Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

Ramy J. Swaidan, Xiaohua Ma, Eric Litwiller, Ingo Pinnau

PII: S0376-7388(15)30110-1
DOI: http://dx.doi.org/10.1016/j.memsci.2015.08.015
Reference: MEMSCI13902

To appear in: Journal of Membrane Science

Received date: 17 July 2015
Accepted date: 5 August 2015

Cite this article as: Ramy J. Swaidan, Xiaohua Ma, Eric Litwiller and Ingo Pinnau, Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane, Journal of Membrane Science, http://dx.doi.org/10.1016/j.memsci.2015.08.015

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain
Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane

Ramy J. Swaidan, Xiaohua Ma, Eric Litwiller, Ingo Pinnau*

Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

*Corresponding author: Tel: +966-12-808-2406
E-mail address: ingo.pinnau@kaust.edu.sa (I. Pinnau)

Key words: polymers of intrinsic microporosity, polyimide, propylene/propane separation, plasticization, thermal annealing
Abstract

Effective separation of propylene/propane is vital to the chemical industry where \(C_3H_6 \) is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (\(\alpha > 20 \)) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas \(C_3H_6/C_3H_8 \) selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.
1. Introduction

Purification of propylene from propane is one of the most important separation processes in the petrochemical industry due to the large demand of propylene as a feedstock for production of many common plastics and chemicals [1]. Worldwide production has grown to over 84 billion pounds per year and the current means of meeting this demand is separation by cryogenic distillation, which is an extremely energy-intensive process due to the marginal differences in relative volatility of \(\text{C}_3\text{H}_6 \) and \(\text{C}_3\text{H}_8 \) [2]. \(\text{C}_3 \) splitters typically comprise over 200 trays and are operated with reflux ratios greater than 10, making the distillation process very energy-intensive. One of the potential means of reducing the energy demands is incorporation of a highly selective membrane to “debottleneck” the process [2, 3]. However, development of highly permselective polymeric membranes for \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) separations has proven to be challenging due to: i) very poor solubility selectivity due to a small difference in penetrant condensability (\(T_b \text{C}_3\text{H}_6 = -47.6 \) °C; \(T_b \text{C}_3\text{H}_8 = -42 \) °C) and ii) polymer plasticization and competitive sorption effects under mixed-gas conditions, which both reduce selectivity [4, 5].

A permeability/selectivity trade-off relationship exists for polymeric membrane materials for many common gas pairs [6,7]; the same trend has been observed for \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) [6-8]. It is important to note that the \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) permselectivity of polymers is generated almost exclusively by the diffusivity selectivity due to the relatively large difference size of the gases (\(D_{LJ} \text{C}_3\text{H}_6 = 4.68 \) Å; \(D_{LJ} \text{C}_3\text{H}_8 = 5.12 \) Å). To date, the best performing polymers, as gauged by 2 bar pure-gas experiments, are 6FDA-based polyimides [8]. However, while membrane material performance is typically judged by its position relative to the trade-off curve, Koros and Lively elucidated performance criteria necessary for a membrane to debottleneck the cryogenic distillation process.
According to their study, an economically acceptable process would require a membrane material with a minimum mixed-gas $\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ selectivity of 20 and C_3H_6 permeability of 10 Barrer; these properties are beyond those of materials currently defining the upper bound [2]. Consequently, to meet these requirements simultaneous enhancements in permeability and selectivity of novel membrane materials are necessary to make the process economics feasible. A critical attribute necessary for a membrane to preserve high selectivity under realistic mixed-gas feed conditions is strong plasticization resistance, which emanate from sorption-induced matrix dilations. A simple physical approach to mitigate plasticization to maintain high selectivity is thermal annealing of polymers functionalized with polar moieties like hydroxyl or carboxyl groups [5, 9, 10]. Thermal annealing leads to intra- and, even more importantly, inter-segmental chain immobilization [9] due the formation of charge transfer complexes (CTCs) by alternating arrangement of electron donor and acceptor molecules about the N-phenyl imide bond [11-17]. This technique has been effectively used by Das and Koros to mitigate plasticization for $\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ separation to preserve high selectivity under mixed-gas conditions [5].

A relatively new approach to developing high-performance gas separation membranes is to introduce sterically hindered contortion sites into a rigid polymer structure, which lead to inefficient chain packing to form polymers of intrinsic microporosity (PIMs) [9, 18-28]. By designing selective free volume into the polymer structure PIMs have been shown to simultaneously boost permeability and gas/gas selectivity. Recently, our group reported the performance of highly permeable triptycene (KAUST-PI-1)- and spirobisindane (PIM-PI-1)-based polyimides for propylene/propane separation [29]. KAUST-PI-1 exhibited a $\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ selectivity of 16 with the highest C_3H_6 permeability of any polyimide reported to date of 817
Barrer, positioning it well above the experimentally observed upper bound. The only other reported works using PIMs for C₃H₆/C₃H₈ separation were conducted with pristine, aged, annealed, and covalently cross-linked variations of ladder-type PIM-1 showing permeability-driven performance, with low to moderate selectivities in the range of 2.5 to 9 [30] [31]. Furthermore, their mixed-gas performance was adversely affected by plasticization and competitive sorption, which resulted in an additional drop in selectivity. Traditional PIM design principles strive for enhancing intra-chain rigidity but lack the emphasis on inter-chain interactions, which is a potential way to create plasticization resistant membranes. Excellent mixed-gas stability of PIM-polyimides (PIM-Pis) under CO₂/CH₄ feeds was demonstrated via thermal annealing of PIMs containing polar hydroxyl groups, supplementing strong inter-chain hydrogen-bonding with CTCs that further draw the polymer chains closer together [9].

In this work, thermal annealing of a hydroxyl-functionalized polyimide, PIM-6FDA-OH (Fig. 1), was carried out to tune its microporosity for C₃H₆/C₃H₈ separation. Microstructural characterization of the resulting membranes was performed using fluorescence spectroscopy and high-pressure gas sorption. As a preliminary assessment of performance, 2 bar pure-gas transport properties of the membranes are reported at 35 °C. These results are followed up with pressure dependent mixed-gas testing using 50:50 C₃H₆/C₃H₈ feeds because while insightful, pure-gas tests do not give an adequate assessment of the membrane’s performance under non-ideal conditions where contributions of plasticization and competitive sorption can be observed.
Fig. 1. Chemical structure of PIM-6FDA-OH.

2. Experimental

2.1. Polymer Synthesis

PIM-6FDA-OH was prepared as a light yellow powder according to a previously reported procedure by our group [20]. Gel permeation chromatography (Agilent GPC 1200) indicated number- and weight-averaged molecular weights of 8.54×10^4 and 1.65×10^5 g/mol, respectively.

2.2. Polymer film preparation

Dense polymer films were formed by slow evaporation of filtered 3-5 weight percent tetrahydrofuran (THF) solutions cast on a leveled glass plate. The freshly cast films were dried under vacuum at 120 °C for 24 h, soaked in a mixture of n-hexane/dichloromethane (90/10) at room temperature for 24 h, and finally dried in vacuum at 120 °C for 24 h. Soaking the film in n-hexane/dichloromethane swells the polymer and facilitates removal of residual casting solvent trapped in the micropores [32]. Thermal gravimetric analysis (TGA) confirmed complete solvent
removal. Annealed films were made by heating the pristine PIM-6FDA-OH under vacuum at 250 °C for 24 hours. The film thicknesses and areas were determined by a digital micrometer and by calibrated scanning software, respectively.

2.3. *Fluorescence spectroscopy*

Fluorescence spectroscopy was used to assess the formation of CTCs between the 120 and 250 °C treated PIM-6FDA-OH films. CTCs can form in polyimides due to the formation of a conjugated system of p-orbitals with delocalized electrons between polymer repeat units of adjacent chains and/or the same chain. Inter-chain interactions are enhanced due to the alternating arrangement of electron donor and acceptor molecules, which arise across the N-phenyl imide bonds. Upon formation of CTCs, densification of polymer chains occurs, which manifests itself by higher intensity peak emissions upon fluorescent excitation [11, 12, 14, 16]. In this study excitation of the films was performed at 325 nm.

2.4. *High-pressure sorption*

High-pressure propylene and propane sorption isotherms were collected up to 8 bar on powder samples of PIM-6FDA-OH at 35 °C using a gravimetric Hiden IGA system. Samples were degassed under high vacuum for at least 24 hours until the mass of the sample had equilibrated before beginning collection of the isotherm points. The solubility coefficients, \(S \) (cm\(^3\) (STP) cm\(^{-3}\) cmHg\(^{-1}\)), for \(\text{C}_3\text{H}_6 \) and \(\text{C}_3\text{H}_8 \) were determined at each pressure point from the gas concentration in the polymer, \(C \) (cm\(^3\) (STP) cm\(^{-3}\)) and the pressure, \(p \) (cmHg), by:

\[
S = \frac{C}{p}
\]
C₃H₆/C₃H₈ solubility selectivities (αₛ) were determined as the ratio of the solubility coefficients of C₃H₆ and C₃H₈ at each pressure point.

2.5. Pure-gas C₃H₆/C₃H₈ permeation

Permeabilities were evaluated using the constant-volume/variable-pressure method. PIM-6FDA-OH films were degassed in the permeation apparatus at 35 °C for at least 24 h. C₃H₆ and C₃H₈ permeabilities measured at 2 bar and 35 °C were calculated by:

\[
P = DS = 10^{10} \frac{V_d l}{p_{up} A R T} \frac{dp}{dt}
\]

where \(P \) is the permeability coefficient (Barrer), \(D \) is the diffusion coefficient, \(S \) is the solubility coefficient, \(V_d \) is the downstream volume (cm³), \(dp/dt \) is the permeate-side pressure increase (cmHg/s), \(l \) is the membrane thickness (cm), \(p_{up} \) is the upstream feed pressure (cmHg), \(A \) is the membrane area (cm²), \(R \) is the gas constant (0.278 cm³ cmHg cm⁻³(STP) K⁻¹), and \(T \) is the permeation temperature (K). The ideal selectivity for C₃H₆/C₃H₈ was calculated via:

\[
\alpha_{C_3H_6/C_3H_8} = \frac{P(C_3H_6)}{P(C_3H_8)}
\]

Pressure-dependent mixed-gas testing was evaluated at 35 °C with a 50:50 C₃H₆/C₃H₈ mixture using a setup similar to that reported by O’Brien et al. [33]. A stage-cut (permeate to feed flow rate) of less than 0.01 was used to avoid concentration polarization. The permeate composition
was determined using a calibrated gas chromatograph (Agilent 3000A Micro GC) equipped with thermal conductivity detectors. The mixed-gas permeability was determined via:

\[
P_i = 10^{10} \frac{y_i V_d l}{x_i p_{up} ART} \frac{dp}{dt}
\]

where \(y\) represents the mole fraction in the permeate, \(x\) represents the mole fraction in the feed.

The mixed-gas selectivity of \(C_3H_6/C_3H_8\) was determined by:

\[
\alpha_{i/j} = (y_{i}/y_{j})(x_{j}/x_{i})
\]

3. Results and discussion

3.1. High-pressure sorption experiments

The \(C_3H_6\) and \(C_3H_8\) pure-gas sorption isotherms at 35 °C for thermally treated PIM-6FDA-OH films at 120 and 250 °C are illustrated in Fig. 2. Sorption experiments were conducted gravimetrically for \(C_3H_6\) and \(C_3H_8\) with incremental increases in pressure taken upon achievement of steady-state mass uptake. The isotherms show that \(C_3H_6\) sorbs only slightly more than \(C_3H_8\) at all pressures. This results in solubility selectivities of approximately 1, in good agreement with previous studies [4, 5, 34-36]. The separation of \(C_3H_6\) from \(C_3H_8\) is thus expected to be only governed by size-sieving diffusivity selectivity.
Fig. 2. Pure-gas C_3H_6 and C_3H_8 sorption isotherms at 35 °C for PIM-6FDA-OH. Fits are drawn to guide the eye.

The dual-mode sorption model for glassy polymers describes total gas sorption as the sum of sorption in the “frozen microvoids” of the Langmuir domain (low pressure region) and the densely packed region known as Henry’s domain (high pressure region). Sorption in the Langmuir domain correlates with free volume in a polymer under the dual-mode framework [37]. It is typical to observe greater sorption uptake of C_3H_6 than C_3H_8 due to the fact that C_3H_6 is slightly more condensable and compact, and therefore can access the microvoids more readily. There was a slight decrease in concentration of C_3H_6 and C_3H_8 upon annealing at 250 °C, likely due to a tightening of the pore structure. That is, annealing of polyimides typically enhances CTC interactions and can contract free volume elements [10].

3.2. Fluorescence spectroscopy

Inherent to polyimide structures are intra- or inter-chain charge-transfer complexes (CTCs), which are electrostatic interactions due to the alternating arrangement of electron donor and
acceptor molecules across the N-phenyl imide bonds [14, 16]. A schematic showing the expected inter-chain interactions due to the formation of charge transfer complexes upon annealing of PIM-6FDA-OH is illustrated in Fig. 3. CTC formation in thermally annealed polyimides has been indicated via an increase in the intensity of the emission spectra collected by fluorescence spectroscopy [9, 11, 12, 15]. Fig. 4 is a plot of the emission spectra (325 nm excitation) for 120 and 250 °C treated PIM-6FDA-OH films of the same thickness. The intensity of the emission band increased upon annealing at 250 °C by about 50%, thereby indicating a greater concentration of CTCs. While it is unclear whether these enhancements in CTC formation emanate from intramolecular or intermolecular interactions, previous work has suggested a dominant effect of inter-chain interactions in solid-state polyimides [14]. That is, it is often visualized that a thermally-induced coplanarization of the chains increases packing density and molecular aggregation. Ultimately, the resulting inter-chain interactions help suppress inter-chain motions and are thus promising for plasticization suppression.

Fig. 3. Schematic diagram showing the inter-chain interactions due to the formation of charge transfer complexes upon annealing of PIM-6FDA-OH polyimide.
Fig. 4. Solid-state fluorescence emission spectra (excitation at 325 nm) of PIM-6FDA-OH heat-treated at 120 and 250 °C.

3.3. Pure-gas C_3H_6/C_3H_8 transport properties

The pure-gas permeation properties of heat-treated PIM-6FDA-OH membranes are shown in Table 1. Fig. 5 shows the experimentally observed C_3H_6/C_3H_8 upper bound plot developed by Koros and Burns [8]. The “golden” region of the plot was suggested by Koros and Lively to indicate the membrane performance demands for debottlenecking a distillation process [2]. It is defined by having a minimum selectivity of 20 and C_3H_6 permeability greater than 10 Barrer. As can be seen in Fig. 5, the 250 °C annealed PIM-6FDA-OH shows excellent performance for a solution-processable polymer as its performance is well above the defined tradeoff curve with a combination of high selectivity (30) and moderate permeability ($P(C_3H_6) = 3.5$ Barrer). To date, it has among the highest pure gas C_3H_6/C_3H_8 selectivity reported for solution-processable polymers. Another polymer, which defines the upper bound is 6FDA-DDBT, shows similar performance. Tanaka et al. [34] and Okamoto et al. [38] reported C_3H_6/C_3H_8 selectivities ranging from 27 to 20 with C_3H_6 permeabilities between 0.76 to 1.8 Barrer measured at 50 °C. Upon annealing PIM-6FDA-OH at 250 °C, there was a 60% increase in C_3H_6/C_3H_8 selectivity from 19
to 30 at the expense of a ~30% reduction in C\textsubscript{3}H\textsubscript{6} permeability, a trend commonly observed upon annealing of polyimides at high temperature [5, 9, 10]. Table 1 shows that the greater selectivity upon treating at 250 °C is derived exclusively from an enhancement in the diffusion selectivity by about 80%. On the other hand, the permeability reductions are due to drops in both diffusion and solubility coefficients. In general, the transport data are consistent with a more sieving and tighter microstructure, as indicated in Section 3.1. Compared with the other PIM materials (KAUST-PI-1, PIM-PI-1, and PIM-1) and even commercial low-free-volume Matrimid examined for the separation, PIM-6FDA-OH showed very promising performance.

Fig. 5. Pure-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} permeability/selectivity performance of the 120 and 250 °C treated PIM-6FDA-OH films. The solid line is the experimentally observed C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} upper bound [8].

In addition to improving the size-sieving properties of polyimides, thermal annealing has also been used as a tool to improve their plasticization resistance. As a preliminary investigation of the effects of annealing, pure-gas pressure dependent C\textsubscript{3}H\textsubscript{6} studies were carried out on the 120 and 250 °C treated PIM-6FDA-OH films. Fig. 6 shows a plot of the C\textsubscript{3}H\textsubscript{6} permeability isotherms.
at 35 °C. The 250 °C annealed film showed no up-turn in the C₃H₆ permeability isotherm, and instead demonstrated a dual-mode-like 20% drop with C₃H₆ feed pressure up to 5 bar. In contrast, the 120 °C-treated film showed an upturn between 2 and 3 bar. These preliminary pure-gas results indicate an improved plasticization resistance in the 250 °C film, consistent with formation of inter-chain CTCs discussed earlier. While this is a promising result, mixed-gas pressure dependence studies are necessary to assess the impact one component has on the transport behavior of the other [39].

Fig. 6. Pressure dependence of the pure-gas C₃H₆ permeabilities (35 °C) for PIM-6FDA-OH films treated at 120 and 250 °C. Fits are drawn to guide the eye.
Table 1. Pure-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} transport properties of 120 and 250 °C heat-treated PIM-6FDA-OH films at 2 bar and 35 °C.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>P(C\textsubscript{3}H\textsubscript{6})a</th>
<th>(\alpha_P)</th>
<th>D(C\textsubscript{3}H\textsubscript{6})b</th>
<th>(\alpha_D)</th>
<th>S(C\textsubscript{3}H\textsubscript{6})c</th>
<th>(\alpha_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 °C</td>
<td>5.1</td>
<td>19</td>
<td>2.0</td>
<td>15</td>
<td>0.25</td>
<td>1.3</td>
</tr>
<tr>
<td>250 °C</td>
<td>3.5</td>
<td>30</td>
<td>1.6</td>
<td>27</td>
<td>0.22</td>
<td>1.1</td>
</tr>
</tbody>
</table>

a Unit: Barrer \([=] 10^{-10} \text{cm}^3\text{(STP) cm cm}^{-2} \text{s}^{-1} \text{cmHg}^{-1}\).

b Unit: \(10^{-9} \text{cm}^2 \text{s}^{-1}\).

c Unit: \(\text{cm}^3\text{(STP) cm}^{-3}\text{(polymer) cmHg}^{-1}\).

3.4. Mixed-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} permeation

Mixed-gas permeation experiments were conducted with a 50:50 C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} feed at 35 °C for 120 and 250 °C treated PIM-6FDA-OH films to examine the separation performance under more realistic conditions. The feed pressure was incrementally increased once steady-state in permeability and selectivity were reached. The C\textsubscript{3}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} mixed-gas permeability isotherms and C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} selectivity isotherms are illustrated in Figs. 7-9. As observed in pure-gas testing, annealing PIM-6FDA-OH at 250 °C led to a reduction in the C\textsubscript{3}H\textsubscript{6} permeability due to tightening of the pore structure \cite{5}. However, there was also a marked improvement in plasticization resistance as the C\textsubscript{3}H\textsubscript{6} permeability decreased up to 5 bar total feed pressure. On the other hand, it increased for the 120 °C treated membrane at ~3 bar. Previous work by Krol et al. suggested that annealed Matrimid hollow fibers displayed similar trends in C\textsubscript{3}H\textsubscript{6} permeance compared to untreated fibers: i) There was a reduction in C\textsubscript{3}H\textsubscript{6} permeance compared to the untreated fibers.
attributed to densification of the chain packing from enhanced CTC interactions and ii) the C₃H₆ permeance decreased or remained constant with increasing feed pressure. Based on these observations, the authors claimed a suppression of plasticization [10].

However, the only conclusive way to evaluate plasticization is by examination of the permeability isotherm of the slower permeating component (i.e., C₃H₈). For the 250 °C annealed PIM-6FDA-OH, the C₃H₆ permeability decreased with pressure and the C₃H₈ permeability was essentially independent of pressure. This was a marked improvement in plasticization resistance over the 120 °C film for which C₃H₈ permeability increased by ~40 % from 1 bar to 2.5 bar feed pressure. The mixed-gas selectivity from 2 bar to 4 bar feed pressure was consistently 50-70% higher for the 250 °C film than the 120 °C film, ranging from 22 to 15 versus 13 to 10. The loss in selectivity for the 120 °C film can be attributed to contributions of both plasticization (i.e., a pressure-dependent increase in C₃H₈ mixed-gas permeability) and competitive sorption (i.e., a drop in C₃H₆ mixed-gas permeability relative to pure-gas). In addition, plasticization may also maintain the C₃H₆ mixed-gas permeability (i.e., even a slight upturn appears) (Fig. 7). This results in a relatively stable selectivity (i.e., 10-13), albeit lower than in the 250 °C film. On the other hand, selectivity losses in the annealed 250 °C film were attributed primarily to dual-mode-like pressure-dependent drops in C₃H₆ permeability.

The enhanced mixed-gas selectivities and plasticization resistance for thermally annealed polyimide films have also been demonstrated by Das and Koros [5]. Report of the permeation properties of unannealed 6FDA-6FpDA by Staudt-Bickel and Koros showed pure-gas C₃H₆/C₃H₈ selectivity at 2 bar of 16 and C₃H₆ permeability of 0.89 Barrer [4]. However, under mixed-gas
conditions the C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} selectivity and C\textsubscript{3}H\textsubscript{6} permeability at 2 bar C\textsubscript{3}H\textsubscript{6} partial pressure dropped to 7 and 0.68 Barrer, respectively. The large decrease in selectivity was mainly attributed to plasticization as the C\textsubscript{3}H\textsubscript{8} permeability increased with pressure at a faster rate than that of C\textsubscript{3}H\textsubscript{6}. Upon annealing this membrane, Koros and Das [5] observed a 20% increase in pure-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} selectivity from 16 to 19, but more importantly a preservation of the mixed-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} selectivity as it was 14 at 2 bar C\textsubscript{3}H\textsubscript{6} partial pressure. To date, annealed PIM-6FDA-OH and 6FDA-6FpDA have demonstrated the highest mixed-gas selectivities (15 and 14 at 2 bar C\textsubscript{3}H\textsubscript{6} feed pressure, respectively) among all polymers reported. The more significant increase in pure-gas selectivity (i.e. 50% versus 20%) upon annealing PIM-6FDA-OH over 6FDA-6FpDA can likely be attributed to enhanced hydrogen bonding between the hydroxyl moieties in PIM-6FDA-OH upon thermally-induced polymer densification.

Fig. 7. Pressure dependence of mixed-gas C\textsubscript{3}H\textsubscript{6} permeability isotherms at 35 °C for PIM-6FDA-OH films treated at 120 and 250 °C. Fits are drawn to guide the eye.
Fig. 8. Pressure dependence of mixed-gas C$_3$H$_8$ permeability isotherms at 35 °C for PIM-6FDA-OH films treated at 120 and 250 °C. Fits are drawn to guide the eye.

Fig. 9. Pressure dependence of mixed-gas C$_3$H$_6$/C$_3$H$_8$ selectivity isotherms at 35 °C for PIM-6FDA-OH films treated at 120 and 250 °C. Fits are drawn to guide the eye.

The data of the mixed-gas experiments can be evaluated relative to what has been reported to date by plotting them relative to the experimentally observed C$_3$H$_6$/C$_3$H$_8$ mixed-gas upper bound.
developed by Zhang et al., as shown in Fig. 10 [40]. A decrease in performance relative to the pure-gas measurements has been observed for all membranes evaluated in mixed-gas feeds. This serves as validation that pure-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} permeation properties are not the most thorough metric of membrane performance since they do not illuminate the potential effects of plasticization and competitive sorption which compromise C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} selectivity. KAUST-PI-1, PIM-PI-1, unannealed 6FDA-6FpDA, and 6FDA-TrMPD all showed a greater than 60% decrease in selectivity relative to pure-gas measurements due to plasticization and competitive sorption. However, if plasticization is effectively mitigated, better preservation of the pure-gas measurements can be achieved, as observed for the annealed PIM-6FDA-OH (250 °C) and 6FDA-6FpDA (210 °C).

![Permeability/selectivity map showing pure-gas data measured at 2 bar (unfilled markers) and mixed-gas data measured at 2 bar C\textsubscript{3}H\textsubscript{6} partial pressure (filled markers) with 50:50 C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} mixtures. Solid line is the experimentally observed pure-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} upper bound. The dashed line is the experimentally observed mixed-gas C\textsubscript{3}H\textsubscript{6}/C\textsubscript{3}H\textsubscript{8} upper bound [8, 40].](image_url)
4. Conclusions

In this work, the introduction of microporosity and hydroxyl-functionality was explored as a means of simultaneously boosting permeability and selectivity in PIM-6FDA-OH polyimide for propylene/propane separation. By thermally treating PIM-PI-OH, performance well above the experimentally observed trade-off curve approaching an industrially attractive “golden region” was observed. All films treated at temperatures at 250 °C demonstrated stable performance in mixed-gas environments, with no observable plasticization. Thermal annealing at 250 °C of PIM-6FDA-OH contributed to approximately 50% increase in C₃H₆/C₃H₈ selectivity in both pure-gas and mixed-gas feeds. Pure-gas selectivity improved from 19 to 30 at 2 bar, and mixed-gas selectivity improved from 10 to 15 at 2 bar C₃H₆ partial pressure. Improved plasticization resistance was consistent with CTC formation observed in fluorescence spectroscopy.

Acknowledgements

This work was supported by KAUST funding for Professor Ingo Pinnau.

Nomenclature

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIMs</td>
<td>polymers of intrinsic microporosity</td>
</tr>
<tr>
<td>PIM-PIs</td>
<td>polyimides of intrinsic microporosity</td>
</tr>
<tr>
<td>PIM-1</td>
<td>polymer of intrinsic microporosity 1</td>
</tr>
<tr>
<td>6FDA</td>
<td>hexafluoroisopropylidene bisphthalic dianhydride</td>
</tr>
<tr>
<td>SPDA</td>
<td>bis(carboxylic anhydride)</td>
</tr>
<tr>
<td>TPDA</td>
<td>9,10-diisopropyl-triptycene-based dianhydride</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TMPD</td>
<td>2,3,5,6-tetramethyl-1,4-phenylene diamine</td>
</tr>
<tr>
<td>DDBT</td>
<td>dimethyl-3,7-diaminodibenzo[b]thiophene-5,5-dioxide</td>
</tr>
<tr>
<td>TrMPD</td>
<td>2,4,6-trimethyl-1,3-phenylenediamine</td>
</tr>
<tr>
<td>6FpDA</td>
<td>4,4’-(hexafluoro-isopropylidene) dianiline</td>
</tr>
<tr>
<td>C(_3)H(_6)</td>
<td>propylene</td>
</tr>
<tr>
<td>C(_3)H(_8)</td>
<td>propane</td>
</tr>
<tr>
<td>O(_2)</td>
<td>oxygen</td>
</tr>
<tr>
<td>N(_2)</td>
<td>nitrogen</td>
</tr>
<tr>
<td>H(_2)</td>
<td>hydrogen</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>methane</td>
</tr>
<tr>
<td>P</td>
<td>permeability coefficient (Barrer [=] (10^{10}) cm(^3)(STP) cm cm(^{-2}) s(^{-1}) cmHg(^{-1}))</td>
</tr>
<tr>
<td>S</td>
<td>solubility coefficient (cm(^3)(STP) cm(^{-3})(polymer) cmHg(^{-1}))</td>
</tr>
<tr>
<td>D</td>
<td>diffusion coefficient (cm(^2) s(^{-1}))</td>
</tr>
<tr>
<td>P(C(_3)H(_6))</td>
<td>propylene permeability coefficient</td>
</tr>
<tr>
<td>P(C(_3)H(_8))</td>
<td>propane permeability coefficient</td>
</tr>
<tr>
<td>(\Delta(C_3H_6/C_3H_8))</td>
<td>propylene/propane selectivity</td>
</tr>
<tr>
<td>GPU</td>
<td>gas permeation units (cm(^3)(STP)/cm(^2)·s·cmHg)</td>
</tr>
<tr>
<td>(dp/dt)</td>
<td>steady-state permeate-side pressure increase (cmHg/s)</td>
</tr>
<tr>
<td>(p_{up})</td>
<td>upstream pressure (cmHg)</td>
</tr>
<tr>
<td>(V_d)</td>
<td>calibrated permeate volume (cm(^3))</td>
</tr>
<tr>
<td>(l)</td>
<td>membrane thickness (cm)</td>
</tr>
<tr>
<td>(A)</td>
<td>effective membrane area (cm(^2))</td>
</tr>
</tbody>
</table>
T operating temperature (K)

R gas constant (0.278 cm3cmHg/cm3(STP)K))

y_i mol fraction of component in the permeate

x_i mol fraction of component in the feed

ΔS solubility selectivity

ΔD diffusion selectivity

p pressure (bar)

C concentration (cm3 (STP) cm$^{-3}$)

C_{H} Langmuir sorption parameter (cm3(STP) cm$^{-3}$(polymer))

k_d Henry’s Law sorption parameter (cm3(STP) cm$^{-3}$(polymer) bar$^{-1}$)

b Langmuir hole affinity parameter (bar$^{-1}$)

PTFE polytetrafluoroethylene

TGA thermal gravimetric analysis

T_b normal boiling point

D_{LJ} Lennard Jones diameter

CTC charge transfer complex

THF tetrahydrofuran

References

Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane

Ramy J. Swaidan, Xiaohua Ma, Eric Litwiller, Ingo Pinnau*
Highlights

- Thermal annealing of a hydroxyl functionalized PIM-PI was used to achieve enhanced pure- and mixed-gas \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) selectivity and plasticization suppression.
- Annealing effects on the microstructure and \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) transport properties were examined.
- Discussion on the effects of plasticization and competitive sorption in \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) transport.
- ~50% increase in pure-gas \(\text{C}_3\text{H}_6/\text{C}_3\text{H}_8 \) selectivity to 30 upon annealing.