557 (v)
D < Pout- (4) + Z log, <1 + 1]+ P 'E(;;>hpﬁjs/(v) . 9)
where P, is the percentage of users allowed to be in outage. v€Zs »J “

On the other hand, the PN’s profit, denotedlby is expressed ~ Subject to:

as S;
= S (roamed e > > muy(wi)Py(v) < B Yj=1,- Nes,
I, = Z Ip; = ch’p (Pj + P ) i=1 yeT;UZ;
=1 =1 (10)
Service revenue ° eg.p)ﬂ&j (v,4)Ps ('U)h;?p (v) < I, Vi € I_j7 (11)
Ngs '
() (roamed _
+ 21 (pa = prownP ™) o S+PM <O V=1, Nes, (12)
j=1
Collaboration profit o I, > H;nin’ (13)
= S
P _
+Z€j (pss*pepp,j)a (5) o Zwsd(v,i) < 17 VUEIJ‘ UIj,VjZl,...,NBS (14)
=1 i=1
Non-collaboration profit whereZ; represents the set of free subcarriers belonging to

wherell, ; is the profit gained by the PN using th& BS, the ;" BS not aIIocate_d to the PN users while corresponds
where pqp is the operation price paid by all served users ¢ the set of subcarriers used by ti€ BS. P and = are

the PN independently of the serving infrastructupd™med  the vectors containing the elements ;(v) and Ws,_jigv,i)

is the number of roamed users offloaded from jHeBS to '€Presenting the status of each subcartieof the j" BS

the neighbor BS belonging to the Sham corresponds to Whether it is allocated to user (i.e., m.;(v,7) = 1) or not

the price paid by the PN for the SN roaming service, arf¢f€: ms,j(v, @) = 0). The constraint (10) indicates that the
pe represents the energy cost that scales with the BS powd) S BS transmit power cannot exceed the BS power budget
consumption during a unit of time. Note thateﬁp) =1, the denoted byP;. The parametets d(_anotes the mterferencg
operator pays the energy cost and gains the spectrum sham‘fgsmld tolgrated by_ the PN during the.spectrum sharing
revenue since thg'" BS is active. However, if thg® BS is cénario as imposed in (11). The constraint (12) forces the
turned off, i.e.c® = 0, the operator pays the roaming servic?"mber of served users by a BS to be less than the BS capacity.

and gains the épectrum leasing revenue. The objective of LﬁE'Qa”y’ IL; is the SN achieved profit that should be greater

PN is to determine which BS should be turned off in order an the minimum required profits, denoted Biy™ in (13).

reduce its energy consumption, denotedfhywhile ensuring ogle g?}gsgjgga&ga ;Podrlr::fﬁcse E?Sat Nao?:?:\;[at?lebfo; ?rvzsvebry
a certain minimum profit denoted Hy;"™. Hence, the PN’s y : P

optimization problem can be formulated as follows budget of a BS used for.secondary .transmllss_mn. IS _reduced
during the spectrum leasing mode since priority is given to

Ngs i . . .
minimize &, = Z e(p)Pp’j. (6) primary communication. Hence, the power budget is exptesse
pfroamed7€pe[0,1] —) J as fOIIOWS
J 1= ,P(roamed
Subject to: - - J Phin ~
] Ng (roamed Pp=P- (1- €§P)) Z K d;‘/,ih;,?pv (15)
P-4 (Pj +P; B i=1
. 5 < Pout,  (7) whereP is the fixed maximum BS power budget. On the other
hand, the SN profit is expressed as follows
° I, > H,r)nin, (8) Nes Jes ) (roamed
where (7) and (8) represent the QoS and profit constraints, s = Zprate R+ Z(l &) (pfoampj *psl)
respectively. =1 =1
Service revenue Collaboration profit
Nss ® Ngs
_ P _ )
B. Secondary Network z;ej Pss Z;p ePs s (16)
J= J=
As per the cognitive concept, the main objective of the Non-collaboration cost Energy cost

SN is to maximize its users’ sum-rate, denoted By by wherepae is the unitary cost of the secondary achieved rate.
either sharing the primary channel in an underlay mode hiote that the non-collaboration cost corresponds, hertheo
freely exploiting the channel after serving PUs in a speutruspectrum sharing cost under the underlay mode.

leasing scenario. Hence, the SN optimization problem isrgiv



IV. PRIMARY BS ON/OFF SWITCHING AND THESN

Algorithm 1 BS management based on minimum profit per
RESOURCEALLOCATION

energy unit.

In this section, we describe the green collaboration mechat: Initialize e = [1,---,1], (i.e., all the PN BSs are

nisms between the PN and the SN. As mentioned earlier, the active).

optimal BS combination, as well as the SN power allocatiore: Compute the primary power allocation using (3).

at the different BSs, are determined at the common brokeér tha: Find the corresponding optimal the SN resource allocation

proposes the determined collaboration schemes. The PN andusing the method described in Section IV-A.

the SN problems are combinatorial problems as their salatio 4: Compute the PN and the SN revenues, the PN energy, and

cannot be determined analytically due to the existence®f th outage of the “All On” case.

binary variableg (P). Therefore, we propose to solve them into 5: Compute profit per energy unit for each BS

two steps. The first step is deciding which PN BSs should be: Continue = TRUE.

switched off. The second step involves the determination of: while Continue do

the power allocation of the SN. 8: Switch off the BS with minimum profit per energy.
o: Find the power allocation for the PN and the SN BSs.
10: Compute the new the PN and the SN revenues.

A. The Proposed PN Network Management 11:  Determine the corresponding the PN energy and out-

We propose, in this part, a suboptimal algorithm involving  29€: , ,
switching off a certain number of BSs without falling below2  if T, < I[;** or Iy < TT™ or outage> Fou then
the PN or the SN minimal profits or the PN outage. Thé% Continue = FALSE.
proposed algorithm starts by computing different PN and S Switch on the last switched off BS.
revenues for the two extreme cases, i.e., the case whereall 1 end _'f
PN BSs are switched on, denoted by “All On” and the cast®: €nd while
when all the PN BSs are switched off, denoted by “All Off".

th ) ;
\S/\éi;:(gfme for each BS. the co.rrespondmg primary andoptimization problem associated with the primal problem is
y revenue when it is switched on or off. The neX

step is to switch off the BSs one by one and to check, in eadh " by o
step, whether or not the constraints are infringed. If se Jaist mgfjg‘gze 9, 1), (17)
switched off BS should be kept active. However, the BSs to sut;je_ct to: (14)
be switched off should be chosen smartly in order to reaChw%ere)\ = [\ Ao, A s the Lagrangian vector that

solution close to the optimal one. Intuitively, the first BShte ; ) L ; .
P y ?’gtams the Lagrangian multipliers associated to coimtra

switched off is the one that consumes the highest energy X ; . - .
produces the lowest profit then do the same for the remaini ) while 1; is the Lagrangian multiplier related to constraint
I3). The dual functiory(\, p) is defined as follows

BSs if the constraint is respected. Note that, with this meth 2
if switching off a BS infringes the minimum profit constraint 9(A; p) = minimize - L(X, p), (18)

this BS and the remaining BSs should remain active since afjere L(X, ) is the Lagrangian function of the secondary

other active BS will infringe the profit constraint. Howe'veroptimization problem. The steps to solve the dual problem
the BS with minimum profit does not necessarily correspond, pe described as follows:

to the one with maximum energy. Consequently, we define o . o

the profit per energy metric as the ratio between the profit and® Step 1:Initialize the Lagrangian multipliera. and ..

the energy §/Watt). Then, we propose to switch off the BS * Step 2: Find the optimal value ofP; ;(v) for each
with the minimum profit per energy, i.e. the BS that provides  Pairs (j,v) by solving the problem (17) for the fixed
the least profit per Watt. Our proposed sub-optimal BS on/off  Lagrangian multipliers and” = 1. Hence, the optimal
switching is summarized islgorithm 1 power P} ;(v) can be given as follows

min{ [ — — )}f = },Viefj,

[ ' ﬁ} Vi€

In order to optimize the power allocation of the SN, we ' (29)
assume that the value ofP) is given. Thus, the number  where[z]™ = max(0, z).
of primary roamed user.?‘?}“""““e‘j in addition to the power « Step 3: Substitute the optimal powers derived in (19)
allocated per each active primary BS could be determined into (17). Thus, we obtain a linear assignment problem
using (3). HenceP, ;(i),Vi,j and P; are known and the with respect to elements; ;(v,i) and can be solved
SN'’s optimization problem could be solved using the dual efficiently by using the Hungarian algorithm [12]. The
decomposition method [11] as it is satisfying the dual time solution obtained by the dual method is an asymptotically

L4 Py (0)h2 7 (v)

|~

s

B. Secondary Resource Allocation

>

sharing condition investigated in [11]. Thus, the dualigpgf
the non-convex resource allocation problem in the muitiear
system is negligible as the number of subcarriers is suffilyie

large compared to the number of users. Hence, the dual

optimal solution [11].

Step 4: After finding the optimal solutiong; ;(v)* and
7s,j(v,4)* corresponding to the initialized Lagrangian
multipliers in Step 1, we can employ the subgradient



method to find their optimal values and thus the opteonsumption increases withoam under a discrete stagnation
mal solution of the problem [13]. Hence, to obtain théevels. This slope of the energy consumption is related ef th
solution, we can start with any initial values for thenumber of BSs switched on. In fact, agam increases, the
Lagrangian multipliers and evaluate the optimal solutiorrofit decreases, and the PN needs to switch on an additional
(i.e., Ps ;(v)* and 7, ;(v,4)*). We then update the La- BS to meet the profit requirement. In Fig. 2, we also compare
grangian multipliers at the next iterati¢it-1) as follows the performance of the proposed algorithm with those of the
S; ES method and an iterative algorithm presented in [14] and
)\gi+1) _ )\gi)_(;i faj _ Z Z 7 j(v,1)Ps;(v) |, V4, denoted by 'IA. ES consists in evaluating the achievedtytil
=1 veTuT, functions for all possible combinations and then selectirey
(20) combination providing the minimum PN energy consumption
pltD = 0 4 (TIs(Ps ; (v), 75 (v,7)) — TIR™) | Va, while respecting the PN and the SN profit constraints. This
(21) method is very complex mainly for large-scale networks sinc

where§* and =’ are the updated step size according to tHE requires 2™Ves tests till reaching_the o_ptimal_solution. 1A
non-summable diminishing step length policy (see [13] ds a less complex approach consisting in turning off one BS

more details). The updated values of the optimal solutiah aﬁ‘f’fe?]’ ilteratihon. The s;:-.lec.ted is ils the one, when it is turned
the Lagrangian multipliers are repeated until convergence Of: helps the PN achieving the lowest energy consumption
without compromising the profit constraints of both netwsrk

The algorithm converges when no more BSs can be eliminated
as their elimination will affect the system constraintsnele,

We consider a geographical area covered by the PN apdneeds N3 tests before reaching its suboptimal solution
the SN possessing 12 BSs. The users distribution over i{®r more details, see [14]).
area could follow a uniform distribution. Table 1 summasize \we show that our algorithm performances are very close to
the different parameters and prices adopted in our nunierigas \whereas IA achieves higher energy consumption. This is
results. We denote by $ the monetary unit. because IA turns off at each iteration the BS having the lsighe
transmit power consumption as at each time, it eliminates th
BS that contributes the most to the network energy reduction

V. NUMERICAL RESULTS

TABLE I: Adopted prices and network parameters.

[Parameter [Value[[Parameter [Value] Hence, the BSs with the highest number of users are turned
Number of BSs 12 [[Cell radius (m) 500 | off first.

Number of subcarriers 50 ||Allowed outagePout 5% In Fig. 2.b, we plot the PN profit as a function pfyam,
Sharing pricepss($) 30 |[Leasing priceps($) 30

and we notice that the ES algorithm gives the closest profit

Service pricepop($) 2 ||Rate priceprae(3) 0.75 - . - . .

Roaming Priceproan(S) 3 ([Energy pricepe(3) 015 o the m|n|mal profit whereas our algorithm is relatlyely. far
Minimal profit percentage | 90% [|BS transmit powe(1w) | 2 | However, since the corresponding energy consumption of the
Minimal power Prin (dB) | -10 [[Scaling parametex 7.84 | two algorithms is almost the same, our algorithm is consider
BS constant poweb (W) | 71.5 [[Interf. thresholdlix (dB)] 0 | to be better than the ES in terms of profit and low-complexity.
Pathloss exponent 3.76 || Pathloss constank’ 10" In Fig. 2.c, we show that the SN rate is increasing when

Proam iNCreases which mean that the roaming price enhances
In Fig. 2, we plot the performances of the PN and th@e achievable SN rate. In addition, the maximum SN rate that
SN as a function of the roaming price. In Fig. 2, we studyan pe achieved is the rate of the “All On” case since the rate
used in serving the roamed PUs is not considered in the SN
; rate. In Fig. 2.d, we plot the SN profit and we show that it
Minimal PN profit decreases withpoam This contradictory observation can be
explained by the fact that whemoam is high, the PN needs
to switch on more BSs to meet its profit requirement which
- means lower roaming revenue in addition to the spectrum
Y Reamngpice® > Reamngprice” * °  sharing cost. This fact means thatam is a key parameter
e = that affects both the PN and the SN performances.
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3o A%_. In Fig. 3, we show that the sum profit of both the PN and

% z the SN is also decreasing with the energy prige However,

T o ——|a . _ we show that the sum profit of our proposed algorithm is

g 470 —=—Proposed algorithm |1 £ Minimal sum—profit . . .

2 —Exhaustvesearch || 3 either equal or higher than the sum profit of the case of no

8 460| — Iterativi rithm 900] . . .

3 —aon R N cooperation, i.e. “All On”. Consequently, cooperationvegn

T it @ ¢ 2 g i @ ¢ © the PN a_nd the SN produge; a higher glo_bal profit even if the

© @ problem is not about maximizing the profit.

Fig. 2: Evolution of the PN and the SN performances with In Fig. 4, we analyze the energy price effect on the PN
the roaming price variation. energy consumption and profit. In Fig. 4.a, we show that the

PN profit and the minimal profit decrease linearly with the
the effect of the roaming pricepoam On the PN and the energy price where the minimal profit has the steepest slope.
SN performances. In Fig. 2.a, we show that the PN enerlyhen the energy price increases to a certain level, the PN is
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consumption and high the SN rate. We show that our proposed
algorithm is close to the ES and offers better regions at low
rate-energy.

VI. CONCLUSION

In this paper, we addressed a novel energy-saving manage-
ment for cellular networks in the cognitive radio spectrum
trading framework. The novel cells management is based on
switching off some of the primary network (PN) base stations
(BSs) without affecting profit or outage constraints. The PN
offloads its users to the secondary network (SN) that reseive
a roaming revenue in return. The SN either shares or leases
the spectrum if available and maximizes its rate. We propose
low-complexity algorithm based on switching off the BSstwit
the minimal profit per energy unit if the profit and outage
constraints are respected for both the PN and the SN. In
the numerical results, we showed that our proposed on/off
switching approach performs close to the high-complexity
exhaustive search. We also show that the roaming price is
an important parameter to decide either or not to switch off

the

00z o0: o006 oo 01 oz  om 00z ooi o0 oo 01 om  om
Energy Price () Energy Price ()
(@) (b)

Fig. 4: Primary energy consumption and profit versus the
energy price. (1]

able to switch off an additional BS as the corresponding prof%
stays abovaly"" which also corresponds to a drop in energy
consumption as shown in Fig. 4.b. In Fig. 4.b, we also shO\ﬁ4
that as far as the same number of BSs are switched on, t (13
energy consumption is not changing. After deactivatiorhef t [5]
BS, the drop in energy consumption reaches a new constant
level regardless of the variation of the energy price. 6]
In Fig. 5, we plot the SN rate as a function of the PN
energy consumption with various values©f.m to show the 7]
performance region. Overall, there is a trade-off betwdwen t
PN energy and the SN rate. Note that the best region is the
upper-left in which the PN energy is minimized, and the SI\{S]
rate is maximized. Note that the non-cooperation “All On”
case is located in the upper right part with high the PN energ%]
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Fig. 5: PN energy versus the SN rate with various values of

Proam:

PN BSs.
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