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Fast Kalman-like filtering for large-dimensional

linear and Gaussian state-space models
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Abstract

This paper considers the filtering problem for linear and $3&@n state-space models with large
dimensions, a setup in which the optimal Kalman Filter (KHpim not be applicable owing to the
excessive cost of manipulating huge covariance matricesrfy the most popular alternatives that enable
cheaper and reasonable computation is the Ensemble KF (Eakffonte Carlo-based approximation. In
this paper, we consider a classapposteriordistributions withdiagonakovariance matrices and propose
fast approximate deterministic-based algorithms baseith@variational Bayesian (VB) approach. More
specifically, we derive two iterative KF-like algorithmsathdiffer in the way they operate between two
successive filtering estimates; one involves a smoothitignate and the other involves a prediction
estimate. Despite its iterative nature, the predictioseldaalgorithm provides a computational cost that
is, on the one hand, independent of the number of iteratiortkea limit of very large state dimensions,
and on the other hand, always much smaller than the cost &nlé&. The cost of the smoothing-based
algorithm depends on the number of iterations that may, imessituations, make this algorithm slower
than the EnKF. The performances of the proposed filters aidiest and compared to those of the KF

and EnKF through a numerical example.
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|. INTRODUCTION
A. Background

The estimation problem of a process,= {x¢,x1, ---,xy}, from a set of observationg; =
{y0,y1,--- ,yn}, is of particular interest in many areas, including targeicking [1] [2] [3] [4],
navigation [2] [5] [6], wireless communications [7] [8], @mgeophysical fluid applications [4] [9] [10]
[11] [12]. Let x,, € R™ andy, € R™. This problem is generally formulated in the framework of a

state-space model:

Xnt1 = Fpxpy +uy, )

yn = Hpx, + vy,

for which F,, and H,, respectively denote the state transition matrix and thesoreanent matrix at
time n; the input noiseu = {u,}, .y, and the measurement noise,= {v,}, .y, are assumed to
be independent, jointly independent and independent ofirtliial state, x,; and x¢, u,, andv,, are
Gaussian. Lekxy ~ N (X, Py), u, ~ N (0,Q,,) with Q,, diagonal and all diagonal entries are non-zero,
vy, ~ N(0,R,) with R, positive-definite xo., = {x;};_, andyo., = {yi};_, Let alsop(x,) and
p(Xn]yo.m) denote the probability density function (pdf) (with respex (w.r.t.) the Lebesgue measure)
of x,, and the pdf ofx,, conditional onyy.,,, respectively. A fundamental problem, so-call@ering,
consists of estimating, at each time the statex,, from the measuremenig.,,. The classical solution

is given by thea posteriorimean (AM)

§n\n = ]Ep(xn\yg:n)[xn] = /an(xnb’O:n)de (2)

which minimizes thea posteriorimean square error (MSE). Similarly to (2), throughout thaper,
IE, ) [f(x)] denotes the expected value of the functitix) w.r.t. the distributionp(x). With regard to
the computation of (2), the Kalman Filter (KF) has been idtroed as an indispensible tool owing to its
optimality and recursive character [13] [14] [15]. Consenqtly, different algorithms have been proposed
based on the KF. To name just a few, robust filters have beepopenl [16]; smoothing algorithms
have been developed [14] [17] [18] [19] [20] [21]; the indepgence assumptions an and/orv have
been dropped [1] [14] [22] [23] [24] [25]; the relaxation adree conditional independence assumptions
on x and/ory has been considered [26] [27]; and more recently, a new kd-dilgorithm has been
derived in [28] that does not require the specification ofittiéial errors and noise covariances. In very
large dimensional state-space modéks, when the state dimensiony, is very large, the KF becomes
impractical because of the prohibitive computational c@¥tn2), required for the calculations of the

error covariance matrices.
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In the particular case for which (1) is a time-invariant mip@xact computation of the AM estimate
(2) as well as the associated error covariance matrix isilpleswith only a squared cost (see e.g.,
Chandrasekhar’s algorithm [29] [30]). This, however, islonger true when relaxing the time-invariant
property, a situation for which a number of approximate rdthhave been proposed (see e.g., [10]
[31] [32] [33] [34] [35] and references therein). Up to nolwetmost popular scheme for filtering high-
dimensional systems is the Ensemble Kalman Filter (EnKF)[19] [36], which could be used in
more general situations including both linear and nonlireate-space models. The Monte Carlo-based
approximation scheme of (2) and the resulting error comagamatrices have been demonstrated to be
efficient in many different applications, even when implemeel with a very limited number of samples
(see§ II-B below).

B. Contribution of the paper

In this paper, we introduce a new fast approach for filteriiggptdimensional linear state-space models.
The basic idea is to compute an estimate of the system stagel lwa adiagonalcovariance matrix. This
allows us to significantly reduce the computational coststnthge requirements, since the computation of
huge full covariance matrices would reduce to the compariadif scalar variances. From a probabilistic
point of view, this amounts to remove the conditional desrg between the state variables, which
amounts to approximating tleeposteriorpdf of the state vector by a product of independent margided p
of its components. Concretely, approximate marginal pcéscamputed from the joint state pdf following
the variational Bayesian (VB) optimization criteria, ireteense of minimization of the Kullback-Leibler
Divergence (KLD) [37] [38] [39] (see also [40] [41] [42] [43K4] [45] [46] [47] [48] for a more
recent literature about the VB approach for Bayesian imfegs). Once the VB-type marginal pdfs are
computed, an estimate of each state component can then dmeaibtby its expected value w.r.t. the
associated marginal pdf. More precisely, we apply in thiskvthe VB approach to two joina posteriori
pdfs, as follows:

e Starting from the joint pdf of filtering and smoothipgx,,, x,,—1|yo.»), We derive an iterative KF-like

algorithm to propagate for eadfi" component of the state vector, an approximation of the ifiker

and smoothing estimate§’,fm

and EE’;’L_H”, respectively. The use gf(x,,x,—1|yo.n) IS inspired

by [39]. However, in [39], the conditional independence énforced”, via the VB approach, only
between the state vectoxs andx,_1; the components of each of these vectors remain dependent
conditionally onyy.,,. The complexity of the introduced algorithm is squarezinand depends on

the number of iterations, which may make this algorithm mexpensive than the EnKF in certain
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situations.

e We then rely on the joint pdf of filtering and predictip(x,,, x,,+1|yo.,) and derive another iterative
KF-like algorithm to propagate an approximation of the filg estimate,%ﬁm, and the prediction
estimate,ﬁc\le'n (instead of the smoothing estimate). The complexity of itésative algorithm,
which is square imy, is independent of the number of iterations and, furtheen aIways%M
times smaller than that of the EnKF, wiflf being the ensemble size.

The VB approach has been already used in the context of theKsidering (reasonable) low-dimensional
state-space systems (see for instance [40] [43] [44] [48] #&hd references therein). More precisely, the
work in [40] aimed at estimating the system statg, and the measurement noise covariaiiRg, The
VB-like decoupling is used to decouple tlaeposterioridependence ok, andR,,. [43] addressed the
filtering problem in an augmented state-space systen, y), for which the covariance of the noise of
the (auxiliary) hidden process Q), is unknown. The VB approach was used to insertdlgosteriori
independence betweex,, r,, and Q/.. In [44], a VB-like KF robust to outliers has been introduced
A similar algorithm has then been derived in [45] in the cahtef backward state-space systems,,
systems that evolve in decreasing time direction, and fachva robust VB-like fixed-interval Kalman
smoother has been also proposed. More recently, an adafBivike KF has been introduced in [48]
to update the covariance of the (assumed Gaussian) progiss@bution of the Markov Chain Monte
Carlo-based Metropolis algorithm. Unlike these works, weuls here on large-dimensional state-space
systems and we adopt the idea of splitting the system statg tise VB approach, which, in the best
of our knowledge, is original. This paper is organized atofe$. Section Il briefly reviews the KF and
EnKF algorithms in the classical Bayesian framework. The affproach of the filtering problem is then
described in Section lll, highlighting the fact that the Bgation of the VB criteria on the sole filtering
pdf is generally not enough, especially when the state ittransmatrix, F,,, is not diagonal. We thus
apply in Section IV the VB criteria op(x,,, X, —1|y0:n) @andp(x,,, X, +1|yo:n), t0 derive two approximate
KF-like algorithms with squared complexity. Numerical silations demonstrating the relevance of the
proposed algorithms, and comparing them with the KF and Eakpresented in Section V. The paper

concludes with a general discussion, in Section VI.

[I. BAYESIAN FILTERING
Consider a general state-space model,

Xn+1 = fn(xrwun)a
3)
Yo = hy(Xn,va),
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for which f,, andh,, are not necessarily linear, ang, andv,, are not necessarily Gaussian. In such a

model, one can use the independence propertiag of andxg, stated in Section I-A above, to obtain,

p(xn‘xO:n—l) - p(xn‘xn—l)a (4)

PYonlxon) = []pGilxon), (5)
=0

p(Yi|XO:n) = p(YZ|X2)> 1= 07 17 N (6)

In other words, the unknown state processjs a Markov chain (eq. (4)), the observed processis
conditionally independent of (eq. (5)), and each observatigyn, depends o through the state at the
same time instantx; (eq. (6)). These properties are indeed those of a Hidden dwa@ihain (HMC)
of the transition pdi(x,|x,—1) and the likelihoodp(y,|x,); these key tools enable recursive efficient
computation of the filtering pdf. More precisely, each rasgm (n — 1) — n consists of two steps:

e The Markovian steffor predictior), in which the transition pdf of the Markov chaig, is used to

compute the prediction pdf:

p(xn|y0:n—1) = /P(Xn|Xn—1)p(Xn—1|YO:n—1)an—1- (7)
e The Bayesian stefor filtering), in which the likelihood is used to update the predictiori yid the

Bayes'’ rule:
p(Yn|Xn)p(Xn|y0;n_1)
XnlYo:n) = . 8
p( ’yo ) fp(yn’xn)p(xnb’O:n—l)dxn ( )

Oncep(x,|yo:n) is computed, the AM estimate,,, can thus be obtained from (2). In practice, however,

the explicit forms ofp(x,|yo.,) andx,,, are often intractable as this requires analytical compmrtat
of integrals in (7), (8) and (2). Indeed, analytical compiota of such integrals is often impossible due
to the possible nonlinear character fhf and h,,, as well as the fact that,, and/orv,, may be non-
Gaussian. Accordingly, a number of deterministic and Mdéelo-based methods have been derived to
approximate (2); see for instance [3] [14] [49] [50] [51] arederences therein. Here, we are interested in
linear and Gaussian state-space modelsi(@.) f,, andh,, in (3) are linear, andh,, andv,, are Gaussian.

In this case, exact computation of the AM estimate (2) is sy the KF algorithm [13] [14] [15],

which we briefly review below.

A. Kalman filter

In the state-space model (1), one can easily check that

p(xn|xn—1) = an (Fn—lxn—lan—l)a (9)
p(ynlxn) = Nyn (Hpxn, Ry), (10)
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where, except when stated otherwig§,(m, C) denotes a Gaussian pdf with argumerdand parameters
(m, C). Accordingly, the filtering and prediction pdfs are Gaassand are thus described by their first
two moments. Propagatingx,|yo.»), m = n — 1,n, amounts to propagating their meags,,,, and
covariance matrice®,,,,,. More precisely, (7), which comput@$x,, |yo.,—1) from p(x,—1[yo.,—1) using
p(xn|x,—1) (Which is parameterized bi,,_; andQ,,—1), reduces to the prediction step of the KF relating

(ﬁn\n—lapnm—l) with (ﬁn—1|n—17Pn—1\n—1) throthFn—l and Qn-1:

~

Xn|n—1

nin—1 — Fn—lpn—l\n—ng—l"i_Qn—l- (12)

= Fn—lﬁn—l\n—la (11)

P

Moreover, (8), which computesx,, |yo.,) from p(x,|yo.n—1) usingp(y.|x,) (as parameterized b,

and R,,), reduces to the filtering step of the KF relati(@,,,,, P,,,) t0 (X;)—1, Pyn—1) Via H,, and

R,:
K, = P,,_H! [H,P,, H +R,] ', (13)
Xnjn = Xnn-1+Kn (yn — HuXppo1) 5 (14)
P = Pupoi— K,H,Pyp . (15)

The number of floating operations (flops) required to implettbe KF equations at each recursion,

(n —1) — n, is approximately,

1 2 3 5
Crr = 3nj + <3ny+—> n,2(+3(n32,+ny) nx+3 y+ 2+ —ny. (16)

2 2 "y 6
When the state dimensiony, is very large, direct implementation of the KF is not poksibecause
of the cubic termBn2, which originates from the computation Bf,|,,—1 In (12). We briefly review below

the EnKF algorithm, one of the most popular alternativegdusecircumvent this problem.

B. Ensemble Kalman filter

The basic idea behind the EnKF is to use Monte Carlo Gaussiaad approximations of the prediction
M
and filtering distributions. Starting from an ensemble afeépendent samplegxfl’@)}mzl, drawn from

P(Xp— 1|y0 .n—1), the prediction step of the EnKF uses (7) to compute an engsshindependent samples,

{xh, p,(m) }m 1, approximatingp(x, |yo.n—1) as

xP ) = F, x0T ul™with u™) ~ A(0,Q,1). (17)

n—1 n—17
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The AM estimate (11) is then approximated by the empiricabme,,,,_; = ﬁ fozlxﬁ’(m). An
approximation of the covariance matrix (12) is also given by
f’n\n—l = AnAga (18)
with
1 ~

— p
Ap=—— Xpln—1 — X

VM =1 "

M
In the filtering step, an approximatio{rxfg(m)}m:1 of p(x,|yo.n) is computed, based on (8), by

(1) ¥ p,(2 g p, (M
()’xnm_l_xn()’...’xnm_l_xn( )|

correcting each sample?’ ™, using the KF update step:
) =) 1 R (57— H ), 19

Whereyﬁlm) ~ N(yn,Ry) is a stochastic perturbation of the observation, &d= A, GZ[G,GT +
R,]~! with G,, = H, A, is the Kalman gain. An approximation of the filtering estimaf the state
(14) is computed by the empirical mean and thatpf,, as in (18). The number of flops required by

the EnKF to compute the prediction and filtering estimatesaath timen is approximately,

Conkr = 2Mn% + (2n3 + (8M — 1)ny + 6M + 1) ny + nd + <2M + g) ny + <M + g) ny. (20)
The EnKF was originally introduced in [9] for large-scalenfinear state-space models and was
successfully used in many atmospheric / oceanic data dasoni applications for whichny is in the
order of millions. The first encouraging results have opethedway for a large number of works based
on this filter, including derivation of other EnKF varian®2] [52] [53] [54], relaxation of the Gaussian
assumption on filtering and prediction pdfs by assuming Gansmixture representations [55] [56] [57]

[58] [59], or development of smoothing algorithms [60] [61]

I1l. VARIATIONAL BAYESIAN FILTERING

A VB-like approximation of the filtering pdf of interest by &parable product od posteriorimarginal

pdfs can be obtained by minimizing the KLDe.,

p(xn‘y&n) ~ H Q(xﬁ’}’o:n), (21)
k=1

with

H Q(Ucﬁb’o:n) - argmin KLD(H ﬁ(xmyOn)Hp(xn‘yOn)> )

k=1 [T, P(klyo:n) k=1
Nx e~/ k
= argmin /Hﬁ(xlrib’On) In <Hk=1 p(xn|YOn)> dxn, (22)
[T, et lyon) /15 p(%Xnyo:n)
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u* denotes thek™ component of a vecton, and u®~ its complementary part imi. Each marginal

q(zy|yon) is given by [39] [42]:

a(@h1yon) o< exp (B iy, ) (PG Yo))] ) - (23)

According to (23), although the approximated marginal pfcp, ¢(z*|yo..), is independent of those
of the other components® ™, ¢(x*" |yo.,), it nevertheless remains dependent of the expected value of
In(p(Xn, Yon)) WLt ¢(x5" |yo.n). In the particular case of Gaussian pdfs, one can easilykcied for
eachk, q(z*|yo.,) remains dependent of the first and second momentgxdf |yo..).

Onceq(z|yo.n) is computed, an estimate of can then be obtained by the AM estimag, .« . [z%].
What is left now is to perform gecursivecomputation of these estimates based on (23) and the dyabmic

structure of model (1). Indeed, using the factorization

p(xn7 yO:n) X p(ynyxn)p(xn’yO:n—l)a (24)

the computation of the right-hand side (r.h.s) of (23) reegithat of the prediction pdf. For that purpose,

two cases should be distinguished depending on whethertdf nis diagonal.

A. A diagonal state transition matrix

Considering model (1) with a diagonal state transition iratve have
Py Xom—1) = pzy|et.,—1) = plag|ah_y)- (25)

In other words, each marginal process, = {zF}, ., forms a Markov chain regardless of those of
the other components;, I # k. This property is important in practice since it leads to paseble

approximation of the prediction pdf as

Nx

p(xn‘YO:n—l) ~ H Q(xﬁb’O:n—l)a (26)
k=1
with
(2" |yom_1) = / p(@k |2k _)a(ak_[yom—1)dat_,, (27)

which, in turn, yields a separable approximation of the ritig pdf (21) by inserting (26) first in
(24) and next in (23). Now, using the linearity and Gaussiancture of (1), an approximate KF-like
algorithm propagating the state estimates with associitagbnal covariance matrices can be derived.

This algorithm has been recently introduced in [42].
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B. An off-diagonal state transition matrix

In the general case in which,, is not diagonal, the Markov chain property (25) is no longeaid
and separable approximation of the prediction pdf, (26)5(% no longer possible. More precisely, one

rather has
pculyonn) = [ T]pGeko-nateh lyoni)ds, . (28)
k=1

In practice, starting from a Gaussian p§if;=, ¢(=%_,|yo.n—1), With a diagonal covariance matrix, (28)
provides a Gaussian pdf but with an off-diagonal covariamegrix, and thereby the initial problem of
the huge computational burden and storage capacity persistordingly, (21) should be replaced by
an alternative VB approximation involving diagonal magsdn both the Markovian and Bayesian steps.
Two schemes are proposed below.

e The first approximation is applied on the joint pdf of smoothand filtering as

p(xn—laxn‘YO:n) ~ Q(xn—l‘YO:n)Q(xnb’O:n)a (29)
~ [ ek lyon)a(zhlyon). (30)
k=1

By doing so, we impose independence between the filteringsarabthing pdfs of the whole state
vector (cf. (29)) and between their components (cf. (30ppwximation (29) has already been used
in [39] in the context of particle filtering. We exploit it herfor reducing the computational burden
of the KF by splitting the state vector as in (30). This leaglsah approximate KF-like algorithm
propagating the filtering and smoothing estimates with alied) covariance matrices (cf.IV-A).

e The second approximation relies on the joint pdf of preditt&nd filtering:
p(xn—hxn‘YO:n—l) ~ H Q(wl;;—b xfz‘y():n—l)- (31)
k=1

Unlike (29), the conditional dependence »f_; and x,, is conserved in (31), while imposing
independence between their components only. Furthermooeecan see that (31) follows from (21)
combined with the approximatiop(z%|x, 1) ~ q(z£|z* |, yo.n_1). Accordingly, the prediction
approximation (28) reduces to (26)-(27) by replacing®|z* ;) with q(z|z*_| yo.,—1). This
leads to another approximate KF-like algorithm involvitg torediction and filtering estimates with

diagonal covariance matrices (¢f.IV-B).

IV. VB SMOOTHING- AND PREDICTION-BASED KF

This section presents the VB approach based on the appriosirag30) and (31). Before we proceed,

we define the notations, for a matiM, used hereafter.
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M%7 denotes théi, 7)™ entry.

M(i,:) denotes the'" row andM(:, j) the j** column.

M(i, j~) (resp.M(i~, j)) denotes the complementary part&af in M(i,:) (resp. inM(:, j)).

M(:,57) (resp.M(i~,:)) denotes the complementary partN(:, j) (resp. ofM(i,:)) in M.

A. VB Smoothing-Based KF (VBSKF)

Similarly to (21)-(23), the VB-marginal pdfs, solutions (#0), are given by

n

a@halyon) o exp (B 0 IG01,%0 yom))]) (32)
a(@hlyon) o exp (B, i o) IPOR-1 X0 Y0m))]) (33)
Solutions (32) and (33) share the joint pdk,,—1, X, yo.n ), Which, based on the HMC properties (4)-(6),
can be factorized as
P(Xn—1,%n, Yoin) < P(¥n |Xn)p(Xn|Xn-1)P(Xn-1|Y0:n-1)- (34)
1) Explicit derivation: Replacing in (34)p(x,—1|yo.n—1) With its VB approximation, (32) and (33)

respectively become

Q(‘sz—lyy():n) X exp (IEq(Xk:17Xn,\yO:n,) [ln(p(xnyxn—l))]) Q(wfz—lyyO:n—l)a (35)

a@hlyon) o< exp By, iyo. [0k x0 )] + By y,.) IGal))]) . (36)
Let Eﬁn andvl’fln denote respectively the mean and variance(af'[y.,) for [,n € IN; Xy, and Py, =
diag(vy),) will thus stand for the mean and diagonal covariance matrik[8=, ¢(=¥|yo.n). According
to the Gaussian property with linear meanxip of the HMC lawsp(y,|x,) andp(x,|x,—1), it appears

that g(z* | |yo..) andq(z¥|yo.,) are Gaussian with moments propagated as (cf. Appendix):

_ -1
,Ufz—l\n - |:<,Ufz—1n—1) 1 + Fg—l(:v k)Q;ian_l(:7 k):| ’ (37)

-1
Eﬁ—l\n = UZ—1|n [(Ufz—ln—l> f];:L—l\n—l + Fg—l(:v k)Qf_Lil(inhl - Fn—l(:v k_)§2—1|n):| ) (38)
vk, = [(Qk’k )_1 +HE (- k)R, L (: k:)]_l (39)
nln T n—1 n\ n n\- )
—1 B
T = v [(Q,’zﬁ) Fou1 (K, )Ry 1jn -+ HL G R R (v — Hn<:,k—>zii|n>} . (40
A particular case of (37)-(40) has been introduced in [3&ptér 7,6 7.4F in which the system state

lwithout abuse of language, the r.h.s. of (35) (resp. (36yhter proportional to an approximation of (32) (resp. }33)

?A typo has been noticed in egs. (7.37) and (7.38) in [38, @apt§ 7.4]. Indeed, A'R, ‘A and R, *Af;_, should be
replaced byR, ' and AD;_1, respectively.

DRAFT

1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

is not split,i.e., only the approximation (29) is considered. In such a cdsetdrmsF,,_(:, k_)iﬁil\n
in (38) andH,,(;, k~)%%  in (40) vanish, and?,_i(:, k), @, andH,(;, k) are replaced with, i,
Q.1 andH,, respectively.

Remark 1:Parametersz) , v ) in (37)-(38) and(z},,v; ) in (39)-(40) look like those of
a Gaussiana posterioripdf computed within a classical fully Bayesian frameworkdéed, accord-
ing to Prop. 1 (cf. Appendix), equations (37)-(38) come dawncomputing the Gaussian posterior,
q(zy_1|yon) = (@1 |x5_y =X}, yox), from the Gaussian priog(z); _|[yon—1) = q(z)_|x}_; =
fﬁiumyom—l)' using the likelihood

. . (35)

l(yn’wg—hxﬁ—l = ifl_l‘nayO:n—l) X exp (Eq(xk:1,xn|}'o:n) [ln(p(xnyxn—l))]> ) (41)

n

= Ninm (Fn—l(:7 k)wfl_l + Fn—l(:a k_)ifL:1|n7 Qn—l)- (42)

Similarly, (39)-(40) point out to the relationship betwette Gaussian priog(z* |xk = iﬁ]n,yo:n_1) =
Nt (Fr_1(k, )%,y 1, Q5 ), and the Gaussian posterigta’|yo.,) = g(zk[xt™ = iﬁ[ﬂ,y&n), via the
likelihood,

plynleh,xb =%5,) = Ny, (Ha(, k)af + Hy (k7R Ry). (43)

nin?

Making the connection with (36), one obtains

Q(xﬁ\xfli = iﬁ(n,}’o:n—l) X €exp (IEq(xn,ﬂyo:n) {IH(P(wa’Xn—l))D )
P(yalah, X =% o exp (Bype .. Mn(p(yalxa))])

To summarize, the VB approach in a Gaussian framework cared®e as a fully Bayesian approach by
assigning the marginal variables thaiposterioriexpectation.
2) Practical implementationLet us turn back to egs. (37)-(40). A problem may arise in &) (40)

from the fact thatz® in (38) requires knowledge oa%’j;lm and X,,,,, and ffi\n in (40) requires

—1|n

knowledge ofiﬁ[ﬂ and X,,_;|,,. This makes it impossible to evaluaméfl_lm and Efm exactly and
approximations should therefore be performed. A classieh would be to proceed with iterations
by evaluating one variable while the others are kept fixed (88 e.g., [62] in which the convergence of

marginal VB-based solutions has been proven). At eachtibera this consists of evaluatirﬁ@;_”n with
k—1

(38) by using{f{ﬂn}éxk and{z’
J:

"_1|"}j:k+1 computed at iteration— 1, and{gcnln}j:1 and{z }

n—1nt ;=1

obtained at iteration; the update offﬁm in (40) is performed similarly. Furthermore, it should be

3without abuse of notatiomfgn‘n(., .) in (42) does not represent a Gaussian pdf, but the value ®ptifiat pointx,,,,; this
remark holds fotNy,, (.,.) in (43) andN_,— (.,.) in (52) as well.
xn+1\n
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noted that for each componehtand iterationi, the updates of* = Fn—l(:7k_)iﬁ:1‘n in (38) and

& =H,(:, k‘)iﬁ[ﬂ in (40) are computationally demanding since they require s — 1) andny (nx —1)
flops operations, respectively. Based on the linear conibm@roperty of ¢* and &, one can reduce
this cost by updating only the term associated with(the 1)** component. More specifically, in (38) and
(40), onlyF,,_1(:, k—l)fﬁjln andH,, (:, k—l)fﬁ"ﬂl are updated, which reduces the initial computational

cost by a factor ofnx — 1). This iterative KF-like scheme, which involves the smoothestimate of

the system state with diagonal covariance, is summarizedgarithm 1.

Algorithm 1 VB Smoothing-based KF (VBSKF)
Let H, = HIR;', d;,,, = diag(H,H,,)), F,, 1 =F7_ Q' dj, 1 = diag(F,,_1F, ).

n—17

e Variances. Fork =1,2,--- ,ny,
k k -1 k -
vn—1|n = |:<vn—1|n—1> + df,n—1:| ’

d = [(@h) ]

e Means. We proceed with iterations by initializing a§,_1,, = X,,—1jn—1, Xnjn = Frn-1Xn—1jn—1-
_ _ = =-1 _ .

Letzy = Frn1X,_1jn zy, = H, X0 €o1jn = Prn1jnPr_qjn—1Xn-1jn—1- FOriter =1,2,--- . I >

1, fork=1,2,---  ny,

e Computation of means.

& = 2 —Foa(hT ),
=k k k - _
xn—l\n = Cn—1|n + Un—l\nFn—l(k> :)(Xn\n - 57):)7

& = 20 —H,(,k)z"

n n xn|n7

-1 -
T = vﬁn[(cz’;fl) Bt (k1o + Fa (k) (7 — &)

zt = &+ F,(, k)fﬁ_”n,

a = &+ H( k)T,

Thjn-

Note that instead of presetting a number of iteratiohsan alternative stopping criteria based, for

ANOte thaté: - Z;L:l Fn,1(17j)TZL71‘n andén - Z;‘Lil Hn(:mj)fi\n'
J#k J#k
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. . i(“eT) _i(iteTfl)
instance, on the relative squared error no.um”:‘" e

%l

of flops required at each time instant is approximately

IE

, or on KLD, could be used. The number

2 3 n
Cvpskr = (9 +5)nk + (2n) + (T + 4)ny + 21 + 4) ny + gni’, + §n§, — Fy' (44)

B. VB Prediction-Based KF (VBPKF)

As above, the VB-marginal pdfs associated with the apprakon (31) at timen are given by

a(@h, b Vo) o exp (B vy G Xni1,Y00))]) (45)
with
p(xm Xn+1, yo:n) X p(xn-i-l ’Xn)p(y'n’Xn)p(xn’}’O:n—l)- (46)

1) Explicit derivation: Replacingp(x,|yo.n—1) in (46) by its VB-approximation, (45) can be approx-
imated by,

JIn(p(%41%0) I, sy, (10D 30))] Ja (b Y01
(47)

Based on the Gaussian property with linear mea,inof p(x,11|x,) andp(y,|x,), ¢(z|yo.,) and

k .k
(@, Ty 1|yom) o eXP(IEq(xbr Xk Yo

q(m2+1|y0;n) are Gaussian whose moments satisfy (cf. Appendix):

- —1
_ 1 _ g g _
v§|n: HZ(:,k)Rann(:,k)+vk +FL(k= k)Q (k™ k) Fy(k ,k:)] , (48)
L nln—1

_ _ _ Nk nln—1

xgmz Hg(;,k)Rnlnn(:,k)Jrvk ) HY (L B)R (yn—H, (-, & )XZ”HU%: 1]7 (49)
Ty s 1jn = Fu(k, )%, (50)
v = (ERR20 + QRF. (51)

Equations (48)-(51) can be seen as a generalization of amithlg recently introduced in [42] in the
particular case oF,, = ¢ x I, , Q, = 02 x I,,, andR,, = 02 x I,,, and without the third term in the
r.h.s. of (48).

Remark 2:Similarly to Remark 1 above, (48)-(51) can be also obtaimedhfa classical Bayesian
framework by keeping the marginal variables equal to tlaeposterioriexpectation. Indeed, (48) and
(49) (which coincides with (63)), translate the connectidrthe Gaussian priog(z*|yo.,_1), with the

Gaussian posteriot(z” |y.,). This can be shown using Prop. 2 (cf. Appendix) in the follugvBayes’
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rule:
k k|k™ <k~ k- =k~
Q(Z’n‘yom) = q(wnyxn—i-l = Xn+1|n,Xn = xn\n7y0!n)’
=k~ k Lk~ =k~ k| k™ =k~
X l(xn-‘rl\n’ yn|xn7 Xp = Xn\n)Q(xn|Xn = Xp|n y0:n—1)7
k - <k~ <k~ k Jk~ <k~ k
= p(yn|xn7 Xp = Xn\n) l(xn+1\n|xn7 Xp = Xn\n) q($n|y02n—1)' (52)
(43) N— (B (k= k)zk+F, (k= k= )RE ] Qu (k= k™))

n+1lln
Furthermore, one can easily show that (50)-(51) reflectrtinesttion from the Gaussian pdfiz* |yo.,) =
gz |xk™ = iﬁ[w Yon), to the Gaussian pdi(z* 1 |yo.n) = q(zf 4[xE = ifl‘fn, Yon), by the following
classical marginalization formula (Markovian step):

k k k k™ =k~ k k
Q(xn+1|YO:n) :/ p(xn+1|xn>xn :Xn\n) Q($n|3’0:n)d$n'

N,Ll(Fffv’“xgg,+F:(k7k—)x’;;jn,Qii"“)

2) Practical implementation:Unlike the VBSKF algorithm above, only (49) needs to be tedato
provide an approximation df’;;m, since it involves>—<’;‘*n. NonethelessEle'n in (50) is exactly known
oncex,,, is available. Furthermore, as mentioned;in-A2 above, the computation cﬁﬁm at iteration
i by (49) requires updating onlfi,,(:, k — 1)5’;;“”1 rather than all the terms &f, = Z;‘;l Hn(:,j)fim.
We thus obtain another iterative KF-like scheme that ingslthe prediction estimatej;’cé)lfC the system state
with a diagonal covariance (cf. Algorithm 2).

The number of flops required at each time instant is appraeiya

2 3 n
Cvppir = 5ng + (205 + (T1 +4) ny + 1 +8) nx + g”i + 5"5’ - Fy (53)

C. Comments and remarks

The introduced algorithms provide online deterministipraximations of the filtering estimate (2) of
the system state with diagonal covariance matrices. VBSKbBIves the smoothing estimate between
two successive filtering estimates and VBPKEF involves thedljotion estimate. The loss of correlations
between the components of the system state, is inherenttialpa compensated by their functional
dependence through the equations of the means. Furthermgliting the system statex,,, t0 ny
components by making them conditionally independent caeasdy extended to dividing it intg= € N
partss” of sizens, by introducing conditional independence only betweeséhearts. In such a case, the
diagonal condition unde®,, can be relaxed by assuming that, is block diagonal only withng x ng

blocks. Below are some comparative remarks about the peapalgorithms:
DRAFT

1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TSP.2015.2468674, IEEE Transactions on Signal Processing

JOURNAL OF IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

Algorithm 2 VB Prediction-based KF (VBPKF)
Let H, = H'R;!, d,, = diag(H,H,,), d;,, = diag(FTQ;,'F,,).

e Prediction. Fork =1,2, -+, ny,
Thn1 = Faca (k)%
Tpin—1 = En=1\F ) Xn_1|n—1,
k _ pkk N2k k.k
Unln—1 = (Fn—l) Un—1jn—1 + Q”_l'

e Filtering.

e VariancesFork =1,2,--- ,ny,
k k k -1
h = dh,n + (vn|n—1) s
-1
oh = [+ — (EFD@QEN Y]

e Means.We proceed with iterations starting froRy,,, = X,,,,—. Let zy, = H,x,, and

Cn‘n—l = (Dlag(nn))_lﬁrzﬁn—lin‘n—l Foriter = 1a27 e 7[1 k= 1a27 sy Ny,

¢ In VBSKF the effect of enforced independence (29) betweenstnoothing pdb(x;,,—1|yo.») and
the filtering pdfp(x,|yo.,) arises from the lack of connection between their covarianegrices
calculated by (37) and (39), respectively. This independen however compensated by the link
between their means through (38) and (40). Furthermore), 48d (39) emphasize the fact that
the covariances depend only on the model paramekysQ.., H, andR,,. The covariances are
thus unchangedin € N, for fixed model parameters; such a property has been saghbyt[38,
chapter 7§ 7.4] as an inconsistency of approximation (29) with the KBwver, the approximation
(31) that leads to VBPKF conserves dependence between éaéciion pdfp(x,|yo.n—1) and the
filtering pdf and is thus more consistent with the KF. This banseen from (48) and (51) in which
the covariance changes depending on whether or not the rpada&ineters are time-dependent.

e The computational costs of the VBSKF, VBPKF and EnKF are efsame orderQ(n2), and are

much smaller than that of the KB)(n2). On the other hand, for very large state dimension problems
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(compared tawy,, M andI), one has

CEnKF ~ 2Mn2

e
Cvpskr =~ (91+5)nZ,
Cvppkr = bn2.

This means that despite its iterative nature, the VBPKF lasst a fixed computational cost, which
is lower than those of the VBSKF and EnKF. One can see that BIeKF cost is approximately
%M less than that of the EnKF. However, the VBSKF, whose cosedép on/, may be more
expensive than that of the EnKF whérapproximately exceed%z‘%.

The gain in computational efficiency of using the VB approgemerally comes at the cost of loss of
estimation accuracy (see e.g. [63] [37]). When the pantiti¢” or z%) of the statex, are weakly
correlateda posteriori one can intuitively expect a good accuracy of the VB-likragimation (and
nearly perfect if these partitions are almost indeperi)eint contrast, when these partitions become
strongly correlated, “the assumption” of conditional ipdadence becomes too strong and the approxi-
mation accuracy is expected to degrade. Based on this, tmberuof partitions,ng, should be chosen
judiciously to ensure as good as possible a tradeoff betweeuracy and computational efficiency. The
largerng is, the more important computational efficiency is, but ia #ame time, the more dependence
between the state partitions will be lost which leads to ar@oapproximation. Thereby, the guideline

principle should be to choose, large enough to only achieve an acceptable computatiomaplexity.

D. Extension to the case of an off-diagonal covariatgg

The derivation of our algorithms relies on the assumpti@t the covariance)),,, of the input noise is
diagonal, for alln, which is common in large scales applications. In our Gaunssase, this ensures that
at any timen, conditionally on the previous state, ;, the components of the current stafe” Z;l, are
independent (see (58) below). However, unless the statsiti@en matrix,F,,, is diagonal, this assumption
does not “absolutely” break the link between componefit},” |, sincep(x,) # [I1=, p(«zF) still
hold. The assumption th&,, is diagonal has been considered, for instance, in an agiplicaf dynamic
tomography [42] for which pixels of the image at any time asswuaned independent conditionally on

the previous image.

5This can happen in the case for which the state transitiomixrit, and the measurement matii%,, are nearly orthogonal,

and the input noise transition covarian@g, and the measurement noise covariaitg are diagonal.
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In the more general case of an off-diagonal covariaigg, the conditional independence property
(58) is no longer valid. One way to tackle this isSus to approximate, using the VB approach, the
joint transition pdf,p(x,|x,—1), with a separable product of marginal pdfd;=, ¢(z¥|x,-1). Indeed,
similarly to (23) one obtains,

(9) _ -
q(zF |x,_1) expg/&f’;’fl(wﬁ)z—2wﬁ[m_1(k,:)Fn_lxn_l—An_l(k,k )E - ‘xnil)[xfl ]D, (54)

with A, 1 = Q.', (Q, is assumed to be positive-definitey). ApproximatinglE, xF7] with

k™ 1)l

]Ep(xr\xn,l)[xlff] =F,_1(k,:)x,-1, then using Prop. 3 (cf. Appendix) one obtains,

—1
q(acl;’;]xn_l) ~ Nx’; <Fn_1(/€, :)Xn_l, (Aﬁ’f1> ) s k= 1,2, SR ¢ (55)

k.k
n—11

In (55), the variance{AfL’fl)_l, which are not equal t@) are computed from all entries 6},, 1.
This is important since it emphasizes the fact that althotinghcovariance of approximated transition
pdf, [T~ (=¥ |x,—1), is diagonal, it neverthless involves both diagonal anedaffjonal entries of the
original covarianceQ,, 1.

Now, using (55), the VBSKF and VBPKF remain valid if one remlaQ’;’;’fl by (AfLﬁ)_l. Neverth-
less, this requires invertin@,,_1, and therefore the computational costs of these algoritm@sio longer
of order O(n2), as highlighted above, bu®(n3), just like the KF and EnKF. One situation in which
the cubic costs of the proposed algorithms could be redusebei particular case of a time-invariant
covariance Q. Indeed, in such a situatio) needs to be inverted at the initial time only to compute
{A’“”“}Z;; these are then used at any time> 0. Accordingly, at any time: > 1, the costs of VBSKF

and VBPKF become almost equal to the quadratic c6stss» andCy ppi r, respectively.

V. NUMERICAL RESULTS

We present results from numerical experiments that we pedd to evaluate the performance of the

proposed filters. We consider a time-invariant, linear ardissian state-space system for which:

e Ny = 1000, Ny = 100, ﬁo = Onx><1 andPO = ]Inx-

®One can also proceed, similarly to [14, chapter 11], withatesspace transformation by building a new model for whiwh t
input noise is with a diagonal covariance. However, thigl$eto a cubic costQ(n3), since it requires, among other matrices
operations, the use of Cholesky decomposition to factoBize
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o The state transition matriX', which is assumed to be a Toeplitz and circulant matrix, nde

from its first row and column as (cf. Figure 1):

F(1,:) = [T 7 £7 7 01x600],

F(:,1) = [0.1,01x607,£",£7,£7,0.02,0.05]7,
wheref = [0.1,0.05,0.02, 01 x97]7 andf = [0.02,0.05,0.1, 01 g7]7.

« The input noise covariance matriQ, is assumed to be diagonal equlia|. The off-diagonal case

will be considered later.

o Each rowH(k,:), k =1,2,--- ,ny, of the measurement matrix is defined as (cf. Figure 2),
9 ] k4900
) _ k+10; ¢
H(k,:)x, = 2(1 =) =01 >l
§=0 £1=k+896

« The measurement noise covariance matky, is assumed to be diagonal witR = o2 x LL,,.
Instead of testing the sensibility using the variancg,we will use the Signal-to-Noise Rate (SNR),

which can be defined as,

SNR =10 loglo —
> oo |[Vall2

)

where||v,||2 = nyo? (on average).

(a): The negative of the state transition matrix F

2001 1 -0.02
4001 1 -0.04
600 1 -0.06
800 1 -0.08
1000 200 200 600 800 1000 ot

(b): Zoom of (a)
T T 0

—-0.02

-0.04

-0.06

] -0.08

20 25

Figure 1:The negative of the state transition matiix The values of non-zero (main and secondary) diagonal
bands are identical. Sub-Fig. (b) shows the (main) bandcagsd to—F(1:13,1:25).
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(a): The negative of the measurement matrix H
T T T
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(b): Zoom of (a)
1

(c): Zoom of (a)

10

15
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Figure 2:The negative of the measurement malix Sub-Fig. (b) and (c) plot the (non-zero) partsI(1:20,1:100)
and —H(1:20,895:925), respectively.

follows:

To avoid any favourable situation for the proposed algarighthe matrice¥ andH have been chosen
to be well structured and clearly non-orthogonal (see 8edW-C). In our experiments, we proceed as

« we independently simulate, using the state-space systsurided aboveS = 30 state processes,
{xo0(s),x1(s), -+ ,xn-1(s)},, and observation process¢s(s),y1(s),
50 (we consider0 observationsy,,);

L YN-1(8)}s With N =

« for each simulations = 1,2,--- , 5, we estimate the system state,(s), from the observations,
yon(s), n = 0,1,--- /N — 1, using the VBPKF, VBSKF, EnKF and the KF, which serves as a
benchmark solution.

All the results are then averaged over the number of sinmrafiS.

A. Convergence illustration

We consider SNR = 2@B. Figure 3 plots the evolution of the Kullback-Leibler digence, KLD,

as function of iterations, of the filtering pdf computed by tiF from its approximations computed by
the VBPKF and VBSKF for instances = 0, 15, 30,49. Note that KLD can be exactly evaluated in the
Gaussian case (see e.g. [64]). Apart from the initial tim&ant in which the VBSKF is slightly less
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accurate than the VBPKF, the KLDs resulting from these dtlgms are almost equal. Furthermore, the

minimum of KLD at any time is often reached after about 10at@ns only.

Timen=0 Timen=15
2500 3000
1 - = = VBSKF - = = VBSKF
O L N R VBPKF || ----- VBPKF
1 20001 |
q 15007 § q |
i i x 1
1000 ‘\ 1000 l‘
5000 \~ - _ \
=il By N ———— ]
0 0
0 10 20 30 0 10 20 30
Iterations Iterations
Time n =30 Time n =49
2500 2500
| - - = VBSKF | - - —VBSKF
20000 = VBPKF 2000 “ ----- VBPKF
|
1500 1500+ 1
g 3
10001 ! 10001
! \
500 500
\~~_‘_‘_____‘__ \\_ ___________ —
0 0
0 10 20 30 0 10 20 30

Iterations Iterations

Figure 3:KLD of the filtering pdf given by the KF from its approximatisrgiven by VBPKF and VBSKF.

B. Performance Study

We assess here the performance of the proposed algorithrhghve KF and the EnKF (with perturbed
observations), by setting = 10 iterations based on the above results. The performanceseasured

using the empirical MSE of the filtering estimates, and/a@ #mpirical standard deviation which is
defined by,

L NI S 3
D=5 |52 Ixals) = xupuls)]
n=0 s=1

wherex,,,,(s) denotes the filtering estimate =f,(s) by one of the algorithms. Unlike the optimal KF, the
performance of the sub-optimal EnKF depends on some pagasn@calization and inflation parameters,
among others), as we will see in the section below in whichrwestigate the effect of these parameters
on the EnKF before we compare it with our schemes.

1) Sensitivity of the EnKF to localization and inflation paraters: The EnKF runs withM = 500
members. Althoughl/ seems to be small compared to the state dimensignit has been proven in a

wide range of geophysical applications thdt of the orderO(100) provides good performances, even
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when the state-space system is nonlinear [9] [52] [32]. Tinexass of the EnKF in the situations for
which M < ny, relies, in part, on two very popular strategies commonbdu® overcome the undesirable
effects that are usually encountered in these situatiptise icovariance localization strategy which tackles
the rank-deficiency and spuriously large cross-correaiatizetween distant state variables in the ensemble
covariance matrix [65], and ii) the covariance inflatioratgy which tackles the underestimation of the
sample error variances associated with the use of smaliigesize, among other neglected uncertainties
[66].

Let us now turn back to our system, and use the localizatiahiaflation techniques in the EnKF
with M = 500. The localization is performed using the fifth-order caatin function given in [67, Eq.
(4.10)]. Figure 4 shows the contour map of the empirical dath deviation,D, as a function of the
localization and inflation parameters. Overall, the valoE® over the whole range of localization and
inflation parameters vary within a small interval, [31.QZ 134], which suggests that the performance of
the EnKF is not very sensitive to these parameters. The raimivalue ofD corresponds to localization
and inflation parameters equal 12 and 1.5, respectivelyy satues will be used in the next section to

compare the EnKF w.r.t. the KF and the proposed schemes.

31.14

31.13

[

=

Inflation parameter

g

A=
-
<4>e€ 0 1w

Length scale

14 16 18

Figure 4: Standard deviation for the filtering estimates resultingnfrthe EnKF with A = 500 for different

localization and inflation parameters, in the caseotliagonal. The minimum occurs at the point (12,1.5).
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2) Performance comparisonkFigure 5 plots the first four components of the true state doail t
estimates as they result from the KF, EnKF, VBPKF and VBSKker@ll, all the algorithms provide
very good estimates. To distinguish their performances etimpirical MSE for the filtering estimates is
plotted in Figure 6. The proposed filters are slightly lessuaate than the EnKF, which provides MSEs
closer to those of the KF. Our filters are however much fastan the EnKF; the VBPKF is about 43
times faster and the VBSKF is about 12 times faster.

To study the sensitivity of the proposed algorithms to theRSMe display in Table | the standard
deviation,D, for different values of SNR (recall that so far, SNR = 20 dB% expected, the values of
D resulting from the four algorithms are inversely proparibto SNR, and the KF always outperforms
EnKF, VBPKF and VBSKF. On the other hand, the proposed filbersome slightly more accurate than
the EnKF for low SNR values (starting from 15 dB).

We finally consider the case of an off-diagonal input noiseaciance matrixQ (Section IV-D above).

For that purpose, the entries & are defined as,

QM = exp <—|k1_0€|>, kl=1,2,-- nx.

Similarly to Table |, Table Il plotsD for different values of SNR. The results of the proposedr§lte
were obtained using = 10 iterations, while for the EnKF)M = 500 members, and the localization and
inflation parameters were set to 16 and 1.2, respectiveséltioptimal” parameters have been chosen
by trial and error as in Section V-B1 above). Once again, #tilaes ofD as resulting from all the filters
are inversely proportional to SNR, and the KF outperfornes dther filters, as expected. The proposed
filters are always slightly less accurate than the EnKF, whith performances becoming very close for
low SNR values. The lower accuracy of the proposed filterd.vttre EnKF may originate from the fact
that the EnKF uses the true (exact) covaria@ewhile the proposed filters use an approximate diagonal

covariance matrix, that is estimated fra@iusing the strategy presented in Section 1V-D above.

Table I: Empirical standard deviations for the filteringiesttes (Q diagonal).

SNR (dB) 25 20 15 10 5 1
KF 30.9220 | 31.0204 | 31.1130 | 31.4251 | 31.8386 | 32.0699
EnKF 30.9716 | 31.0732 | 31.1708 | 31.4927 | 31.9241 | 32.1556
VBPKF 31.0559 | 31.1021 | 31.1641 | 31.4383 | 31.8462 | 32.0786
VBSKF 31.1033 | 31.1705 | 31.1902 | 31.4536 | 31.8539 | 32.0815
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Figure 5:Tracking of the true state and KF estimate by those obtaiyedBPKF, VBSKF and the EnKF with
M = 500.
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Figure 6:Empirical MSE associated with KF, VBPKF, VBSKF and EnKF withh = 500.
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Table Il: Empirical standard deviations for the filteringigsmtes Q off-diagonal).

SNR (dB) 25 20 15 10 5 1
KF 31.8510 | 31.8825 | 31.9735 | 32.1537 | 32.2641 | 32.3662
EnKF || 32.9819 | 32.0256 | 32.0985 | 32.2776 | 32.4269 | 32.5274
VBPKF || 32.1165 | 32.2125 | 32.2602 | 32.2979 | 32.4305 | 32.5286
VBSKF || 32.1169 | 32.1950 | 32.2713 | 32.2857 | 32.4289 | 32.5281

VI. CONCLUSION

We proposed two new approximate iterative Kalman Filterg)(Kased on the Variational Bayesian
(VB) approach for linear and Gaussian state-space modétswery large state dimensions,. While
sharing the particularity of propagating state estimatél wiagonalcovariance matrices, they differ in
the way the successive filtering estimates are linked. TheSwibothing-based KF (VBSKF) involves
a smoothing estimate while the VB Prediction-based KF (VBPkwolves a prediction estimate. The
diagonal property of the covariance matrices enables arsdusmputational cost in, compared to
a cubic cost in the KF. Moreover, notwithstanding the iteeatharacter of VBPKF, its implementation
cost is always aroun@M times less than that of the Ensemble KF (EnKF) for a given mibée size
M:; the comparison between the cost of the VBSKF, which dependsie number of iterationd, and
that of the EnKF, is a function of the value dfw.r.t. M. We studied the performances of our filters and
compared them with those of the KF and the EnKF with locatwaand inflation, through a numerical
example. For this example, the proposed filters show pedno®s that are comparable to those of the KF
and EnKF, in both cases of diagonal and off-diagonal inpigenoovariance. Furthermore, the proposed
filters slightly outperform the EnKF in the diagonal case lmv Signal-to-Noise Rate (SNR) values,
while the EnKF becomes slightly more accurate in the offydizal case for all SNR values. Applying
the proposed algorithms to real-world data and establisttieoretic convergence results are important
directions for future work. We will also consider this frawak in the context of Kalman-like smoothing
focusing on computational cost and storage capacity. lyinak are currently exploring the same idea
of splitting the state vector using the VB approach, in thalinear state-space model case following the

framework of particle filters.
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APPENDIX A
SOME USEFUL PROPERTIES OIGAUSSIAN PDFS
The derivations in this paper rely on the following propestof Gaussian random variables, which are
recalled for convenience.
Proposition 1 ([21, Prop. 7]).Let p(x) = Nx(u, P) andp(y|x) = Ny (Ax+ b, X). Further define the

information matrixI" and information vector associated withp(y|x) as
v = ATS Yy -b),
r = ATS™A

Then,p(x|y) = Nx(Xy, P|y) with

P|‘y1 = P 14T,

P‘_ylﬁ‘y = P lu+w

Proposition 2 ([21, Prop. 11])Let (x, (y1,y2)) be Gaussian in which, conditionally o y; andy-
N——
y
are independent. Let(x) = Nx(u, P) and lety; andT’; be the information parameters pfy;|x). Then,

p(xly) o p(y1[x)p(y2x)p(x) = Nx(X|y, Pjy);

P‘;l)Aqy = n+wm+P iy

P|‘y1 = I+, +P L.

Proposition 3:Let p(x) « exp (—£.7) with 7 = x"P~!x — 2xTP~1i. Then,p(x) = Nx(u, P).
Proposition 4:Let p(x,y) « exp (—%.7) with
T =xI'P 4+ AT Alx+y!'oly —2xTATS ly — oxT' [P~y — ATS 'b] — 2y7 2 1b.
Then,p(x,y) is Gaussian withp(x) = Nx(u, P) andp(y) = Ny(Au + b, APAT + ).

APPENDIX B
PROOF OF EQUATIONS(37)-(40)

We show here that (37)-(40) are obtained from (35) and (36).us start with an explicit derivation
of (36). From (9)-(10), we have

Pk |xn—1) = N (Fuoi(k,)xno1, Q")) (56)

p(Yn‘xn) = Nyn HN(:ak)x§z+Hn(:7k_)xf;aRn . (57)
H, x,
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Taking the expected value af [p(z%|x,—1)] W.r.t ¢(x,—1]yo:n) and ofln [p(yn|x,)] WLt ¢(XE [yo.),

the r.h.s. of (36) becomes proportional to

exp(—% K(Qf’;’fl)_l + Pn,k> (m’;;)2—2x£§ (Frit ()R + N”’k)D ,

with T, = HI (5, k)R, ' H,(, k) and p, . = HI (5 B)R,! (yn —H,(:,k)xF ) Therefore, using

[n

Prop. 3, we obtain a Gaussian pdfz*|yo.,), whose parameters are given in (39) and (40).

Concerning the derivation of (35), we start with the follogifactorization that directly arises from

model (1):
p(xn‘xn—l) = Hp(xfl‘xn—l)a (58)
k=1
in which we insert (56) to obtain,
Nx Fj’k N 7.k
1 n—1 2 Fn— . o _
In [p(%n[xn-1)l==5 2; % (@3-1) —2@3—1' 1711 (UC%—Fn—l(J,k )Xﬁ—1> +C1, (59)
1= n— 1= n—

with C; independent ofc® ;. Now, taking the expected value of (59) w.gtx*" |, x,|yo.n), the r.h.s.

of (35) becomes proportional to

. 2
k .
MNx Fj’ > N ]7]43 —
ex _1 E ( n—l + 1 l‘k 2_21,k: Fn—l Tj _F ( k_)ikf +wn—1\n—1
p 2 7.7 Uk n—1 n—1 E 7.7 n|n n—1\J, n—1|n ’Uk -
=1 n—1 n—1n—1 =1 “¥n—1 n—1ln—1

This eventually shows, using Prop. 3, that:* ,|yo.,) is Gaussian with moments given in (37) and
(38). [

APPENDIXC

PROOF OF EQUATIONS(48)-(51)

We show here that (48)-(51) arise from (47). Using (56) ar),(&e obtain

By st o I P01 x0))] = By, [0 (pleb )|

n

gk
LD RN LY CCAS) (60)
j=1
;7516 &i
with
gk__; (l,k )2+<Fk,k)2 (mk>2—2xk Fhkyk_o (xk _Fk,kxk>F (k k‘)iki L
- QQI:LJC n+1 n n n+ltn n n+1 n n n\v, n|n 25
gim (Fj’k)2<xk>2—2<mj Bk, ) itk +C
QQ%’J n n n+1 n\J» n|n n n 3
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C, and Cy are independent of® il andz”. On the other hand, from (57), we have

1

k 2 k
ot oI P alx0))] = =5 [T (k)" = 22| + C, (61)

E
2

with C, independent of:*, andI’,, ,, and ., are defined in Appendix B. Accordingly, using (60) and

(61) and assuming thatz"|yo.,_1) is Gaussian, the r.h.s. of (47) is proportional to

2 Ny ik k. k
1 (xk+1) 1 E2)2\ (02 F" & 2 ok
exp<—§[ Cgﬁk (Tt 4D (%) — 2R 1 orF Fo (b, k)R 1

,Un\n—l i=1 Qi{l Qn
= k.k Mx
o k
2| g+ 2t B Rt Z - ( T Fn (i 6% ) | k] ] (62)
,Un\n—l Qn 7&]@
KA

Therefore, using Prop. 4, we can easily verify that , |yo.,) is Gaussian with parameters given by

(50) and (51), and thaf(z* |yo.,) is Gaussian with a varianaé;m given by (48) and a mean equal to

A
Tx Zk)
_k n|n 1
Lnln = n\n Fon ke ok +Z i, n+1|n (Z k™ ) n|n) : (63)
n|n 1 =1 n

i#k

Now, using (50), we hava = Z Q o) xf”n; movingv"f x A into the I. h.s. of (63), then multiplying
oL@

both sides of (63) by(vnm)_ we eventually obtain (49). The proof is achieved by notcihat the
Gaussianity ofy(z* |yo.,_1), assumed above, is guaranteed fomalthen starting at the initial time from

[T, q(xbly—1) = p(x0) by assuming thap(x,) is Gaussian with a diagonal covariance matrix. B

APPENDIXD

DETAILS OF COMPUTATIONAL COMPLEXITY FORMULAS

The computational complexities provided in this paper @erseach addition, subtraction, multiplica-
tion, division, or square-root operation as one flop [68]eylare based on:
e 2d — 1 flops to compute the inner produat? .v, of two d x 1 vectors,u andv;
o 2didads — dids flops to compute a non-symmetric matrix[; My, with M; and M, ared; x ds
and dy x ds matrices, respectively. The number of flops reduces (appidely) to the half, say,

didads — 28 whenM; M, is symmetric;

%3 +d? + %d flops to compute a square-root (and lower triangular or upemgular) matrix of a
d x d matrix using the Cholesky decomposition (see e.g. [60, da&2 in which only the leading

d term is considered);
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o %3 + d—; + % flops to invert a lower (or upper) triangular matrix.

The approximate numbers of flops of the proposed algoritmagietailed in Tables 11l and IV, keeping
in mind thatQ,, is assumed diagonal. Those of KF (16) and EnKF (20) can bdaslynobtained (see
also [69] and [70]). Finally, note that in the EnKF we assurtteat the sampling cost of drawing one
sample from\(0, 1), which is very small, is equivalent to one flop; such an asdiompntervenes only
in the secondary terms @iz, xr (20), which are ignored in the high-dimensional state casé was

discussed in section IV-C above.

Table IIl: Details ofCv sk r (44). The invers&Q, ', is explicitly computed in the stepg and stored to be used

. . =~ L~ FLF . -1
in Sy5. In S5 however, the entries df,,_; are computed by a d|V|S|orl?ff’_l1 = Q;ﬁ;l . The mverses(v’C )

n—1|n—1
n—1

are available fronfg at previous time recursior{n — 2) — (n — 1), and thus their computation i®; and Sy,

-1 -1
is not required. Indeed, ifg the addition(Qf;fQ) +dj, ,,_, is first performed leading t((vk ) , then

n—1|n—1

inverted to obtain®

n—1|n—1"

Operation Cost
n3
Si. U, = Cholesky(R,), i.e, R, = ULU, X+l + 2ny
7L3 n2 7
Sa. Uy’ .
Ss. H, =H'R;' =HIU, ' (U,H)T 202 nx
S4. dp,n, = diag (ﬁan) (2ny — 1)ng
55- i'Fv‘nfl = F£71Q777,11 n?c
Se. dy,n—1 = diag (fnlenfl) Qni — Nx
Sr. vfbfl\n = [(vﬁfl\nfl)il + d?,nfl} B k= 17 s, Nx 2nx
Variances . ok 1 L 17
Ss. Unin = ’7(an1> + dh,n“ v k=1, nx 3Inx
Sq. in‘n = anlin—l\nfl 272?( — Nx
Si0. 23, = Hy X 2Ny Ny — Ny
= -1 —
Si1. Cn—1|n = Pnfl\nPn—l\nflxnfl\nfl 2nx
Fork=1,--- ng, iter=1,--- 1,
Si2. &=z —Fua(5 KTy, 2nx
Means . . . = _
513' , —1|n = Cnfl\n + Unfl\nanl(k? :) (X"\n - 52) STlx + 1
Siu. & =z} —Ha(, k)T, 2ny
—1 ~

Sis. T, =k, {(Qﬁfl) Fo1 (b, )R_1jn + Ha (k) (yn — €)| | 20 + 30y +1
516- Z,),i = 5’; + Fn71(l, k)fﬁfl\n QTZX
Si7. 2z =& +H,(, k:)TfL‘n 2ny
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Table IV: Details of Cy gpx+ (53). The inverse,, ! is not explicitly computed in the stefss andS;o since in
these steps, a division by the entrig§* is sufficient. The square@lf,’fv’“)2 computed inS;o are stored and used
at the next time recursion i8s. The multiplication inS;5 and Sy, by the inverses(nflf1 amounts to directly

dividing by 7.

Operation Cost
Si. U, = Cholesky(Rnx), i.e, R, = UTU, ? +n3 + 2ny
. Uz Ty
Ss. H, =HIR,' =HIU, (UH)T 2021
S4. dp,, = diag <ﬁ7LH7L) (2ny — 1)nx
Ss. F, =FTQ;" n2
S¢. dy,, = diag (ann) 271,2c — Nx
o S+. Eﬁ‘nﬂ =F, (k)X 1jn-1, k=1, ,nx 2n2 — ny
Prediction .. v:‘nil _ (Fff;’“l)Q 0571\%1 QM k=1 o,
Sg.775;:dﬁ’n+(v5‘n,1)7l,k:1,--~ ) Nix 2nx

Sio. vfb\n = [775 + dk,n - (F'rlf’k)Q ( ﬁyk)il} 711 k=1, nx Onx

S11.2) = H,.X, 2nynx — Ny
. 1=—-1 _
Filtering SlQ-Cn\nfl - (Dlag(nn)) ! Pn\nflxn\nfl 2nx
Fork=1,--- ,nx,iter=1,--- 1,
Sis. ¥y =z — Hy(;, kz)fﬁ‘n 2ny
Sia. Thy =k + () Halk, ) (yn — €) 3ny +1

Sis. z) = % + Hn(l7 k‘)fk

nln
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