
1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Fast Kalman-like filtering for large-dimensional

linear and Gaussian state-space models
Boujemaa Ait-El-Fquih and Ibrahim Hoteit

Abstract

This paper considers the filtering problem for linear and Gaussian state-space models with large

dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the

excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable

cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In

this paper, we consider a class ofa posterioridistributions withdiagonalcovariance matrices and propose

fast approximate deterministic-based algorithms based onthe Variational Bayesian (VB) approach. More

specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two

successive filtering estimates; one involves a smoothing estimate and the other involves a prediction

estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that

is, on the one hand, independent of the number of iterations in the limit of very large state dimensions,

and on the other hand, always much smaller than the cost of theEnKF. The cost of the smoothing-based

algorithm depends on the number of iterations that may, in some situations, make this algorithm slower

than the EnKF. The performances of the proposed filters are studied and compared to those of the KF

and EnKF through a numerical example.
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I. INTRODUCTION

A. Background

The estimation problem of a process,x = {x0,x1, · · · ,xN}, from a set of observations,y =

{y0,y1, · · · ,yN}, is of particular interest in many areas, including target tracking [1] [2] [3] [4],

navigation [2] [5] [6], wireless communications [7] [8], and geophysical fluid applications [4] [9] [10]

[11] [12]. Let xn ∈ R
nx andyn ∈ R

ny . This problem is generally formulated in the framework of a

state-space model: 



xn+1 = Fnxn + un,

yn = Hnxn + vn,
(1)

for which Fn and Hn respectively denote the state transition matrix and the measurement matrix at

time n; the input noise,u = {un}n∈N, and the measurement noise,v = {vn}n∈N, are assumed to

be independent, jointly independent and independent of theinitial state,x0; and x0, un and vn are

Gaussian. Letx0 ∼ N (x̂0,P0), un ∼ N (0,Qn) with Qn diagonal and all diagonal entries are non-zero,

vn ∼ N (0,Rn) with Rn positive-definite,x0:n = {xi}ni=0 and y0:n = {yi}ni=0. Let alsop(xn) and

p(xn|y0:m) denote the probability density function (pdf) (with respect to (w.r.t.) the Lebesgue measure)

of xn and the pdf ofxn conditional ony0:m, respectively. A fundamental problem, so-calledfiltering,

consists of estimating, at each timen, the statexn from the measurementsy0:n. The classical solution

is given by thea posteriorimean (AM)

x̂n|n = IEp(xn|y0:n)[xn] =

∫
xnp(xn|y0:n)dxn, (2)

which minimizes thea posteriorimean square error (MSE). Similarly to (2), throughout this paper,

IEp(x)[f(x)] denotes the expected value of the functionf(x) w.r.t. the distributionp(x). With regard to

the computation of (2), the Kalman Filter (KF) has been introduced as an indispensible tool owing to its

optimality and recursive character [13] [14] [15]. Consequently, different algorithms have been proposed

based on the KF. To name just a few, robust filters have been proposed [16]; smoothing algorithms

have been developed [14] [17] [18] [19] [20] [21]; the independence assumptions onu and/orv have

been dropped [1] [14] [22] [23] [24] [25]; the relaxation of some conditional independence assumptions

on x and/ory has been considered [26] [27]; and more recently, a new KF-like algorithm has been

derived in [28] that does not require the specification of theinitial errors and noise covariances. In very

large dimensional state-space models,i.e., when the state dimension,nx, is very large, the KF becomes

impractical because of the prohibitive computational cost, O(n3
x), required for the calculations of the

error covariance matrices.
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In the particular case for which (1) is a time-invariant model, exact computation of the AM estimate

(2) as well as the associated error covariance matrix is possible with only a squared cost (see e.g.,

Chandrasekhar’s algorithm [29] [30]). This, however, is nolonger true when relaxing the time-invariant

property, a situation for which a number of approximate methods have been proposed (see e.g., [10]

[31] [32] [33] [34] [35] and references therein). Up to now, the most popular scheme for filtering high-

dimensional systems is the Ensemble Kalman Filter (EnKF) [9] [10] [36], which could be used in

more general situations including both linear and nonlinear state-space models. The Monte Carlo-based

approximation scheme of (2) and the resulting error covariance matrices have been demonstrated to be

efficient in many different applications, even when implemented with a very limited number of samples

(see§ II-B below).

B. Contribution of the paper

In this paper, we introduce a new fast approach for filtering high-dimensional linear state-space models.

The basic idea is to compute an estimate of the system state based on adiagonalcovariance matrix. This

allows us to significantly reduce the computational cost andstorage requirements, since the computation of

huge full covariance matrices would reduce to the computation of scalar variances. From a probabilistic

point of view, this amounts to remove the conditional dependence between the state variables, which

amounts to approximating thea posterioripdf of the state vector by a product of independent marginal pdfs

of its components. Concretely, approximate marginal pdfs are computed from the joint state pdf following

the variational Bayesian (VB) optimization criteria, in the sense of minimization of the Kullback-Leibler

Divergence (KLD) [37] [38] [39] (see also [40] [41] [42] [43][44] [45] [46] [47] [48] for a more

recent literature about the VB approach for Bayesian inferences). Once the VB-type marginal pdfs are

computed, an estimate of each state component can then be obtained by its expected value w.r.t. the

associated marginal pdf. More precisely, we apply in this work the VB approach to two jointa posteriori

pdfs, as follows:

• Starting from the joint pdf of filtering and smoothingp(xn,xn−1|y0:n), we derive an iterative KF-like

algorithm to propagate for eachkth component of the state vector, an approximation of the filtering

and smoothing estimates,̂xk
n|n and x̂k

n−1|n, respectively. The use ofp(xn,xn−1|y0:n) is inspired

by [39]. However, in [39], the conditional independence is “enforced”, via the VB approach, only

between the state vectorsxn andxn−1; the components of each of these vectors remain dependent

conditionally ony0:n. The complexity of the introduced algorithm is square innx and depends on

the number of iterations, which may make this algorithm moreexpensive than the EnKF in certain
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situations.

• We then rely on the joint pdf of filtering and predictionp(xn,xn+1|y0:n) and derive another iterative

KF-like algorithm to propagate an approximation of the filtering estimate,̂xk
n|n, and the prediction

estimate,x̂k
n+1|n (instead of the smoothing estimate). The complexity of thisiterative algorithm,

which is square innx, is independent of the number of iterations and, furthermore, is always25M

times smaller than that of the EnKF, withM being the ensemble size.

The VB approach has been already used in the context of the KF considering (reasonable) low-dimensional

state-space systems (see for instance [40] [43] [44] [45] [48] and references therein). More precisely, the

work in [40] aimed at estimating the system state,xn, and the measurement noise covariance,Rn. The

VB-like decoupling is used to decouple thea posterioridependence ofxn andRn. [43] addressed the

filtering problem in an augmented state-space system,(x, r,y), for which the covariance of the noise of

the (auxiliary) hidden processr, Qr
n, is unknown. The VB approach was used to insert thea posteriori

independence betweenxn, rn andQr
n. In [44], a VB-like KF robust to outliers has been introduced.

A similar algorithm has then been derived in [45] in the context of backward state-space systems,i.e.,

systems that evolve in decreasing time direction, and for which a robust VB-like fixed-interval Kalman

smoother has been also proposed. More recently, an adaptiveVB-like KF has been introduced in [48]

to update the covariance of the (assumed Gaussian) proposaldistribution of the Markov Chain Monte

Carlo-based Metropolis algorithm. Unlike these works, we focus here on large-dimensional state-space

systems and we adopt the idea of splitting the system state using the VB approach, which, in the best

of our knowledge, is original. This paper is organized as follows. Section II briefly reviews the KF and

EnKF algorithms in the classical Bayesian framework. The VBapproach of the filtering problem is then

described in Section III, highlighting the fact that the application of the VB criteria on the sole filtering

pdf is generally not enough, especially when the state transition matrix, Fn, is not diagonal. We thus

apply in Section IV the VB criteria onp(xn,xn−1|y0:n) andp(xn,xn+1|y0:n), to derive two approximate

KF-like algorithms with squared complexity. Numerical simulations demonstrating the relevance of the

proposed algorithms, and comparing them with the KF and EnKFare presented in Section V. The paper

concludes with a general discussion, in Section VI.

II. BAYESIAN FILTERING

Consider a general state-space model,



xn+1 = fn(xn,un),

yn = hn(xn,vn),
(3)
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for which fn andhn are not necessarily linear, andun andvn are not necessarily Gaussian. In such a

model, one can use the independence properties ofu, v andx0, stated in Section I-A above, to obtain,

p(xn|x0:n−1) = p(xn|xn−1), (4)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n), (5)

p(yi|x0:n) = p(yi|xi), i = 0, 1, · · · , n. (6)

In other words, the unknown state process,x, is a Markov chain (eq. (4)), the observed process,y, is

conditionally independent ofx (eq. (5)), and each observation,yi, depends onx through the state at the

same time instant,xi (eq. (6)). These properties are indeed those of a Hidden Markov Chain (HMC)

of the transition pdfp(xn|xn−1) and the likelihoodp(yn|xn); these key tools enable recursive efficient

computation of the filtering pdf. More precisely, each recursion (n− 1) → n consists of two steps:

• The Markovian step(or prediction), in which the transition pdf of the Markov chain,x, is used to

compute the prediction pdf:

p(xn|y0:n−1) =

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1. (7)

• The Bayesian step(or filtering), in which the likelihood is used to update the prediction pdf via the

Bayes’ rule:

p(xn|y0:n) =
p(yn|xn)p(xn|y0:n−1)∫
p(yn|xn)p(xn|y0:n−1)dxn

. (8)

Oncep(xn|y0:n) is computed, the AM estimatêxn|n can thus be obtained from (2). In practice, however,

the explicit forms ofp(xn|y0:n) and x̂n|n are often intractable as this requires analytical computation

of integrals in (7), (8) and (2). Indeed, analytical computation of such integrals is often impossible due

to the possible nonlinear character offn and hn, as well as the fact thatun and/orvn may be non-

Gaussian. Accordingly, a number of deterministic and MonteCarlo-based methods have been derived to

approximate (2); see for instance [3] [14] [49] [50] [51] andreferences therein. Here, we are interested in

linear and Gaussian state-space models (1),i.e., fn andhn in (3) are linear, andun andvn are Gaussian.

In this case, exact computation of the AM estimate (2) is possible by the KF algorithm [13] [14] [15],

which we briefly review below.

A. Kalman filter

In the state-space model (1), one can easily check that

p(xn|xn−1) = Nxn
(Fn−1xn−1,Qn−1), (9)

p(yn|xn) = Nyn
(Hnxn,Rn), (10)
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where, except when stated otherwise,Nu(m,C) denotes a Gaussian pdf with argumentu and parameters

(m,C). Accordingly, the filtering and prediction pdfs are Gaussian and are thus described by their first

two moments. Propagatingp(xn|y0:m), m = n − 1, n, amounts to propagating their means,x̂n|m, and

covariance matrices,Pn|m. More precisely, (7), which computesp(xn|y0:n−1) from p(xn−1|y0:n−1) using

p(xn|xn−1) (which is parameterized byFn−1 andQn−1), reduces to the prediction step of the KF relating

(x̂n|n−1,Pn|n−1) with (x̂n−1|n−1,Pn−1|n−1) throughFn−1 andQn−1:

x̂n|n−1 = Fn−1x̂n−1|n−1, (11)

Pn|n−1 = Fn−1Pn−1|n−1F
T
n−1 +Qn−1. (12)

Moreover, (8), which computesp(xn|y0:n) from p(xn|y0:n−1) usingp(yn|xn) (as parameterized byHn

andRn), reduces to the filtering step of the KF relating(x̂n|n,Pn|n) to (x̂n|n−1,Pn|n−1) via Hn and

Rn:

Kn = Pn|n−1H
T
n

[
HnPn|n−1H

T
n +Rn

]−1
, (13)

x̂n|n = x̂n|n−1 +Kn

(
yn −Hnx̂n|n−1

)
, (14)

Pn|n = Pn|n−1 −KnHnPn|n−1. (15)

The number of floating operations (flops) required to implement the KF equations at each recursion,

(n− 1) → n, is approximately,

CKF = 3n3
x +

(
3ny +

1

2

)
n2
x + 3

(
n2
y + ny

)
nx +

2

3
n3
y +

3

2
n2
y +

5

6
ny. (16)

When the state dimension,nx, is very large, direct implementation of the KF is not possible because

of the cubic term3n3
x, which originates from the computation ofPn|n−1 in (12). We briefly review below

the EnKF algorithm, one of the most popular alternatives used to circumvent this problem.

B. Ensemble Kalman filter

The basic idea behind the EnKF is to use Monte Carlo Gaussian-based approximations of the prediction

and filtering distributions. Starting from an ensemble of independent samples,{xf,(m)
n−1 }

M

m=1
, drawn from

p(xn−1|y0:n−1), the prediction step of the EnKF uses (7) to compute an ensemble of independent samples,

{xp,(m)
n }

M

m=1, approximatingp(xn|y0:n−1) as

xp,(m)
n = Fn−1x

f,(m)
n−1 + u

(m)
n−1, with u

(m)
n−1 ∼ N (0,Qn−1). (17)
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The AM estimate (11) is then approximated by the empirical mean x̃n|n−1 = 1
M

∑M
m=1 x

p,(m)
n . An

approximation of the covariance matrix (12) is also given by

P̃n|n−1 = AnA
T
n , (18)

with

An =
1√

M − 1

[
x̃n|n−1 − xp,(1)

n , x̃n|n−1 − xp,(2)
n , · · · , x̃n|n−1 − xp,(M)

n

]
.

In the filtering step, an approximation{xf,(m)
n }

M

m=1 of p(xn|y0:n) is computed, based on (8), by

correcting each sample,xp,(m)
n , using the KF update step:

xf,(m)
n = xp,(m)

n + K̃n(y
(m)
n −Hnx

p,(m)
n ), (19)

wherey(m)
n ∼ N (yn,Rn) is a stochastic perturbation of the observation, andK̃n = AnG

T
n [GnG

T
n +

Rn]
−1 with Gn = HnAn, is the Kalman gain. An approximation of the filtering estimate of the state

(14) is computed by the empirical mean and that ofPn|n as in (18). The number of flops required by

the EnKF to compute the prediction and filtering estimates ateach timen is approximately,

CEnKF = 2Mn2
x +

(
2n2

y + (8M − 1)ny + 6M + 1
)
nx + n3

y +

(
2M +

5

2

)
n2
y +

(
M +

3

2

)
ny. (20)

The EnKF was originally introduced in [9] for large-scale nonlinear state-space models and was

successfully used in many atmospheric / oceanic data assimilation applications for whichnx is in the

order of millions. The first encouraging results have openedthe way for a large number of works based

on this filter, including derivation of other EnKF variants [32] [52] [53] [54], relaxation of the Gaussian

assumption on filtering and prediction pdfs by assuming Gaussian mixture representations [55] [56] [57]

[58] [59], or development of smoothing algorithms [60] [61].

III. VARIATIONAL BAYESIAN FILTERING

A VB-like approximation of the filtering pdf of interest by a separable product ofa posteriorimarginal

pdfs can be obtained by minimizing the KLD,i.e.,

p(xn|y0:n) ≈
nx∏

k=1

q(xkn|y0:n), (21)

with
nx∏

k=1

q(xkn|y0:n) = argmin∏
k
p̃(xk

n|y0:n)
KLD

(
nx∏

k=1

p̃(xkn|y0:n)||p(xn|y0:n)

)
,

= argmin∏
k
p̃(xk

n|y0:n)

∫ nx∏

k=1

p̃(xkn|y0:n) ln

(∏nx

k=1 p̃(x
k
n|y0:n)

p(xn|y0:n)

)
dxn; (22)

DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

uk denotes thekth component of a vectoru, and uk−

its complementary part inu. Each marginal

q(xkn|y0:n) is given by [39] [42]:

q(xkn|y0:n) ∝ exp
(
IEq(xk−

n |y0:n)
[ln(p(xn,y0:n))]

)
. (23)

According to (23), although the approximated marginal pdf of xkn, q(xkn|y0:n), is independent of those

of the other componentsxk−

n , q(xk−

n |y0:n), it nevertheless remains dependent of the expected value of

ln(p(xn,y0:n)) w.r.t. q(xk−

n |y0:n). In the particular case of Gaussian pdfs, one can easily check that for

eachk, q(xkn|y0:n) remains dependent of the first and second moments ofq(xk−

n |y0:n).

Onceq(xkn|y0:n) is computed, an estimate ofxkn can then be obtained by the AM estimateIEq(xk
n|y0:n)[x

k
n].

What is left now is to perform arecursivecomputation of these estimates based on (23) and the dynamical

structure of model (1). Indeed, using the factorization

p(xn,y0:n) ∝ p(yn|xn)p(xn|y0:n−1), (24)

the computation of the right-hand side (r.h.s) of (23) requires that of the prediction pdf. For that purpose,

two cases should be distinguished depending on whether or not Fn is diagonal.

A. A diagonal state transition matrix

Considering model (1) with a diagonal state transition matrix, we have

p(xkn|x0:n−1) = p(xkn|xk0:n−1) = p(xkn|xkn−1). (25)

In other words, each marginal process,xk = {xkn}n∈IN, forms a Markov chain regardless of those of

the other components,xl, l 6= k. This property is important in practice since it leads to a separable

approximation of the prediction pdf as

p(xn|y0:n−1) ≈
nx∏

k=1

q(xkn|y0:n−1), (26)

with

q(xkn|y0:n−1) =

∫
p(xkn|xkn−1)q(x

k
n−1|y0:n−1)dx

k
n−1, (27)

which, in turn, yields a separable approximation of the filtering pdf (21) by inserting (26) first in

(24) and next in (23). Now, using the linearity and Gaussian structure of (1), an approximate KF-like

algorithm propagating the state estimates with associateddiagonal covariance matrices can be derived.

This algorithm has been recently introduced in [42].
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B. An off-diagonal state transition matrix

In the general case in whichFn is not diagonal, the Markov chain property (25) is no longer avalid

and separable approximation of the prediction pdf, (26)-(27), is no longer possible. More precisely, one

rather has

p(xn|y0:n−1) ≈
∫ nx∏

k=1

p(xkn|xn−1)q(x
k
n−1|y0:n−1)dxn−1. (28)

In practice, starting from a Gaussian pdf,
∏nx

k=1 q(x
k
n−1|y0:n−1), with a diagonal covariance matrix, (28)

provides a Gaussian pdf but with an off-diagonal covariancematrix, and thereby the initial problem of

the huge computational burden and storage capacity persists. Accordingly, (21) should be replaced by

an alternative VB approximation involving diagonal matrices in both the Markovian and Bayesian steps.

Two schemes are proposed below.

• The first approximation is applied on the joint pdf of smoothing and filtering as

p(xn−1,xn|y0:n) ≈ q(xn−1|y0:n)q(xn|y0:n), (29)

≈
nx∏

k=1

q(xkn−1|y0:n)q(x
k
n|y0:n). (30)

By doing so, we impose independence between the filtering andsmoothing pdfs of the whole state

vector (cf. (29)) and between their components (cf. (30)). Approximation (29) has already been used

in [39] in the context of particle filtering. We exploit it here for reducing the computational burden

of the KF by splitting the state vector as in (30). This leads to an approximate KF-like algorithm

propagating the filtering and smoothing estimates with diagonal covariance matrices (cf.§ IV-A).

• The second approximation relies on the joint pdf of prediction and filtering:

p(xn−1,xn|y0:n−1) ≈
nx∏

k=1

q(xkn−1, x
k
n|y0:n−1). (31)

Unlike (29), the conditional dependence ofxn−1 and xn is conserved in (31), while imposing

independence between their components only. Furthermore,one can see that (31) follows from (21)

combined with the approximationp(xkn|xn−1) ≈ q(xkn|xkn−1,y0:n−1). Accordingly, the prediction

approximation (28) reduces to (26)-(27) by replacingp(xkn|xkn−1) with q(xkn|xkn−1,y0:n−1). This

leads to another approximate KF-like algorithm involving the prediction and filtering estimates with

diagonal covariance matrices (cf.§ IV-B).

IV. VB SMOOTHING- AND PREDICTION-BASED KF

This section presents the VB approach based on the approximations (30) and (31). Before we proceed,

we define the notations, for a matrixM, used hereafter.
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• M i,j denotes the(i, j)th entry.

• M(i, :) denotes theith row andM(:, j) the jth column.

• M(i, j−) (resp.M(i−, j)) denotes the complementary part ofM i,j in M(i, :) (resp. inM(:, j)).

• M(:, j−) (resp.M(i−, :)) denotes the complementary part ofM(:, j) (resp. ofM(i, :)) in M.

A. VB Smoothing-Based KF (VBSKF)

Similarly to (21)-(23), the VB-marginal pdfs, solutions of(30), are given by

q(xkn−1|y0:n) ∝ exp
(
IE

q(xk−
n−1,xn|y0:n)

[ln(p(xn−1,xn,y0:n))]
)
, (32)

q(xkn|y0:n) ∝ exp
(
IEq(xn−1,xk−

n |y0:n)
[ln(p(xn−1,xn,y0:n))]

)
. (33)

Solutions (32) and (33) share the joint pdfp(xn−1,xn,y0:n), which, based on the HMC properties (4)-(6),

can be factorized as

p(xn−1,xn,y0:n) ∝ p(yn|xn)p(xn|xn−1)p(xn−1|y0:n−1). (34)

1) Explicit derivation: Replacing in (34)p(xn−1|y0:n−1) with its VB approximation, (32) and (33)

respectively become1,

q(xkn−1|y0:n) ∝ exp
(
IE

q(xk−
n−1,xn|y0:n)

[ln(p(xn|xn−1))]
)
q(xkn−1|y0:n−1), (35)

q(xkn|y0:n) ∝ exp
(
IEq(xn−1|y0:n)

[
ln(p(xkn|xn−1))

]
+ IEq(xk−

n |y0:n)
[ln(p(yn|xn))]

)
. (36)

Let xk
l|n andvk

l|n denote respectively the mean and variance ofq(xkl |y0:n) for l, n ∈ IN; xl|n andPl|n =

diag(vl|n) will thus stand for the mean and diagonal covariance matrix of
∏nx

k=1 q(x
k
l |y0:n). According

to the Gaussian property with linear mean inxn of the HMC lawsp(yn|xn) andp(xn|xn−1), it appears

that q(xkn−1|y0:n) andq(xkn|y0:n) are Gaussian with moments propagated as (cf. Appendix):

vkn−1|n =

[(
vkn−1|n−1

)−1
+ FT

n−1(:, k)Q
−1
n−1Fn−1(:, k)

]−1

, (37)

xkn−1|n = vkn−1|n

[(
vkn−1|n−1

)−1
xkn−1|n−1 + FT

n−1(:, k)Q
−1
n−1(xn|n − Fn−1(:, k

−)xk−

n−1|n)

]
, (38)

vkn|n =

[(
Q

k,k
n−1

)−1
+HT

n (:, k)R
−1
n Hn(:, k)

]−1

, (39)

xkn|n = vkn|n

[(
Q

k,k
n−1

)−1
Fn−1(k, :)xn−1|n +HT

n (:, k)R
−1
n (yn −Hn(:, k

−)xk−

n|n)

]
. (40)

A particular case of (37)-(40) has been introduced in [38, chapter 7,§ 7.4]2 in which the system state

1Without abuse of language, the r.h.s. of (35) (resp. (36)) israther proportional to an approximation of (32) (resp. (33)).

2A typo has been noticed in eqs. (7.37) and (7.38) in [38, chapter 7, § 7.4]. Indeed,A′R−1

θ A andR−1

θ Aθ̂t−1 should be

replaced byR−1

θ andAθ̂t−1, respectively.
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is not split, i.e., only the approximation (29) is considered. In such a case, the termsFn−1(:, k
−)xk−

n−1|n

in (38) andHn(:, k
−)xk−

n|n in (40) vanish, andFn−1(:, k), Q
k,k
n−1 andHn(:, k) are replaced withFn−1,

Qn−1 andHn, respectively.

Remark 1:Parameters(xk
n−1|n, v

k
n−1|n) in (37)-(38) and(xk

n|n, v
k
n|n) in (39)-(40) look like those of

a Gaussiana posterioripdf computed within a classical fully Bayesian framework. Indeed, accord-

ing to Prop. 1 (cf. Appendix), equations (37)-(38) come downto computing the Gaussian posterior,

q(xkn−1|y0:n) = q(xkn−1|xk−

n−1 = xk−

n−1|n,y0:n), from the Gaussian prior,q(xkn−1|y0:n−1) = q(xkn−1|xk−

n−1 =

xk−

n−1|n,y0:n−1), using the likelihood3

l(yn|xkn−1,x
k−

n−1 = xk−

n−1|n,y0:n−1)
(35)∝ exp

(
IE

q(xk−
n−1,xn|y0:n)

[ln(p(xn|xn−1))]
)
, (41)

= Nxn|n
(Fn−1(:, k)x

k
n−1 +Fn−1(:, k

−)xk−

n−1|n,Qn−1). (42)

Similarly, (39)-(40) point out to the relationship betweenthe Gaussian prior,q(xkn|xk−

n = xk−

n|n,y0:n−1) =

Nxk
n
(Fn−1(k, :)xn−1|n, Q

k,k
n−1), and the Gaussian posterior,q(xkn|y0:n) = q(xkn|xk−

n = xk−

n|n,y0:n), via the

likelihood,

p(yn|xkn,xk−

n = xk−

n|n) = Nyn
(Hn(:, k)x

k
n +Hn(:, k

−)xk−

n|n,Rn). (43)

Making the connection with (36), one obtains

q(xkn|xk−

n = xk−

n|n,y0:n−1) ∝ exp
(
IEq(xn−1|y0:n)

[
ln(p(xkn|xn−1))

])
,

p(yn|xkn,xk−

n = xk−

n|n) ∝ exp
(
IEq(xk−

n |y0:n)
[ln(p(yn|xn))]

)
.

To summarize, the VB approach in a Gaussian framework can be seen as a fully Bayesian approach by

assigning the marginal variables theira posterioriexpectation.

2) Practical implementation:Let us turn back to eqs. (37)-(40). A problem may arise in (38)and (40)

from the fact thatxk
n−1|n in (38) requires knowledge ofxk−

n−1|n and xn|n, and xk
n|n in (40) requires

knowledge ofxk−

n|n and xn−1|n. This makes it impossible to evaluatexk
n−1|n and xk

n|n exactly and

approximations should therefore be performed. A classicalidea would be to proceed with iterations

by evaluating one variable while the others are kept fixed [38] (see e.g., [62] in which the convergence of

marginal VB-based solutions has been proven). At each iteration i, this consists of evaluatingxk
n−1|n with

(38) by using{xj

n|n}
nx

j=k
and{xj

n−1|n}
nx

j=k+1
computed at iterationi−1, and{xj

n|n}
k−1

j=1
and{xj

n−1|n}
k−1

j=1

obtained at iterationi; the update ofxk
n|n in (40) is performed similarly. Furthermore, it should be

3Without abuse of notation,Nxn|n
(., .) in (42) does not represent a Gaussian pdf, but the value of this pdf at pointxn|n; this

remark holds forNyn(., .) in (43) andN
x
k−

n+1|n

(., .) in (52) as well.

DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

noted that for each componentk and iterationi, the updates ofξxn = Fn−1(:, k
−)xk−

n−1|n in (38) and

ξ
y
n = Hn(:, k

−)xk−

n|n in (40) are computationally demanding since they requirenx(nx−1) andny(nx−1)

flops operations, respectively. Based on the linear combination property4 of ξxn and ξ
y
n , one can reduce

this cost by updating only the term associated with the(k−1)th component. More specifically, in (38) and

(40), onlyFn−1(:, k−1)xk−1
n−1|n andHn(:, k−1)xk−1

n|n are updated, which reduces the initial computational

cost by a factor of(nx − 1). This iterative KF-like scheme, which involves the smoothing estimate of

the system state with diagonal covariance, is summarized inAlgorithm 1.

Algorithm 1 VB Smoothing-based KF (VBSKF)

Let H̃n = HT
nR

−1
n , dh,n = diag(H̃nHn), F̃n−1 = FT

n−1Q
−1
n−1, df,n−1 = diag(F̃n−1Fn−1).

• Variances. For k = 1, 2, · · · , nx,

vkn−1|n =

[(
vkn−1|n−1

)−1
+ dkf,n−1

]−1

,

vkn|n =

[(
Q

k,k
n−1

)−1
+ dkh,n

]−1

.

• Means. We proceed with iterations by initializing asxn−1|n = xn−1|n−1, xn|n = Fn−1xn−1|n−1.

Let zxn = Fn−1xn−1|n, zyn = Hnxn|n, cn−1|n = Pn−1|nP
−1
n−1|n−1xn−1|n−1. For iter = 1, 2, · · · , I ≫

1; for k = 1, 2, · · · , nx,

• Computation of means.

ξxn = zxn − Fn−1(:, k)x
k
n−1|n,

xkn−1|n = ckn−1|n + vkn−1|nF̃n−1(k, :)(xn|n − ξxn),

ξyn = zyn −Hn(:, k)x
k
n|n,

xkn|n = vkn|n

[(
Q

k,k
n−1

)−1
Fn−1(k, :)xn−1|n + H̃n(k, :)(yn − ξyn)

]
.

• Update ofzxn andzyn.

zxn = ξxn + Fn−1(:, k)x
k
n−1|n,

zyn = ξyn +Hn(:, k)x
k
n|n.

Note that instead of presetting a number of iterations,I, an alternative stopping criteria based, for

4Note thatξxn =
∑nx

j=1

j 6=k

Fn−1(:, j)x
j

n−1|n andξyn =
∑nx

j=1

j 6=k

Hn(:, j)x
j

n|n.
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instance, on the relative squared error norm,
||x(iter)

n|n −x
(iter−1)

n|n ||2

||x(iter−1)

n|n ||2
, or on KLD, could be used. The number

of flops required at each time instant is approximately

CV BSKF = (9I + 5)n2
x +

(
2n2

y + (7I + 4)ny + 2I + 4
)
nx +

2

3
n3
y +

3

2
n2
y − ny

6
. (44)

B. VB Prediction-Based KF (VBPKF)

As above, the VB-marginal pdfs associated with the approximation (31) at timen are given by

q(xkn, x
k
n+1|y0:n) ∝ exp

(
IE

q(xk−
n ,xk−

n+1|y0:n)
[ln(p(xn,xn+1,y0:n))]

)
, (45)

with

p(xn,xn+1,y0:n) ∝ p(xn+1|xn)p(yn|xn)p(xn|y0:n−1). (46)

1) Explicit derivation: Replacingp(xn|y0:n−1) in (46) by its VB-approximation, (45) can be approx-

imated by,

q(xkn, x
k
n+1|y0:n)∝exp

(
IE

q(xk−
n ,xk−

n+1|y0:n)
[ln(p(xn+1|xn))]+IEq(xk−

n |y0:n)
[ln(p(yn|xn))]

)
q(xkn|y0:n−1).

(47)

Based on the Gaussian property with linear mean inxn of p(xn+1|xn) and p(yn|xn), q(xkn|y0:n) and

q(xkn+1|y0:n) are Gaussian whose moments satisfy (cf. Appendix):

vkn|n =

[
HT

n (:, k)R
−1
n Hn(:, k) +

1

vk
n|n−1

+FT
n (k

−, k)Q−1
n (k−, k−)Fn(k

−, k)

]−1

, (48)

xkn|n =

[
HT

n (:, k)R
−1
n Hn(:, k) +

1

vk
n|n−1

]−1[
HT

n (:, k)R
−1
n (yn−Hn(:, k

−)xk−

n|n)+
xk
n|n−1

vk
n|n−1

]
, (49)

xkn+1|n = Fn(k, :)xn|n, (50)

vkn+1|n = (F k,k
n )2vkn|n +Qk,k

n . (51)

Equations (48)-(51) can be seen as a generalization of an algorithm recently introduced in [42] in the

particular case ofFn = ǫ× Inx
, Qn = σ2

u × Inx
andRn = σ2

v × Iny
, and without the third term in the

r.h.s. of (48).

Remark 2:Similarly to Remark 1 above, (48)-(51) can be also obtained from a classical Bayesian

framework by keeping the marginal variables equal to theira posterioriexpectation. Indeed, (48) and

(49) (which coincides with (63)), translate the connectionof the Gaussian prior,q(xkn|y0:n−1), with the

Gaussian posterior,q(xkn|y0:n). This can be shown using Prop. 2 (cf. Appendix) in the following Bayes’
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rule:

q(xkn|y0:n) = q(xkn|xk−

n+1 = xk−

n+1|n,x
k−

n = xk−

n|n,y0:n),

∝ l(xk−

n+1|n,yn|xkn,xk−

n = xk−

n|n)q(x
k
n|xk−

n = xk−

n|n,y0:n−1),

= p(yn|xkn,xk−

n = xk−

n|n)︸ ︷︷ ︸
(43)

l(xk−

n+1|n|xkn,xk−

n = xk−

n|n)︸ ︷︷ ︸
N

x
k−

n+1|n

(Fn(k−,k)xk
n+Fn(k−,k−)xk−

n|n,Qn(k−,k−))

q(xkn|y0:n−1). (52)

Furthermore, one can easily show that (50)-(51) reflect the transition from the Gaussian pdf,q(xkn|y0:n) =

q(xkn|xk−

n = xk−

n|n,y0:n), to the Gaussian pdf,q(xkn+1|y0:n) = q(xkn+1|xk−

n = xk−

n|n,y0:n), by the following

classical marginalization formula (Markovian step):

q(xkn+1|y0:n) =

∫
p(xkn+1|xkn,xk−

n = xk−

n|n)︸ ︷︷ ︸
N

xk
n+1

(F k,k
n xk

n+Fn(k,k−)xk−

n|n,Q
k,k
n )

q(xkn|y0:n)dx
k
n.

2) Practical implementation:Unlike the VBSKF algorithm above, only (49) needs to be iterated to

provide an approximation ofxk
n|n, since it involvesxk−

n|n. Nonetheless,xk
n+1|n in (50) is exactly known

oncexn|n is available. Furthermore, as mentioned in§ IV-A2 above, the computation ofxk
n|n at iteration

i by (49) requires updating onlyHn(:, k − 1)xk−1
n|n rather than all the terms ofξyn =

∑nx

j=1
j 6=k

Hn(:, j)x
j

n|n.

We thus obtain another iterative KF-like scheme that involves the prediction estimate of the system state

with a diagonal covariance (cf. Algorithm 2).

The number of flops required at each time instant is approximately

CV BPKF = 5n2
x +

(
2n2

y + (7I + 4)ny + I + 8
)
nx +

2

3
n3
y +

3

2
n2
y − ny

6
. (53)

C. Comments and remarks

The introduced algorithms provide online deterministic approximations of the filtering estimate (2) of

the system state with diagonal covariance matrices. VBSKF involves the smoothing estimate between

two successive filtering estimates and VBPKF involves the prediction estimate. The loss of correlations

between the components of the system state, is inherently partially compensated by their functional

dependence through the equations of the means. Furthermore, splitting the system state,xn, to nx

components by making them conditionally independent can beeasily extended to dividing it intonx

ns

∈ N

partsskn of sizens, by introducing conditional independence only between these parts. In such a case, the

diagonal condition underQn can be relaxed by assuming thatQn is block diagonal only withns × ns

blocks. Below are some comparative remarks about the proposed algorithms:
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Algorithm 2 VB Prediction-based KF (VBPKF)

Let H̃n = HT
nR

−1
n , dh,n = diag(H̃nHn), df,n = diag(FT

nQ
−1
n Fn).

• Prediction. For k = 1, 2, · · · , nx,

xkn|n−1 = Fn−1(k, :)xn−1|n−1,

vkn|n−1 = (F k,k
n−1)

2vkn−1|n−1 +Q
k,k
n−1.

• Filtering.

• Variances.For k = 1, 2, · · · , nx,

ηkn = dkh,n +
(
vkn|n−1

)−1
,

vkn|n =
[
ηkn + dkf,n − (F k,k

n )2(Qk,k
n )−1

]−1
.

• Means.We proceed with iterations starting fromxn|n = xn|n−1. Let zyn = Hnxn|n and

cn|n−1 = (Diag(ηn))
−1

P
−1
n|n−1xn|n−1. For iter = 1, 2, · · · , I; k = 1, 2, · · · , nx,

ξyn = zyn −Hn(:, k)x
k
n|n,

xkn|n = ckn|n−1 +
(
ηkn

)−1
H̃n(k, :)(yn − ξyn),

zyn = ξyn +Hn(:, k)x
k
n|n.

• In VBSKF the effect of enforced independence (29) between the smoothing pdfp(xn−1|y0:n) and

the filtering pdfp(xn|y0:n) arises from the lack of connection between their covariancematrices

calculated by (37) and (39), respectively. This independence is however compensated by the link

between their means through (38) and (40). Furthermore, (37) and (39) emphasize the fact that

the covariances depend only on the model parameters,Fn, Qn, Hn andRn. The covariances are

thus unchanged,∀n ∈ N, for fixed model parameters; such a property has been suggested by [38,

chapter 7,§ 7.4] as an inconsistency of approximation (29) with the KF. However, the approximation

(31) that leads to VBPKF conserves dependence between the prediction pdfp(xn|y0:n−1) and the

filtering pdf and is thus more consistent with the KF. This canbe seen from (48) and (51) in which

the covariance changes depending on whether or not the modelparameters are time-dependent.

• The computational costs of the VBSKF, VBPKF and EnKF are of the same order,O(n2
x), and are

much smaller than that of the KF,O(n3
x). On the other hand, for very large state dimension problems
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(compared tony, M andI), one has

CEnKF

(20)≈ 2Mn2
x,

CV BSKF

(44)
≈ (9I + 5)n2

x,

CV BPKF

(53)
≈ 5n2

x.

This means that despite its iterative nature, the VBPKF has almost a fixed computational cost, which

is lower than those of the VBSKF and EnKF. One can see that the VBPKF cost is approximately

2
5M less than that of the EnKF. However, the VBSKF, whose cost depends onI, may be more

expensive than that of the EnKF whenI approximately exceeds2M−5
9 .

The gain in computational efficiency of using the VB approachgenerally comes at the cost of loss of

estimation accuracy (see e.g. [63] [37]). When the partitions (skn or xkn) of the statexn are weakly

correlateda posteriori, one can intuitively expect a good accuracy of the VB-like approximation (and

nearly perfect if these partitions are almost independent5). In contrast, when these partitions become

strongly correlated, “the assumption” of conditional independence becomes too strong and the approxi-

mation accuracy is expected to degrade. Based on this, the number of partitions,ns, should be chosen

judiciously to ensure as good as possible a tradeoff betweenaccuracy and computational efficiency. The

largerns is, the more important computational efficiency is, but in the same time, the more dependence

between the state partitions will be lost which leads to a poorer approximation. Thereby, the guideline

principle should be to choosens large enough to only achieve an acceptable computational complexity.

D. Extension to the case of an off-diagonal covarianceQn

The derivation of our algorithms relies on the assumption that the covariance,Qn, of the input noise is

diagonal, for alln, which is common in large scales applications. In our Gaussian case, this ensures that

at any timen, conditionally on the previous state,xn−1, the components of the current state,{xkn}
nx

k=1, are

independent (see (58) below). However, unless the state transition matrix,Fn, is diagonal, this assumption

does not “absolutely” break the link between components,{xkn}
nx

k=1, sincep(xn) 6= ∏nx

k=1 p(x
k
n) still

hold. The assumption thatQn is diagonal has been considered, for instance, in an application of dynamic

tomography [42] for which pixels of the image at any time are assumed independent conditionally on

the previous image.

5This can happen in the case for which the state transition matrix Fn and the measurement matrixHn are nearly orthogonal,

and the input noise transition covarianceQn and the measurement noise covarianceRn are diagonal.
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In the more general case of an off-diagonal covariance,Qn, the conditional independence property

(58) is no longer valid. One way to tackle this issue6 is to approximate, using the VB approach, the

joint transition pdf,p(xn|xn−1), with a separable product of marginal pdfs,
∏nx

k=1 q(x
k
n|xn−1). Indeed,

similarly to (23) one obtains,

q(xkn|xn−1)
(9)∝ exp

(
Λk,k
n−1(x

k
n)

2−2xkn

[
Λn−1(k, :)Fn−1xn−1−Λn−1(k, k

−)IEq(xk−
n |xn−1)

[xk−

n ]
])
, (54)

with Λn−1 = Q−1
n−1 (Qn is assumed to be positive-definite,∀n). ApproximatingIEq(xk−

n |xn−1)
[xk−

n ] with

IEp(xk−
n |xn−1)

[xk−

n ] = Fn−1(k
−, :)xn−1, then using Prop. 3 (cf. Appendix) one obtains,

q(xkn|xn−1) ≈ Nxk
n

(
Fn−1(k, :)xn−1,

(
Λk,k
n−1

)−1
)
, k = 1, 2, · · · , nx. (55)

In (55), the variances
(
Λk,k
n−1

)−1
, which are not equal toQk,k

n−1, are computed from all entries ofQn−1.

This is important since it emphasizes the fact that althoughthe covariance of approximated transition

pdf,
∏nx

k=1 q(x
k
n|xn−1), is diagonal, it neverthless involves both diagonal and off-diagonal entries of the

original covariance,Qn−1.

Now, using (55), the VBSKF and VBPKF remain valid if one replacesQk,k
n−1 by

(
Λk,k
n−1

)−1
. Neverth-

less, this requires invertingQn−1, and therefore the computational costs of these algorithmsare no longer

of orderO(n2
x), as highlighted above, butO(n3

x), just like the KF and EnKF. One situation in which

the cubic costs of the proposed algorithms could be reduced is the particular case of a time-invariant

covariance,Q. Indeed, in such a situation,Q needs to be inverted at the initial time only to compute

{Λk,k}nx

k=1; these are then used at any timen ≥ 0. Accordingly, at any timen ≥ 1, the costs of VBSKF

and VBPKF become almost equal to the quadratic costsCV BSKF andCV BPKF , respectively.

V. NUMERICAL RESULTS

We present results from numerical experiments that we performed to evaluate the performance of the

proposed filters. We consider a time-invariant, linear and Gaussian state-space system for which:

• nx = 1000, ny = 100, x̂0 = 0nx×1 andP0 = Inx
.

6One can also proceed, similarly to [14, chapter 11], with a state-space transformation by building a new model for which the

input noise is with a diagonal covariance. However, this leads to a cubic cost,O(n3

x), since it requires, among other matrices

operations, the use of Cholesky decomposition to factorizeQn.
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• The state transition matrix,F, which is assumed to be a Toeplitz and circulant matrix, is defined

from its first row and column as (cf. Figure 1):

F(1, :) = [fT , fT , fT , fT ,01×600],

F(:, 1) = [0.1,01×697, f̃
T , f̃T , f̃T , 0.02, 0.05]T ,

wheref = [0.1, 0.05, 0.02,01×97 ]
T and f̃ = [0.02, 0.05, 0.1,01×97 ]

T .

• The input noise covariance matrix,Q, is assumed to be diagonal equalInx
. The off-diagonal case

will be considered later.

• Each row,H(k, :), k = 1, 2, · · · , ny, of the measurement matrix is defined as (cf. Figure 2),

H(k, :)xn =

9∑

j=0

(1− j

10
)xk+10j

n − 0.1

k+900∑

ℓ=k+896

xℓn.

• The measurement noise covariance matrix,R, is assumed to be diagonal with,R = σ2 × IIny
.

Instead of testing the sensibility using the variance,σ2, we will use the Signal-to-Noise Rate (SNR),

which can be defined as,

SNR = 10 log10

(∑N−1
n=0 ||Hxn||2∑N−1
n=0 ||vn||2

)
,

where||vn||2 = nyσ
2 (on average).

(a): The negative of the state transition matrix  F
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Figure 1:The negative of the state transition matrixF. The values of non-zero (main and secondary) diagonal

bands are identical. Sub-Fig. (b) shows the (main) band associated to−F(1:13,1:25).

DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 19

(a): The negative of the measurement matrix  H
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Figure 2:The negative of the measurement matrixH. Sub-Fig. (b) and (c) plot the (non-zero) parts−H(1:20,1:100)

and−H(1:20,895:925), respectively.

To avoid any favourable situation for the proposed algorithms, the matricesF andH have been chosen

to be well structured and clearly non-orthogonal (see Section IV-C). In our experiments, we proceed as

follows:

• we independently simulate, using the state-space system described above,S = 30 state processes,

{x0(s),x1(s), · · · ,xN−1(s)}s, and observation processes,{y0(s),y1(s), · · · ,yN−1(s)}s, with N =

50 (we consider50 observationsyn);

• for each simulation,s = 1, 2, · · · , S, we estimate the system state,xn(s), from the observations,

y0:n(s), n = 0, 1, · · · , N − 1, using the VBPKF, VBSKF, EnKF and the KF, which serves as a

benchmark solution.

All the results are then averaged over the number of simulations,S.

A. Convergence illustration

We consider SNR = 20dB. Figure 3 plots the evolution of the Kullback-Leibler divergence, KLD,

as function of iterations, of the filtering pdf computed by the KF from its approximations computed by

the VBPKF and VBSKF for instancesn = 0, 15, 30, 49. Note that KLD can be exactly evaluated in the

Gaussian case (see e.g. [64]). Apart from the initial time instant in which the VBSKF is slightly less
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accurate than the VBPKF, the KLDs resulting from these algorithms are almost equal. Furthermore, the

minimum of KLD at any time is often reached after about 10 iterations only.

0 10 20 30
0

500

1000

1500

2000

2500

Iterations

K
LD

Time n = 0

 

 
VBSKF
VBPKF

0 10 20 30
0

1000

2000

3000

Iterations

K
LD

Time n = 15

 

 
VBSKF
VBPKF

0 10 20 30
0

500

1000

1500

2000

2500

Iterations

K
LD

Time n = 30

 

 
VBSKF
VBPKF

0 10 20 30
0

500

1000

1500

2000

2500

Iterations

K
LD

Time n = 49

 

 
VBSKF
VBPKF

Figure 3:KLD of the filtering pdf given by the KF from its approximations given by VBPKF and VBSKF.

B. Performance Study

We assess here the performance of the proposed algorithms w.r.t. the KF and the EnKF (with perturbed

observations), by settingI = 10 iterations based on the above results. The performances aremeasured

using the empirical MSE of the filtering estimates, and/or the empirical standard deviation which is

defined by,

D =
1

N

N−1∑

n=0

[
1

S

S∑

s=1

‖xn(s)− xn|n(s)‖2
] 1

2

,

wherexn|n(s) denotes the filtering estimate ofxn(s) by one of the algorithms. Unlike the optimal KF, the

performance of the sub-optimal EnKF depends on some parameters (localization and inflation parameters,

among others), as we will see in the section below in which we investigate the effect of these parameters

on the EnKF before we compare it with our schemes.

1) Sensitivity of the EnKF to localization and inflation parameters: The EnKF runs withM = 500

members. AlthoughM seems to be small compared to the state dimension,nx, it has been proven in a

wide range of geophysical applications thatM of the orderO(100) provides good performances, even
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when the state-space system is nonlinear [9] [52] [32]. The success of the EnKF in the situations for

whichM < nx, relies, in part, on two very popular strategies commonly used to overcome the undesirable

effects that are usually encountered in these situations: i) the covariance localization strategy which tackles

the rank-deficiency and spuriously large cross-correlations between distant state variables in the ensemble

covariance matrix [65], and ii) the covariance inflation strategy which tackles the underestimation of the

sample error variances associated with the use of small ensemble size, among other neglected uncertainties

[66].

Let us now turn back to our system, and use the localization and inflation techniques in the EnKF

with M = 500. The localization is performed using the fifth-order correlation function given in [67, Eq.

(4.10)]. Figure 4 shows the contour map of the empirical standard deviation,D, as a function of the

localization and inflation parameters. Overall, the valuesof D over the whole range of localization and

inflation parameters vary within a small interval, [31.07,31.14], which suggests that the performance of

the EnKF is not very sensitive to these parameters. The minimum value ofD corresponds to localization

and inflation parameters equal 12 and 1.5, respectively; such values will be used in the next section to

compare the EnKF w.r.t. the KF and the proposed schemes.
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Figure 4: Standard deviation for the filtering estimates resulting from the EnKF withM = 500 for different

localization and inflation parameters, in the case ofQ diagonal. The minimum occurs at the point (12,1.5).
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2) Performance comparison:Figure 5 plots the first four components of the true state and their

estimates as they result from the KF, EnKF, VBPKF and VBSKF. Overall, all the algorithms provide

very good estimates. To distinguish their performances, the empirical MSE for the filtering estimates is

plotted in Figure 6. The proposed filters are slightly less accurate than the EnKF, which provides MSEs

closer to those of the KF. Our filters are however much faster than the EnKF; the VBPKF is about 43

times faster and the VBSKF is about 12 times faster.

To study the sensitivity of the proposed algorithms to the SNR, we display in Table I the standard

deviation,D, for different values of SNR (recall that so far, SNR = 20 dB).As expected, the values of

D resulting from the four algorithms are inversely proportional to SNR, and the KF always outperforms

EnKF, VBPKF and VBSKF. On the other hand, the proposed filtersbecome slightly more accurate than

the EnKF for low SNR values (starting from 15 dB).

We finally consider the case of an off-diagonal input noise covariance matrix,Q (Section IV-D above).

For that purpose, the entries ofQ are defined as,

Qk,ℓ = exp

(
−|k − ℓ|

10

)
, k, ℓ = 1, 2, · · · , nx.

Similarly to Table I, Table II plotsD for different values of SNR. The results of the proposed filters

were obtained usingI = 10 iterations, while for the EnKF,M = 500 members, and the localization and

inflation parameters were set to 16 and 1.2, respectively (these “optimal” parameters have been chosen

by trial and error as in Section V-B1 above). Once again, the values ofD as resulting from all the filters

are inversely proportional to SNR, and the KF outperforms the other filters, as expected. The proposed

filters are always slightly less accurate than the EnKF, withthe performances becoming very close for

low SNR values. The lower accuracy of the proposed filters w.r.t. the EnKF may originate from the fact

that the EnKF uses the true (exact) covariance,Q, while the proposed filters use an approximate diagonal

covariance matrix, that is estimated fromQ using the strategy presented in Section IV-D above.

Table I: Empirical standard deviations for the filtering estimates (Q diagonal).

SNR (dB) 25 20 15 10 5 1

KF 30.9220 31.0204 31.1130 31.4251 31.8386 32.0699

EnKF 30.9716 31.0732 31.1708 31.4927 31.9241 32.1556

VBPKF 31.0559 31.1021 31.1641 31.4383 31.8462 32.0786

VBSKF 31.1033 31.1705 31.1902 31.4536 31.8539 32.0815
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Figure 5:Tracking of the true state and KF estimate by those obtained by VBPKF, VBSKF and the EnKF with

M = 500.
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Figure 6:Empirical MSE associated with KF, VBPKF, VBSKF and EnKF withM = 500.
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Table II: Empirical standard deviations for the filtering estimates (Q off-diagonal).

SNR (dB) 25 20 15 10 5 1

KF 31.8510 31.8825 31.9735 32.1537 32.2641 32.3662

EnKF 32.9819 32.0256 32.0985 32.2776 32.4269 32.5274

VBPKF 32.1165 32.2125 32.2602 32.2979 32.4305 32.5286

VBSKF 32.1169 32.1950 32.2713 32.2857 32.4289 32.5281

VI. CONCLUSION

We proposed two new approximate iterative Kalman Filters (KF) based on the Variational Bayesian

(VB) approach for linear and Gaussian state-space models with very large state dimensions,nx. While

sharing the particularity of propagating state estimates with diagonalcovariance matrices, they differ in

the way the successive filtering estimates are linked. The VBSmoothing-based KF (VBSKF) involves

a smoothing estimate while the VB Prediction-based KF (VBPKF) involves a prediction estimate. The

diagonal property of the covariance matrices enables a squared computational cost innx compared to

a cubic cost in the KF. Moreover, notwithstanding the iterative character of VBPKF, its implementation

cost is always around25M times less than that of the Ensemble KF (EnKF) for a given ensemble size

M ; the comparison between the cost of the VBSKF, which dependson the number of iterations,I, and

that of the EnKF, is a function of the value ofI w.r.t. M . We studied the performances of our filters and

compared them with those of the KF and the EnKF with localization and inflation, through a numerical

example. For this example, the proposed filters show performances that are comparable to those of the KF

and EnKF, in both cases of diagonal and off-diagonal input noise covariance. Furthermore, the proposed

filters slightly outperform the EnKF in the diagonal case forlow Signal-to-Noise Rate (SNR) values,

while the EnKF becomes slightly more accurate in the off-diagonal case for all SNR values. Applying

the proposed algorithms to real-world data and establishing theoretic convergence results are important

directions for future work. We will also consider this framework in the context of Kalman-like smoothing

focusing on computational cost and storage capacity. Finally, we are currently exploring the same idea

of splitting the state vector using the VB approach, in the nonlinear state-space model case following the

framework of particle filters.
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APPENDIX A

SOME USEFUL PROPERTIES OFGAUSSIAN PDFS

The derivations in this paper rely on the following properties of Gaussian random variables, which are

recalled for convenience.

Proposition 1 ([21, Prop. 7]):Let p(x) = Nx(µ,P) andp(y|x) = Ny(Ax+b,Σ). Further define the

information matrixΓ and information vectorν associated withp(y|x) as

ν = ATΣ−1(y − b),

Γ = ATΣ−1A.

Then,p(x|y) = Nx(x̂|y,P|y) with

P−1
|y = P−1 + Γ,

P−1
|y x̂|y = P−1µ+ ν.

Proposition 2 ([21, Prop. 11]):Let (x, (y1,y2)︸ ︷︷ ︸
y

) be Gaussian in which, conditionally onx, y1 andy2

are independent. Letp(x) = Nx(µ,P) and letνi andΓi be the information parameters ofp(yi|x). Then,

p(x|y) ∝ p(y1|x)p(y2|x)p(x) = Nx(x̂|y,P|y);

P−1
|y x̂|y = ν1 + ν2 +P−1µ,

P−1
|y = Γ1 + Γ2 +P−1.

Proposition 3:Let p(x) ∝ exp
(
−1

2J
)

with J = xTP−1x− 2xTP−1µ. Then,p(x) = Nx(µ,P).

Proposition 4:Let p(x,y) ∝ exp
(
−1

2J
)

with

J = xT [P−1 +ATΣ−1A]x+ yTΣ−1y − 2xTATΣ−1y − 2xT [P−1µ−ATΣ−1b]− 2yTΣ−1b.

Then,p(x,y) is Gaussian withp(x) = Nx(µ,P) andp(y) = Ny(Aµ+ b,APAT +Σ).

APPENDIX B

PROOF OF EQUATIONS(37)-(40)

We show here that (37)-(40) are obtained from (35) and (36). Let us start with an explicit derivation

of (36). From (9)-(10), we have

p(xkn|xn−1) = Nxk
n
(Fn−1(k, :)xn−1, Q

k,k
n−1), (56)

p(yn|xn) = Nyn


Hn(:, k)x

k
n +Hn(:, k

−)xk−

n︸ ︷︷ ︸
Hnxn

,Rn


 . (57)
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Taking the expected value ofln
[
p(xkn|xn−1)

]
w.r.t q(xn−1|y0:n) and of ln [p(yn|xn)] w.r.t. q(xk−

n |y0:n),

the r.h.s. of (36) becomes proportional to

exp

(
−1

2

[((
Q

k,k
n−1

)−1
+ Γn,k

)(
xkn

)2
−2xkn

(
Fn−1(k, :)xn−1|n + µn,k

)])
,

with Γn,k = HT
n (:, k)R

−1
n Hn(:, k) and µn,k = HT

n (:, k)R
−1
n

(
yn −Hn(:, k

−)xk−

n|n

)
. Therefore, using

Prop. 3, we obtain a Gaussian pdf,q(xkn|y0:n), whose parameters are given in (39) and (40).

Concerning the derivation of (35), we start with the following factorization that directly arises from

model (1):

p(xn|xn−1) =

nx∏

k=1

p(xkn|xn−1), (58)

in which we insert (56) to obtain,

ln [p(xn|xn−1)]=−
1

2




nx∑

j=1

(
F

j,k
n−1

)2

Q
j,j
n−1

(
xkn−1

)2
−2xkn−1

nx∑

j=1

F
j,k
n−1

Q
j,j
n−1

(
xjn−Fn−1(j, k

−)xk−

n−1

)

+C1, (59)

with C1 independent ofxkn−1. Now, taking the expected value of (59) w.r.t.q(xk−

n−1,xn|y0:n), the r.h.s.

of (35) becomes proportional to

exp


−1

2







nx∑

j=1

(
F

j,k
n−1

)2

Q
j,j
n−1

+
1

vk
n−1|n−1



(
xkn−1

)2
−2xkn−1




nx∑
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F
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n−1

Q
j,j
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(
x
j

n|n−Fn−1(j, k
−)xk−

n−1|n

)
+
xk
n−1|n−1

vk
n−1|n−1








 .

This eventually shows, using Prop. 3, thatq(xkn−1|y0:n) is Gaussian with moments given in (37) and

(38). �

APPENDIX C

PROOF OF EQUATIONS(48)-(51)

We show here that (48)-(51) arise from (47). Using (56) and (58), we obtain

IE
q(xk−

n ,xk−

n+1|y0:n)
[ln (p(xn+1|xn))] = IEq(xk−

n |y0:n)

[
ln
(
p(xkn+1|xn)

)]

︸ ︷︷ ︸
Ek

+

nx∑

j=1
j 6=k

IEq(xk−
n ,x

j

n+1|y0:n)

[
ln
(
p(xjn+1|xn)

)]

︸ ︷︷ ︸
Ej

, (60)

with

Ek=− 1

2Qk,k
n

[(
xkn+1

)2
+
(
F k,k
n

)2 (
xkn

)2
−2xkn+1F

k,k
n xkn−2

(
xkn+1−F k,k

n xkn

)
Fn(k, k

−)xk−

n|n

]
+C2,

Ej=− 1

2Qj,j
n

[(
F j,k
n

)2 (
xkn

)2
− 2

(
x
j
n+1 − Fn(j, k

−)xk−

n|n

)
F j,k
n xkn

]
+ C3,
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C2 andC3 are independent ofxkn+1 andxkn. On the other hand, from (57), we have

IEq(xk−
n |y0:n)

[ln (p(yn|xn))] = −1

2

[
Γn,k

(
xkn

)2
− 2xknµn,k

]
+ C4, (61)

with C4 independent ofxkn, andΓn,k andµn,k are defined in Appendix B. Accordingly, using (60) and

(61) and assuming thatq(xkn|y0:n−1) is Gaussian, the r.h.s. of (47) is proportional to

exp

(
−1

2

[(
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)2

Q
k,k
n
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1
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nx∑

i=1

(F i,k
n )2
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n|nx
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n|n +

nx∑

i=1
i 6=k
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n

Q
i,i
n

(
xin+1|n−Fn(i, k

−)xk−

n|n

)

xkn





 . (62)

Therefore, using Prop. 4, we can easily verify thatq(xkn+1|y0:n) is Gaussian with parameters given by

(50) and (51), and thatq(xkn|y0:n) is Gaussian with a variancevk
n|n given by (48) and a mean equal to

xkn|n=vkn|n


µn,k+

xk
n|n−1

vk
n|n−1

+

λ︷ ︸︸ ︷
nx∑

i=1
i 6=k

F
i,k
n

Q
i,i
n

(xi
n+1|n−Fn(i, k

−)xk−

n|n)


 . (63)

Now, using (50), we haveλ =
∑nx

i=1
i 6=k

(F i,k
n )2

Q
i,i
n

xk
n|n; movingvk

n|n×λ into the l. h.s. of (63), then multiplying

both sides of (63) by
(
vk
n|n

)−1
, we eventually obtain (49). The proof is achieved by noticing that the

Gaussianity ofq(xkn|y0:n−1), assumed above, is guaranteed for alln when starting at the initial time from
∏nx

k=1 q(x
k
0 |y−1) = p(x0) by assuming thatp(x0) is Gaussian with a diagonal covariance matrix. �

APPENDIX D

DETAILS OF COMPUTATIONAL COMPLEXITY FORMULAS

The computational complexities provided in this paper consider each addition, subtraction, multiplica-

tion, division, or square-root operation as one flop [68]. They are based on:

• 2d− 1 flops to compute the inner product,uT .v, of two d× 1 vectors,u andv;

• 2d1d2d3 − d1d3 flops to compute a non-symmetric matrix,M1M2, with M1 andM2 ared1 × d2

and d2 × d3 matrices, respectively. The number of flops reduces (approximately) to the half, say,

d1d2d3 − d1d3

2 whenM1M2 is symmetric;

•
d3

3 + d2 + 2
3d flops to compute a square-root (and lower triangular or uppertriangular) matrix of a

d× d matrix using the Cholesky decomposition (see e.g. [60, page175] in which only the leading

d term is considered);
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•
d3

3 + d2

2 + d
6 flops to invert a lower (or upper) triangular matrix.

The approximate numbers of flops of the proposed algorithms are detailed in Tables III and IV, keeping

in mind thatQn is assumed diagonal. Those of KF (16) and EnKF (20) can be similarly obtained (see

also [69] and [70]). Finally, note that in the EnKF we assumedthat the sampling cost of drawing one

sample fromN (0, 1), which is very small, is equivalent to one flop; such an assumption intervenes only

in the secondary terms ofCEnKF (20), which are ignored in the high-dimensional state case as it was

discussed in section IV-C above.

Table III: Details ofCV BSKF (44). The inverseQ−1

n−1
is explicitly computed in the stepS8 and stored to be used

in S15. In S5 however, the entries of̃Fn−1 are computed by a division,̃F k,l
n−1

=
F

l,k

n−1

Q
l,l

n−1

. The inverses
(
vk
n−1|n−1

)−1

are available fromS8 at previous time recursion,(n − 2) → (n − 1), and thus their computation inS7 and S11

is not required. Indeed, inS8 the addition
(
Q

k,k
n−2

)−1

+ dkh,n−1
is first performed leading to

(
vk
n−1|n−1

)−1

, then

inverted to obtainvk
n−1|n−1

.

Operation Cost

S1. Un = Cholesky(Rn), i.e., Rn = UT
nUn

n3
y

3
+ n2

y + 2

3
ny

S2. U−1

n

n3
y

3
+

n2
y

2
+

ny

6

S3. H̃n = HT
nR

−1

n = HT
nU

−1

n (U−1

n )T 2n2

ynx

S4. dh,n = diag
(
H̃nHn

)
(2ny − 1)nx

S5. F̃n−1 = FT
n−1Q

−1

n−1
n2

x

S6. df,n−1 = diag
(
F̃n−1Fn−1

)
2n2

x − nx

Variances
S7. vkn−1|n =

[(
vkn−1|n−1

)−1

+ dkf,n−1

]−1

, k = 1, · · · , nx 2nx

S8. vkn|n =

[(
Q

k,k
n−1

)−1

+ dkh,n

]−1

, k = 1, · · · , nx 3nx

Means

S9. xn|n = Fn−1xn−1|n−1 2n2

x − nx

S10. zyn = Hnxn|n 2nynx − ny

S11. cn−1|n = Pn−1|nP
−1

n−1|n−1xn−1|n−1 2nx

For k = 1, · · · , nx, iter = 1, · · · , I ,

S12. ξx

n = zxn − Fn−1(:, k)x
k
n−1|n 2nx

S13. xk
n−1|n = ckn−1|n + vkn−1|nF̃n−1(k, :)

(
xn|n − ξx

n

)
3nx + 1

S14. ξy

n = zyn −Hn(:, k)x
k
n|n 2ny

S15. xk
n|n = vkn|n

[(
Q

k,k
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Fn−1(k, :)xn−1|n + H̃n(k, :)(yn − ξy

n)
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2nx + 3ny + 1

S16. zxn = ξx

n + Fn−1(:, k)x
k
n−1|n 2nx

S17. zyn = ξy

n +Hn(:, k)x
k
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Table IV: Details ofCV BPKF (53). The inverseQ−1
n is not explicitly computed in the stepsS5 andS10 since in

these steps, a division by the entriesQk,k
n is sufficient. The squares

(
F k,k
n

)2
computed inS10 are stored and used

at the next time recursion inS8. The multiplication inS12 and S14 by the inverses
(
ηkn
)−1

amounts to directly

dividing by ηkn.

Operation Cost

S1. Un = Cholesky(Rn), i.e., Rn = UT
nUn

n3
y

3
+ n2

y + 2

3
ny

S2. U−1

n

n3
y

3
+

n2
y

2
+

ny

6

S3. H̃n = HT
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−1

n = HT
nU

−1

n (U−1

n )T 2n2

ynx

S4. dh,n = diag
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)
(2ny − 1)nx

S5. F̃n = FT
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−1

n n2

x

S6. df,n = diag
(
F̃nFn

)
2n2

x − nx

Prediction
S7. xk

n|n−1
= Fn−1(k, :)xn−1|n−1, k = 1, · · · , nx 2n2
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Filtering
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Français du Pétrole (IFP), Lyon, as a postdoctoral fellow(2007), the University of Paris XI, Orsay, as

a teaching and research assistant (2008), the University ofBordeaux I, jointly with Electricité de France
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