Supplementary Information for: ## **A Fully Transparent Resistive Memory for Harsh Environments** Po-Kang Yang^{1,3}, Chih-Hsiang Ho², Der-Hsien Lien¹, José Ramón Durán Retamal¹, Chen-Fang Kang^{1,3}, Kuan-Ming Chen⁴, Teng-Han Huang³, Yueh-Chung Yu⁴, Chih-I Wu³, and Jr-Hau He^{1*} ¹Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. ²Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA. ³Institute of Photonics and Optoelectronics & Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC. ⁴Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC. ^{*}E-mail: <u>irhau.he@kaust.edu.sa</u> **Figure S1. Resistance distributions of TRRAMs in harsh conditions.** (a) The resistance distribution of ZnO TRRAM under damp heat tests for 100-hours with conditions (85 °C, RH 90%). (b) The resistance distribution of HfO₂ TRRAM under damp heat tests for 100-hours with conditions (85 °C, RH 90%). Resistance distributions in R_H and R_L of (c) ZnO TRRAM and (d) HfO₂ TRRAM under formic acid exposure. Resistance distributions in R_H and R_L of (e) ZnO and (f) HfO₂ TRRAM as a function of proton irradiation fluences. **Figure S2.** (a) Surface morphologies of (I) pristine ZnO and ZnO with (II) 10-min, (III) 60-min, (IV) 300-min, (V) pristine HfO₂ and HfO₂ with (VI) 10-min, (VII) 60-min, (VIII) 300-min formic acid exposure. The insets in (a) show the cross-sectional SEM images. Transmittance spectra of (b) ZnO and (c) HfO₂ thin films during formic acid exposure.