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SUMMARY

In this paper we discuss the on-line estimation of distributed source term, diffusion and reaction coefficients
of a linear parabolic partial differential equation using both distributed and interior point measurements.
First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are
stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite dimensional
framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The
parameter convergence depends on the plant signal richness assumption, whereas the state convergence is
established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak
plasma heat transport model using simulated data. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many industrial, thermal and chemical systems are governed by partial differential equations
(PDEs). In many cases it is difficult to get the nominal PDE characterizing the process due
to incomplete physical knowledge. Adaptive estimation is one of the methods, belonging to
estimation/identification theory, which attempts to solve this question on-line.

Parameter identification of distributed parameter systems (DPSs) was first addressed in [1], [2],
[3], [4], [5], [6] for the case of known inputs (source term) and available distributed sensing. In [2],
it was pointed out that an identifiability issue in PDE setting should be discussed in relation to both
input and boundary conditions. In [7], the problem of boundary parameter estimation in parabolic
PDEs using boundary measurements and known actuation (inputs) was considered. Some recent
results on unknown boundary parameter estimation using boundary measurements for hyperbolic
PDEs can be found in [8], [9] and references therein. Estimation of point source terms has attracted
many research works (e.g. [10] and references therein) where the source term is assumed to be
separable and can be written as a time-varying amplitude times a delta function which describes
the spatial location. The objective was to estimate the intensity and the amplitude assuming mainly
that the source term becomes inactive after a pre-determined finite time. In [11] the identifiability
conditions of unbounded point sources was studied.

In this paper, we are interested in the simultaneous estimation of space-varying parameters and
inputs in parabolic PDEs. This kind of problems arise when the system is heated by electromagnetic
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induction or by microwaves. To achieve this purpose, we assume that distributed or interior-point
measurements are available. Even if, from a practical perspective, a distributing sensing systems is
not available, we will assume it as a basis to address the problem of estimating simultaneously the
unknown input and parameters. In this way, the case of interior-point measurements will be easier
to handle. It also allows us to highlight the relationship between the problem of sensor location
and DPS estimation problems. To the best of the author’s knowledge, there is no clear way in
how to estimate uniquely the spatially varying (and even constant) PDE parameters using boundary
measurements [12].

As stated by [6], the key problem of estimating spatially varying parameters is the development
of constructive identifiability conditions. In [13], identifiability conditions were developed based
on the linear independence condition between the solution and its derivatives. In [1], richness-like
identifiability conditions of the plant were established for the first time for distributed parameter
systems but relied on the solution of the plant itself (whose coefficients are unknown) and was
from this point of view passive (see [6] for more details). Constructive enforceable identifiability
conditions were formulated in [6] for the case of distributed sensing with known inputs in terms of
persistently exciting (PE) input signals. In [14], it is stated that unlike finite dimensional systems, in
infinite dimensional systems the concept of PE of the input should be investigated in relation to the
time variable, the spatial variable and the boundary conditions. Moreover, in infinite dimensional
systems, even a constant input can be PE [14]. The PE assumption is important since it guarantees
the convergence of parameter errors to zero [6], [14]. In this work, using on-line estimation, we
study simultaneous unknown PDE parameters and input estimation in 1-D linear parabolic PDEs.
All the parameters are assumed to be space-varying and we consider both distributed and interior
point measurements, provided that these measurements satisfy optimal sampling conditions (see
[15], [16] and references therein). The main contributions of this paper are (i) the proposition
of new sufficient parameter and input identifiability conditions using both distributed and interior
point measurements while assuming that the PDE solution is smooth and (ii) the development of an
adaptive estimator able to estimate unknown parameters and inputs simultaneously using interior
point measurements. The proposed on-line estimator is developed within the Lyapunov framework
where the L2−convergence of the state and parameter errors is established under the PE assumption.
The problem of unknown input estimation arises in many applications (fault detection, machine
tools, manipulator applications, chaotic systems, general inverse problems, ...) including tokamak
plasma heat transport. Thermonuclear fusion is one of the best new energy source candidate
to replace fossil fuels and support the world increasing demand on energy. Unfortunately, due
to the problem’s complexity, some critical practical and theoretical issues are preventing the
implementation of fusion reactors. For instance, for the electron heat transport profile, various
empirical, theoretical, mixed, computational models exist in the literature: Each model depends on
the reactor itself, its operating mode, the discharge parameters, the temperature profiles, the shear
effect, the safety factor and many other conditions to name a few (see [17] and references therein).
These issues motivate us to select the tokamak plasma heat transport as a challenging application to
test the performance of the proposed estimation method.

This paper is organized as follows. First the estimation problem is formulated in Section 2. In
Section 3, parameter and input identifiability conditions are presented for the cases of distributed and
interior point measurements. An adaptive estimator is considered in Section 4. The performances
of the proposed identifier are depicted in Section 5 using simulated data describing electron heat
transport in tokamaks.

Notation: The usual L2-norm is denoted by ||.||2. The space of solution is given by
QT = C1(0, tf ;C2(Ω)), the space-time set is defined by Qxt = Ω×]0, tf ] and the space H1

0,{1}(Ω)

is the Hilbert space defined by

H1
0,{1}(Ω) = {f ∈ L2(Ω) : ∇f ∈ L2(Ω), f |1 = 0} .

The parameter spaces Qχe , Qb and QS are given by

Qχe =
{
f ∈ L2(0, tf ;L2(Ω)) ∩ C0(0, tf ;C1(Ω)), ∃ c1, c2 ∈ R∗+ : c2 < f(x, t) < c1

}
,

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (0000)
Prepared using acsauth.cls DOI: 10.1002/acs



3

Qb = {g ∈ L2(Ω) ∩ C0(Ω), ∃ c3 ∈ R∗+ : g(x) > c3},

QS = L2(0, tf , L2(Ω)) ∩ C0(0, tf ; C0(Ω)).

2. PROBLEM FORMULATION

The general description of a diffusion-reaction equation with homogeneous mixed boundary
conditions is given by

∂T

∂t
= div (χe(x)∇T (x, t))− b(x)T (x, t) + S(x, t), (x, t) ∈ Qxt

∇T (0, t) = 0, T (1, t) = 0, t ∈ ]0, tf ],

T (x, 0) = 0, x ∈ Ω,

(1)

where T := T (x, t) is a scalar state variable, χe is the diffusion coefficient, S is the source term, b
is the reaction coefficient, div(.) is the divergence operator, ∇ is the gradient operator, Ω :=]0, 1[ is
the normalized space domain and tf is the final time. To guarantee the existence, uniqueness and
differentiability of PDE (1)’s classical solution i.e. T ∈ QT , the diffusion coefficient χe is assumed
to belong to the space Qχe , the reaction coefficient b in Qb and the source term S in QS (see [18],
chapter 07, page 375 for more details on these technical assumptions). Furthermore, these conditions
ensure the a priori (structural) identifiability of PDE (1).
The objective is to estimate χe, b and S while the output measurement y is given by y(x, t) = T (x, t), Case 1

yk(t) = T (xk, t), k = 1, ..., N <∞, Case 2
(2)

where Case 1 refers to the distributed measurement assumption and Case 2 represents the interior
point sensors. All measurements are assumed to be pre-filtered. For the case of interior point
measurements, sensors are considered to be located such that optimal (in a predefined sense) data
reconstruction is guaranteed. We refer to this assumption as the optimal sensing condition (more
details are given in Subsection 3.2). In the literature and in practice, it is well stated that b-spline
and wavelet reconstruction methods are powerful tools (less computational burden and less costly in
terms of the number of sensors) for digital-to-analogue signal conversion (for more details see [19],
[20],[15], [16] and references therein). In [21], it was proved that when cubic spline functions are
used to reconstruct the point-wise measured signal (in order to get the distributed profile) the relative
approximation error is of order equal to four (∆x4, where ∆x is the spatial sampling step). In this
paper b-spline functions are chosen as basis functions in the approximation/reconstruction method.
Note that optimal sensor location and scheduling are tightly related to DPS estimation problems
[22] but such topics are beyond the scope of this work.

3. SUFFICIENT PARAMETER IDENTIFIABILITY CONDITIONS

In this paper, we first provide new sufficient parameter and input identifiability conditions for the
case of distributed sensing and then extend them to the case of interior point measurements. Let
y := y(t) denote the output measurement given in (2)†. The state, output and parameter errors are

†y(t) = y(x, t) for Case 1 and y(t) = {yk(t)}Nk=1 for Case 2
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given by
∆T (x, t) = T (x, t)− T̃ (x, t),

∆χe(x) = χe(x)− χ̃e(x), ∆y(t) = y(t)− ỹ(t),

∆b(x) = b(x)− b̃(x), ∆S(x, t) = S(x)− S̃(x, t),

(3)

where T̃ is the solution of a model which has the same form as (1) where the unknown coefficients
χe, b and S are replaced by the new unknowns χ̃e, b̃ and S̃ and where the boundary and initial
conditions are equal. The output ỹ is obtained as in (2) where T is substituted by T̃ .

Definition: A set of parameters {χe(x), b(x), S(x, t)} of PDE (1) is said to be identifiable from the
measured output y and with respect to the corresponding boundary conditions if and only if for all
x ∈]0, 1[, t ≥ 0:

∆y(t) = 0⇒ ∆χe = ∆b = ∆S = 0. (4)

This condition is also known as the a posteriori identifiability condition.

3.1. Distributed sensing case

Sufficient conditions for simultaneous diffusion, reaction and source term estimation are given as
follows.

Proposition 3.1
If the set G defined by

G(t) = {x ∈ Ω : ∇T (x, t) = 0}, (5)

has zero Lebesgue measure a.e. in [0, tf ], then the parameters χe, b and S are identifiable.

Proof 3.1
From definition 3, in distributed sensing‡

y(t) = ỹ(t) ⇔ T (x, t) = T̃ (x, t)

⇒ div (∆χe ∇T )−∆b T + ∆S = 0,
(6)

and thus, the following integral equality holds∫ 1

0

(div (∆χe∇T )−∆b T + ∆S)ψdx = 0, ∀ψ ∈ H1
0,{1}(Ω). (7)

Using Green’s formula ([23], p. 12) and boundary conditions in (1), (7) becomes∫ 1

0

∆χe∇T ∇ψ dx+

∫ 1

0

(∆b T −∆S) ψ dx = 0, ∀ψ ∈ H1
0,{1}(Ω),

which implies that ∆χe∇T = 0,

∆b T −∆S = 0⇔ ∆b T −∆S 1(x) = 0,
(8)

where 1 is the identity function for x ∈ Ω. If the set G defined in (5) has zero Lebesgue measure
a.e. in [0, tf ] then from equality (8) ∆χe ≡ 0. In the other hand, if functions T and 1 are linearly

‡Occasionally, the spatial and time dependencies are dropped to alleviate the notations.
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independent then from equation (8) we have

∆b ≡ 0, ∆S ≡ 0. (9)

To check the linear independence of pair (T,1), we compute its Wronskian function W , which
gives W = ∇T . Hence, the linear independence of the pair (T,1) turns out to be Proposition 3.1’s
condition on the set G.

Remark: The concept of persistency of the excitation input (PE) is equivalent to the a posteriori
identifiability conditions [24]. In [5], the PE principle is defined in terms of the dynamics of the
PDE operator. In [6], it was proved that if the plant is PE, the identifiability conditions are governed
by the ability of expanding the PDE solution on an arbitrary basis in L2. In this work, the plant
is identifiable and thus persistently excited if the solution’s profile does not include intervals on
which it is constant. This condition is equivalent to the one presented in [6], since if the coefficients
of the Fourier expansion of the PDE solution are linearly independent, the basis functions of this
expansion cannot vanish on any interval in Ω and thus the set G defined in (5) has a zero Lebesgue
measure.

3.2. Using interior point measurements

Let Trec be the reconstruction of T obtained from interior point measurements y(t) = {T (xk, t)}Nk=1

such that

T (x, t) = Trec(x, t) + e(x, t), (10)

where e is the reconstruction error. The following assumptions are made.

Assumptions:

(i) lim
t→∞

‖e(., t)‖22 = 0,

(ii) The reconstruction error is bounded: ‖e(., t)‖22 6 ε0, 0 < ε0 << 1,
(iii) Trec ∈ Bn is the unique reconstruction function of order n such that

Trec(xk, t) = T (xk, t), k = 1, ..., N, t ∈ [0, tf ], where Bn is the space of approximate
solutions of order n.

Assumptions (i), (ii), and (iii) are referred as the optimal sensing condition.

Proposition 3.2
If T ∈ QT , the optimal sensing condition is satisfied and the set Gk given by

Gk(t) = {x ∈]xk − ε, xk + ε[: ∇T (x, t) = 0, ε > 0} ,

k = 1, ..., N , has zero Lebesgue measure a.e in [0, tf ], then parameters χe, b and S are identifiable
from measurement points {y(xk)}Nk=1.

Proof 3.2
The output error ∆y is given by

∆y(t) = T (xk, t)− T̃ (xk, t)

and
(∆y(t) = 0)⇒

(
T (xk, t) = T̃ (xk, t)

)
,

which leads to

div (∆χe∇T )
∣∣∣
xk
−∆b(xk)T (xk, t) + ∆S(xk, t) = 0. (11)

Using delta function δ, one writes (11) as∫ 1

0

δ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) dx = 0, (12)
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which is equivqlent to the following inequality

xk+ε∫
xk−ε

δ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) dx = 0, (13)

Delta function δ(x) can be written as

δ(x) = lim
σ→0

1√
2πσ

e−x
2/2σ2 == lim

σ→0
gσ(x), (14)

where gσ(x) = e−x
2/2σ2 .

Replacing (14) in (13), one obtains

xk+ε∫
xk−ε

δ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) dx = 0,

⇔
xk+ε∫
xk−ε

lim
σ→0

gσ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) dx = 0,

⇔ limσ→0

xk+ε∫
xk−ε

gσ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) dx = 0,

⇔ gσ(x− xk) (div (∆χe∇T )−∆b(x)T (x, t) + ∆S(x, t)) = 0, x ∈]xk − ε, xk + ε[

(15)

which is satisfied if

div (∆χe∇T )−∆bT + ∆S = 0, ∀x ∈]xk − ε, xk + ε[. (16)

Multiplying (16) by any function φ ∈ H1
0,{1} and using the same steps as in proof 3.1, one obtains

xk+ε∫
xk−ε

∆χe(x, t)∇T (x, t)∇φ(x) dx−
xk+ε∫
xk−ε

(∆b(x, t)T (x, t)−∆S(x, t))φ(x) dx = 0, k = 1, ..., N.

(17)

Which yields to
∆χe(x, t)∇T (x, t) = 0, ∀x ∈]xk − ε, xk + ε[

∆b(x, t)T (x, t)−∆S(x, t) = 0,

(18)

and if the set Gk(t) defined in Proposition 3.2 has zero Lebesgue measure a.e in [0, tf ] and
∀k = 1, ..., N then ∆χe = ∆b = ∆S = 0. This asserts conditions under which the parameters are
identifiable at point measurements {xk}Nk=1 and their neighborhoods (]xk − ε, xk + ε[), i.e. the sets
{χe(xk)}Nk=1, {b(xk)}Nk=1 and {S(xk, t)}Nk=1 are uniquely identifiable. However, this does not prove
parameter identifiability all over Ω. Nevertheless, if interior point measurements satisfy the optimal
sensing condition then functions χe(x), b(x) and S(x) can be obtained uniquely by interpolation
from their unique discrete formulations {χe(xk)}Nk=1, {b(xk)}Nk=1 and {S(xk, t)}Nk=1. The accuracy
of the identification process relies only on the approximation/ reconstruction method.
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4. ADAPTIVE ESTIMATION DESIGN

In this section, we assume that the input S is only space varying. Our objective is to demonstrate
that a stable adaptive estimator exists and guarantees the L2-convergence of both the state and
the parameters using distributed sensing and interior point measurements. Let T̂ , χ̂e, b̂ and Ŝ be
the estimated state, diffusion, reaction and source term respectively. Let the adaptive estimator be
described by the following equations (19)-(20)

∂T̂

∂t
(x, t) = div

(
χ̂e(x, t)∇T̂

)
− b̂(x) T̂ (x, t) + Ŝ(x, t)− ϑ0 (T̂ (x, t)− y(t)), (x, t) ∈ Qt,

∇T̂ (0, t) = T̂ (1, t) = 0, T̂ (x, 0) = T̂0(x) ≥ 0,

(19)

and 

∂χ̂e
∂t

(x, t) = ϑ1∇
(
T̂ (x, t)− y(t)

)
∇T̂ (x, t), χ̂e(x, 0) = χ̂e0(x),

∂b̂

∂t
(x, t) = ϑ2 (T̂ (x, t)− y(t)) T̂ (x, t), b̂(x, 0) = b̂0(x),

∂Ŝ

∂t
(x, t) = −ϑ3 (T̂ (x, t)− y(t)), Ŝ(x, 0) = Ŝ0(x),

(20)

where ∆T is the state estimation error, y(t) is the output measurement defined as in (2), ϑi ≥ 0, i =

0, 1, 2, 3 are the adaptation gains, χ̂e0(x) ∈ Qχe is a smooth function, b̂0(x) ∈ Qb and Ŝ0(x) ∈ QS
are continuous functions.

4.1. Case of distributed sensing y(t) = T (x, t)

Theorem 4.1
If the plant (1) is identifiable, the adaptive identification law given by (19) combined with the
parameters’ identifiers in (20) ensure the L2 convergence of the state and parameter deviations

lim
t→+∞

∫ 1

0

{
(∆T (x, t))2 + (∆S)2 + (∆b(x, t))2 + (∆χe(x, t))

2
}
dx = 0.

Proof 4.1
The proof is an extension of the one presented in [6] to the case of input estimation.
Since χ̂e0(x)0 is a smooth function, b̂0(x)0 and Ŝ0(x) ∈ L2(Ω) are bounded continuous functions,
the PDE (19) is well-posed [18]. We start by introducing the variable δT given by

δT (x, t) = T (x, t)− T ∗(x),

where T ∗(x) is the steady state solution of (1). Define the state, parameter and input deviations as ∆T (x, t) = T̂ (x, t)− T (x, t),

∇(∆T )(0, t) = ∆T (1, t) = 0,
(21)

and

∆χe(x, t) = χ̂e(x, t)− χe(x), ∆b(x, t) = b̂(x, t)− b(x), ∆S(x, t) = Ŝ(x, t)− S(x), (22)

The first derivatives of δT (x, t), ∆T (x, t), ∆χe(x, t), ∆b(x, t) and ∆S(x, t) are given by
∂δT

∂t
= div (χe(x)∇(δT ))− b(x)δT (x, t),

∇(δT )(0, t) = δT (1, t) = 0,
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∂∆T

∂t
= div (χe(x)∇(∆T ))− b(x) ∆T (x, t) + ∆S(x, t) + div

(
∆χe(x, t)∇(T̂ )

)
−ϑ0∆T (x, t)−∆b(x, t)T̂ (x, t),

∂∆χe
∂t

= ϑ1∇(T̂ ) ∇(∆T ),
∂∆b

∂t
= ϑ2 ∆T (x, t) T̂ (x, t),

∂∆S

∂t
= −ϑ3 ∆T (x, t).

(23)

Let us introduce the following Lyapunov candidate functional

V (t) =
1

2

∫ 1

0

(
[δT (x, t)]2 + [∆T (x, t)]2 +

1

ϑ1
[∆χe(x, t)]

2 +
1

ϑ2
[∆b(x, t)]2

+
1

ϑ3
[∆S(x, t)]2

)
dx.

(24)

Using (20), (19) and Gauss divergence formula [23], the derivative of V is as follows

V̇ (t) = −
∫ 1

0

χe(x) (∇(δT ))
2
dx−

∫ 1

0

b(x)[δT (x, t)]2dx−
∫ 1

0

∆χe(x, t)∇(∆T ) ∇(T̂ )dx

−
∫ 1

0

(b(x) + ϑ0) [∆T (x, t)]2dx+

∫ 1

0

∆S(x, t)∆T (x, t)dx

+

∫ 1

0

∆χe(x, t)∇(T̂ )∇(∆T )dx−
∫ 1

0

∆b(x, t)[∆T (x, t)]2dx

−
∫ 1

0

∆S(x, t)∆T (x, t)dx−
∫ 1

0

χe(x) (∇(∆T ))
2
dx,

= −
∫ 1

0

χe(x) (∇(δT ))
2
dx−

∫ 1

0

b(x)[δT (x, t)]2dx−
∫ 1

0

χe(x, t) (∇(∆T ))
2
dx

−
∫ 1

0

(b(x) + ϑ0) [∆T (x, t)]2dx.

(25)

Since χe and b are strictly positive functions, one can write

V̇ (t) ≤ −ϑ0 ‖∆T (., t)‖22 ≤ 0, (26)

Inequality (26) implies the boundedness of the Lyapunov function V (t) ≤ V (0) <∞ and the L2-
boundedness of the state observation error ∆T . Since the adaptation laws (20) are just integrations,
system (23) turns out to be time-invariant and using [theorm 4.3.4 of [25]], all the trajectories of the
system deviations converge to the invariant set for which V̇ = 0, which leads to

∆T (x, t) = 0 =⇒ div
(

∆χe(x, t)
∂T

∂x

)
−∆b(x, t) T (x, t) + ∆S(x, t) = 0.

By assuming that the plant is persistently excited (and thus identifiable), it follows that

lim
t→+∞

∫ 1

0

{
(∆T )2 + (∆b)2 + (∆S)2 + (∆χe)

2
}
dx = 0.

As demonstrated for the case of adaptive parameter estimation in [6], because χe ∈ Qχe , b ∈ Qb,
S ∈ QS and the domain Ω is compact, the point-wise parameter and input convergence is easily
obtained using Fourier expansions . It is well established that the proposed identifier (19)-(20) can
also handle slowly time varying parameters and input by averaging analysis [3], [5], [26].
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4.2. Case of interior point measurements

In this case, the output y is defined by y(t) = Trec(x, t). The correction term
(
T̂ (x, t)− y(t)

)
in

(19)-(20) can be written as

T̂ (x, t)− y(t) = T̂ (x, t)− Trec(x, t) = ∆T (x, t) + e(x, t), (27)

where e(x, t) was defined in (10).

Assumptions:

(iv) All the parameter spaces are compact

∃ c1, c2, c3 ∈ R∗+ : ‖∆χe(., t)‖22 ≤ c1, ‖∆b(., t)‖22 ≤ c2, ‖∆S(., t)‖22 ≤ c3. (28)

(v) The state estimate and its derivative are bounded

∃ c4, c5 ∈ R∗+ : ‖T̂ (., t)‖22 ≤ c4, ‖∇T̂ (., t)‖22 ≤ c5. (29)

These assumptions are guaranteed since the domain Ω is bounded.

Theorem 4.2
If the plant (1) is identifiable and assumptions (i), (ii), (iii) and (iv) are satisfied, the adaptive
estimator (19)-(20) guarantees

lim
t→∞

‖∆T (., t)‖22 = 0,

lim
t→∞

∆T (., t) = lim
t→∞

∆χe(., t) = lim
t→∞

∆b(., t) = lim
t→∞

∆S(., t) = 0.

Proof 4.2
By replacing the correction term (T̂ (x, t)− y(t)) in (19)-(20) by (27), the derivative of the Lyapunov
candidate function (24) becomes

V̇ (t) = −
∫ 1

0

χe(x) (∇δT (x, t))
2
dx−

∫ 1

0

b(x)[δT (x, t)]2dx−
∫ 1

0

χe(x) (∇∆T (x, t))
2
dx

−
∫ 1

0

(b(x) + ϑ0)[∆T (x, t)]2dx−
∫ 1

0

e(x, t) ∆T (x, t) dx

+

∫ 1

0

∆χe(x, t)∇e(x, t)∇T̂ (x, t)dx−
∫ 1

0

∆b(x, t) T̂ (x, t) e(x, t) dx

+

∫ 1

0

∆S(x, t)e(x, t)dx.

(30)

Using Cauchy-Schwartz inequality and assumptions (i)-(iv)-(v), we obtain

V̇ (t) 6 −ϑ0(1− e0) ‖∆T (., t)‖22 +K ‖e(., t)‖22, (31)

where K = c1 c5 + c2 c3 + c4. Integrating (31) over time gives

ϑ0(1− e0)

∫ ∞
0

‖∆T (., t)‖22dt 6 V (0)− V (∞) +K

∫ ∞
0

‖e(., t)‖22dt <∞ (32)

and thus
lim
t→∞

‖e(., t)‖22 = 0⇒ lim
t→∞

‖∆T (., t)‖22 = 0,

and from Theorem 1 of [27], the identifiability condition and assumption (v), we may conclude that

lim
t→∞

∆T (., t) = 0⇒ lim
t→∞

∆χe(., t) = lim
t→∞

∆b(., t) = lim
t→∞

∆S(., t) = 0.
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5. NUMERICAL RESULTS

In this section, using simulated data, the performance of the proposed adaptive estimator are
evaluated for the estimation of the coefficients which govern the electron temperature profile in
tokamak plasma, mainly the diffusion coefficient and the source term. The electron temperature
inside a tokamak is described by a linear non-homogeneous diffusion-reaction equation [17] as in
(1) with the same boundary and initial conditions.
Throughout this section, the continuous Galerkin cubic b-splines semi-discrete scheme is
considered. The temperature, the diffusion coefficient and source term profiles presented in Figure 1
are proposed for estimation. The reaction coefficient b is considered to be constant. Generally, in
plasma heat transport models the reaction coefficient is a confinement time which models particle
plastic collisions and therefore is assumed to be time and space independent [17]. The choice of
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Figure 1. T , χe and S for the in silico example

χe, b and S is motivated by plasma physics a priori assumptions [17] and references therein. It is
assumed that the diffusion coefficient has a positive increasing function from the tokamak center to
the edge and that the heating source undergoes a spatial Gaussian form. They are generated by the
following system

χe(x, t) = (1 + 9x− 36x2 + 32x3)1(t),

S(x, t) =
106√
2π σ

exp

(
−(x− µ)2

2σ2

)
1(t),

b = 0.1(s), x ∈ [0, 1], t ∈ [0, 25], dx = 0.05, dt = 0.01.

(33)

χe and S are considered constant in time (1(t) = 1∀t ∈ [0, 25]). The time and the spatial
discretization steps (dt and dx) are equal to those generally provided by the experimental data.
Since the cubic b-spline functions are chosen to reconstruct the spatial profile from point-wise
measurement, the relative reconstruction error is of order dx4 ' 10−6 [21]. In the adaptive estimator
(19)-(20), the tuning gains were chosen as follows ϑ0 = 103, ϑ1 = 1850, ϑ2 = 750 and ϑ2 = 850.
The L2-norms of the relative estimation errors of T , χe, b and S in Figures 2 and 3 show that using
the adaptive estimator (19)-(20) and the adopted tuning gains, the parameters (χe, b) and the input
S profiles are reconstructed efficiently. Note that the efficiency of the distributed sensing version of
this estimator was tested using experimental data in [28] and gave good performance.

6. CONCLUSIONS

In this paper we have studied and tested state, input and parameter adaptive estimation for a linear
parabolic PDE representing heat transport in tokamak plasma. First a new sufficient identifiability
condition based on the gradient of the PDE solution was formulated for the cases of distributed and
interior point measurements. If the profile of the available measurements is not flat on an interval
then distributed parameters and input are identifiable. In the second step, an adaptive identifier
was proposed. This estimator can handle both distributed and interior point measurements. The
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(a) L2-norm of the estimation error of χe
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Figure 2. Estimation errors of χe, b for the insilico example

0 5 10 15 20 25

10
−2

10
−1

10
0

10
1

t (s)

L
2
−

n
o
rm

 r
e
la

ti
v
e
 e

s
ti
m

a
ti
o
n
 e

rr
o
r 

o
f 
S

 (
%

)

(a) L2-norm of the estimation error of S
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Figure 3. Estimation errors of S and T for the insilico example

convergence of the state, parameter and input errors was also demonstrated. Simulations using
simulated data prove the performances of the proposed technique. However, the effect of noisy
measurements was not investigated. This will be addressed in our future works where the case of
space and time varying parameters presented in [28], [29] but using interior point measurements
will also be considered.
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