Electronic Supplementary Information

Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivatives

Haitao Wang, Fangyi Chen, Xiaoshi Jia, Huimin Liu, Xia Ran, Mahesh Kumar Ravva, Fu-Quan Bai, Songnan Qu, Min Li, Hong-Xing Zhang, Jean-Luc Brédas

a Key Laboratory of Automobile Materials (MOE) & College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
b Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
c Department of Physics, School of Physics and Electronics, Henan University, Kaifeng, P. R. China
d Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology – KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia.
e Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Figure S1 Comparing the UV-vis absorption spectra of BOXD-6 in tetrahedron at different concentrations.
Figure S2 Excitation spectra of BOXD-6 in THF at different concentrations.
Figure S3 Normalized Photoluminescence emission spectra of BOXD-6 in THF at different concentration.
Figure S4 Fluorescence microscopic images of molecular aggregates of BOXD-6 from the THF solution at a) 1×10^{-4} M and b) 1×10^{-3} M.
Figure S5 The effect of water ratio on excitation spectra of BOXD-6 in the precipitated particles by adding water into thick tetrahydrofuran solution.
Figure S6 Energy-minimum molecular stacking structures of BOXD-1 found via PES scanning.
Figure S7 Calculated intermolecular interaction energy from an SAPT analysis and the Mo62x/6-31G** method.