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Highlights

• We propose a feature-based 2D+3D multimodal facial expression recog-
nition method.

• It is fully automatic benefit from a large set of automatically detected
landmarks.

• The complementarities between 2D and 3D features are comprehen-
sively demonstrated.

• Our method achieves the best accuracy on the BU-3DFE database so
far.

• A good generalization ability is shown on the Bosphorus database.
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eUniversité Lyon 1, Institut Camille Jordan, Lyon, France

fGMSV Research Center, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia

Abstract

We present a fully automatic multimodal 2D + 3D feature-based facial ex-
pression recognition approach and demonstrate its performance on the BU-
3DFE database. Our approach combines multi-order gradient-based local
texture and shape descriptors in order to achieve efficiency and robustness.
First, a large set of fiducial facial landmarks of 2D face images along with
their 3D face scans are localized using a novel algorithm namely incremental
Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram
of Second Order Gradients (HSOG) based local image descriptor in conjunc-
tion with the widely used first-order gradient based SIFT descriptor are used
to describe the local texture around each 2D landmark. Similarly, the lo-
cal geometry around each 3D landmark is described by two novel local shape
descriptors constructed using the first-order and the second-order surface dif-
ferential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG)
and Histogram of mesh Shape index (curvature quantization, meshHOS). Fi-

∗Corresponding author
Email addresses: huibinli@mail.xjtu.edu.cn (Huibin Li),

huaxiong.ding@ec-lyon.fr (Huaxiong Ding), dhuang@buaa.edu.cn (Di Huang ),
yhwang@buaa.edu.cn (Yunhong Wang), zhaoxi1@mail.xjtu.edu.cn (Xi Zhao),
morvan@math.univ-lyon1.fr (Jean-Marie Morvan ), liming.chen@ec-lyon.fr (Liming
Chen)

Preprint submitted to Computer Vision and Image Understanding July 27, 2015



nally, the Support Vector Machine (SVM) based recognition results of all 2D
and 3D descriptors are fused at both feature-level and score-level to further
improve the accuracy. Comprehensive experimental results demonstrate that
there exist impressive complementary characteristics between the 2D and 3D
descriptors. We use the BU-3DFE benchmark to compare our approach to
the state-of-the-art ones. Our multimodal feature-based approach outper-
forms the others by achieving an average recognition accuracy of 86.32%.
Moreover, a good generalization ability is shown on the Bosphorus database.

Keywords: facial expression recognition, local texture descriptor, local
shape descriptor, multimodal fusion

1. Introduction1

Affect recognition aims to determine an individual’s emotion by detect-2

ing and measuring the emotion related physiological (e.g., bodily symptoms),3

psychological (e.g., feelings) or behavioral (e.g., facial expression) character-4

istics [1], [2]. As an easily detectable, collectible, and measurable emotion5

component, facial expression is ideal for affect recognition and for human-6

computer interaction related applications [3]. However, Facial Expression7

Recognition (FER) is a very challenging problem mainly because of the diver-8

sity and hybridity of human expressions among different subjects in different9

cultures, genders and contexts.10

In the past decades, a large number of FER approaches have been pro-11

posed. They can be categorized from three perspectives, namely the data12

modality, expression granularity, and temporal dynamics. From the first13

perspective, they are classified into 1) 2D FER (which uses 2D gray or color14

face images), 2) 3D FER (which uses 3D range images, point clouds, or15

meshes of faces), and 3) multimodal 2D + 3D FER (which uses both 2D and16

3D facial data). From the second perspective, they are divided into 1) six17

basic facial expression (i.e., anger, disgust, fear, happiness, sadness, and sur-18

prise) recognition, 2) facial Action Unit (AU, e.g., brow raiser, lip tightener,19

and mouth stretch) detection and recognition. From the third perspective,20

they are categorized into static (still images) and dynamic (image sequences)21

FER. In this paper, we focus on the problem of recognizing the six basic facial22

expressions using multimodal 2D + 3D static images.23

Appearance-based 2D FER has been widely investigated since 1990s [3].24

The main research topics lie in three aspects: face detection, expression re-25
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lated feature extraction and classification. Comprehensive surveys of 2D26

FER approaches are given in [4], [3]. They are mainly classified into two27

categories, i.e., template-based and feature-based [4]. Template-based ap-28

proaches usually fit a holistic face model to the input image or track it in29

the input image sequence. Active appearance model [5], point distribution30

model [6], mixture of probabilistic PCA [7], and topographic modeling [8]31

are some typical examples. Feature-based approaches generally localize the32

features of an analytic face model in the input image or track them in the33

input sequence. Gabor wavelets [9] and Local Binary Patterns (LBP) [10]34

based face representations are two popular representatives. Although con-35

siderable advancements have been achieved, 2D FER is still very challenging36

mainly due to its sensitivity to illumination, pose variations, and possible37

occlusions [4], [3].38

Recently, with the rapid development of 3D imaging and scanning tech-39

nologies, it becomes more and more popular to capture 3D face scans. Com-40

paring with 2D face images, 3D face scans contain precise geometric shape41

information of facial surfaces, which is robust to illumination and pose varia-42

tions, but more sensitive to facial expression changes. Thus, shape-based 3D43

FER has attracted increasing attentions. Similar to 2D, 3D FER approaches44

can also be categorized into template-based and feature-based. Template-45

based approaches usually build a parametric deformable face model first, and46

then extract the model parameters as expression features for recognition. 3D47

morphable model [11], bilinear deformable model [12], shape deformation48

model [13], and statistical feature model [14] are some famous examples.49

The main drawback of template-based approaches lies in that they require50

to establish one-to-one correspondence between 3D face scans, which is still51

a very challenging issue. Meanwhile, time consuming procedures like dense52

3D face registration and model fitting are indispensable. Feature-based ap-53

proaches generally extract 3D expression cues around facial landmarks using54

different facial surface geometric or differential quantities. For example, the55

distances between 3D facial landmarks are widely used in [15], [16], [17],56

and [18]. Moreover, 3D facial curves [19], facial geometry images and normal57

maps [20], [21] facial conformal images [22], facial surface normal [23], [24]58

and curvatures [23], [25], [24], and local depth-SIFT features [26] are some59

popular expression features. Feature-based approaches generally perform60

better than template-based ones. However, the bottleneck of feature-based61

approaches lies in accurate and robust 3D facial landmark localization, which62

is still a very difficult task [27]. More detailed surveys of 3D facial expression63
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recognition are given in [28], [29].64

Although the effectiveness of multimodal 2D + 3D face recognition has65

been well presented as in [30], [31], the investigation of multimodal 2D +66

3D FER is very limited. Wang et al. [25] compared the FER accuracy of67

3D primitive surface feature distribution based approach with 2D Gabor-68

wavelet and Topographic Context based ones on the BU-3DFE database,69

and found that 3D shape based approach is superior to 2D ones, especially70

for non-frontal faces. However, the effectiveness of combing 3D and 2D ap-71

proaches was not discussed. Zhao et al. [14] used both 2D features (RGB72

values and LBP) and 3D features (3D coordinates and shape index values)73

in the 3D statistical feature model for prototypical expression recognition.74

But the results using only 2D features or 3D features were not reported, and75

thus the complementarity between 2D and 3D features was also not stud-76

ied. In [32], the authors used both 2D and 3D dynamic data for real-time77

facial action and expression recognition. More precisely, they first extended78

the active shape model to handle 3D data for facial feature tracking. Then,79

they extracted numerous geometric measurements (e.g., the distances be-80

tween landmarks and the boundary shape of lips) and surface deformation81

measurements (e.g., image gradient and surface curvature descriptors). Fi-82

nally, the Rule Classifier was used for recognizing a subset of 11 important83

AUs and 4 facial expressions (i.e., happy, sad, surprise, disgust) on a dataset84

consisting of 832 sequences of 52 participants. Their experimental results85

demonstrated that the proposed 2D+3D algorithm performed much better86

than the 2D appearance-based algorithm (i.e., 2D ASM + Gabor filters +87

LDA) for recognizing the four facial expressions. This is a very illuminating88

approach for 2D+3D multimodal FER. However, they did not report the89

performance of each modality under their own framework. The importance90

of each modality is still unclear. Savran et al. [33] utilized multimodal 2D91

+ 3D face data for facial AU detection. They found that 3D data generally92

perform better than 2D data, especially for lower AUs. Moreover, the fu-93

sion of two modalities can improve the detection rates from 93.5% (2D) and94

95.4% (3D) to 97.1% (2D+3D). Except for facial AU detection and expres-95

sion recognition, Wang et al. [34] quantified facial expression abnormality in96

Schizophrenia by combining 2D and 3D features. Their experimental results97

demonstrated that the combined features better characterized facial expres-98

sions than either individual 3D geometric or 2D texture features.99

The above studies have preliminarily proved the fact that the combina-100

tion of 2D and 3D data is better than either of the single 2D or 3D modality101
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for expression characterization and AU detection, but deep analysis of the102

superiority for multimodal 2D+3D FER is still missing. An advantage of103

using 2D data is that it can be used to accurately localize a large set of facial104

landmarks on 2D face images and further on their 3D face scans due to the105

2D-3D correspondence, which is the first contribution of this paper. More106

precisely, we propose to explore the incremental Parallel Cascade of Linear107

Regression (iPar-CLR) algorithm [35] to automatically localize 49 landmarks108

for each 2D face image and its corresponding 3D mesh scan. This large set of109

expression related landmarks are then used for extracting local texture and110

shape descriptors for expression classification. To the best of our knowledge,111

this is the first work which uses such large number of automatically detected112

landmarks for 2D and 3D multimodal FER. In contrast, the majority of exist-113

ing feature-based 3D FER approaches reported their results on the BU-3DFE114

benchmark based on a large set of (typically 83) 3D facial landmarks manu-115

ally localized by the database providers [15], [16], [17], [18], [19], [23], [25],116

[26]. Therefore, the proposed framework presents a promising way to these117

landmark-based approaches so that they can be made automatic using the118

iPar-CLR algorithm in 2D and 3D multimodal face space.119

The second contribution of this paper is that a novel second-order image120

gradient based local texture descriptor (HSOG), a novel first-order mesh gra-121

dient (i.e., surface normal) based local shape descriptor (meshHOG), as well122

as a second-order mesh gradient (i.e., surface curvature) based local shape123

descriptor (meshHOS) are adapted in FER to comprehensively encode the124

expression variations in both the 2D and 3D modalities. According to our125

previous work [36], most of existing popular local image descriptors, such as126

HOG, LBP, and SIFT, only employ the first-order gradient information re-127

lated to the slope and the elasticity, i.e., length, area, etc. when the image is128

regarded as a surface, and thereby partially characterize its geometric prop-129

erties. By contrast, HSOG captures the curvature related cues of the surface,130

i.e., cliffs, ridges, summits, valleys, basins, and so on. Thus, HSOG can be131

applied to describe facial expression deformations (e.g., mouth stretch, lip132

stretcher, brow raiser). Moreover, in that paper, it was also demonstrated133

that HSOG outperformed the first-order gradient based local image descrip-134

tors (i.e. HOG, LBP, SIFT) when there were not severe scale variations, as135

in the applications of local image matching and scene classification. In this136

paper, we give another evidence of the effectiveness and generalization ability137

of HSOG for FER. Similarly, as general local shape descriptors, meshHOG138

and meshHOS provide a compact description of the facial surface normal139
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and curvature information, and they have proved very efficient for 3D face140

identification in our previous works [37], [38]. In this paper, we interested in141

exploring their generalization abilities in 3D FER.142

During the FER stage, both the early fusion (i.e., feature-level) and late143

fusion (i.e., score-level) strategies of 2D descriptors, 3D descriptors, as well144

as 2D and 3D descriptors are comprehensively demonstrated and their com-145

plementary characteristics are well revealed, which is our third contribution.146

The important findings behind the fusion results can be summarized as: 1)147

The second-order gradient based local texture or shape descriptor (HSOG148

or meshHOS) generally have stronger discriminative power than the first-149

order gradient based ones (SIFT or meshHOG). Moreover, different order150

2D or 3D descriptors are complementary in encoding local texture or shape151

cues. 2) There exist large complementary characteristics between 2D and152

3D descriptors of the same order (SIFT and meshHOG, HSOG and mesh-153

HOS), different order (SIFT and meshHOS, HSOG and meshHOG), as well154

as multiple orders (all four 2D and 3D descriptors).155

Overall, we present an efficient multimodal (2D and 3D) and multiple-156

order (first and second) feature-based fully automatic FER approach, and157

validate it trough comprehensive experiments on the BU-3DFE database.158

Considerable complementary characteristics between the features of different159

orders and different modalities are highlighted either by early fusion or late160

fusion of 2D, 3D, as well as 2D and 3D descriptors. The generalization161

capability of our approach is further evaluated on the Bosphorus database.162

This paper is an extension of our work presented in [23] and is organized as163

follows. Section 2 introduces the iPar-CLR based 2D and 3D facial landmark164

localization procedure. Section 3 and 4 give the construction details of the165

HSOG, meshHOG and meshHOS descriptors. Section 5 lists and compares166

the accuracies of each single 2D and 3D descriptor, and the ones of their167

fusion. The generalization capability of the proposed approach is discussed168

in Section 6. Finally, we conclude the paper and point out the limitations169

and future directions.170

2. Joint 2D and 3D facial landmark localization171

To extract expression related features, a set of key landmarks are required.172

In this paper, we introduce the incremental Parallel Cascade of Linear Re-173

gression (iPar-CLR) [35] for face landmarking in the 2D modality. iPar-CLR174

is an incremental and parallel version of of the Sequential Cascade of Linear175
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Regression (Seq-CLR) algorithm [39]. Given a set of training face images Ii176

associated with p 2D landmarks xi ∈ R2p×1. f is a feature extraction func-177

tion (e.g., SIFT) and f(xi) ∈ R128p×1 in the case of extracting SIFT features.178

During training, one assumes that p corrected landmarks are known for each179

Ii, and denoted as xi∗. To reproduce the testing scenario, one runs the face180

detector on the training images to provide an initial configuration of the p181

landmarks xi0, which corresponds to an average shape. In this setting, the182

Seq-CLR algorithm is formulated as:183

arg min
Wk,bk

∑

Ii

∑

xi
k

‖xi∗ − xik −Wkf(xik)− bk‖2. (1)

In practice, W0 and b0 are first estimated using xi∗, xi0, and f(xi0). Then, a184

sequence of regressions are computed to update xik and make it converge to xi∗185

step by step. iPar-CLR improves Seq-CLR by introducing a parametric 3D shape186

model for the configuration of p landmarks, and solving Eq. (1) in the parameter187

space. By assuming that the distribution of the perturbations of shape parameters188

is Gaussian, iPar-CLR is well suited for the task of incremental update. That is,189

it can incrementally update the pre-trained shape model according to the newly190

added face images.191

When used for joint 2D and 3D facial landmark localization, the texture map192

is projected from each textured 3D face scan into a 2D regular grid domain using193

the interpolation techniques. Then, we apply iPar-CLR [40] to each projected 2D194

texture face image, outputting 49 2D landmarks (see Fig.1). These 2D landmarks195

are then transferred to 3D texture face space by the inverse of the above projec-196

tion. Note that since all these 2D landmarks are located at the frontal part of the197

projected 2D face texture, the one-to-one correspondence between 3D texture and198

2D texture can be approximately preserved during the projection mapping. Fi-199

nally, the corresponding 3D landmarks are directly determined by the one-to-one200

correspondence between 3D texture and 3D geometry of the 3D face model. We201

evaluate iPar-CLR on the whole BU-3DFE database and the expressive samples202

in Bosphorus, and find that it can precisely localize all the pre-defined 49 facial203

landmarks for all samples even with variations in expression, ethnicity, gender and204

age etc. (see Fig.1 for some sampled results).205

3. Construction of local 2D texture descriptors206

3.1. First-order gradient based local texture descriptor: SIFT207

We extract the SIFT [41] descriptor of each projected 2D texture face208

image at the locations of the detected 2D landmarks within 16× 16 patches.209
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Figure 1: iPar-CLR based 2D landmark localization. 49 2D landmarks are localized on
the projected 2D texture face images of the BU-3DFE database with different genders,
ethnicities, ages, and expressions (from left to right, anger, disgust, fear, happiness, sadness
and surprise).

The SIFT feature based facial representation of a 2D texture image is gener-210

ated by concatenating all the SIFT features at the 49 landmarks according211

to the pre-defined order, resulting in a 128× 49 = 6, 272 dimensional feature212

vector. This vector is further normalized to the unit length for the following213

processing.214

3.2. Second-order gradient based local texture descriptor: HSOG215

The HSOG descriptor was originally proposed in [36] and proved very216

efficient for local image matching, object categorization, and scene classifi-217

cation. In this paper, we explore HSOG for 2D facial expression description.218

The construction of HSOG is composed of three steps:219

(1) Computation of the first order Oriented Gradient Maps (OGMs): The220

input of HSOG is a R×R image patch around each localized 2D facial land-221

mark. For each image patch I(x, y), it outputs a number of Oriented Gradient222
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Maps (OGMs) {Jo(x, y)}Lo=1 by computing the Gaussian convolution of the223

positive orientation gradient maps, described as:224

Jo(x, y) = GΣ ∗max

(
∂I(x, y)

∂o
, 0

)
, o = 1, 2, ..., L, (2)

where o represents a quantized direction, and GΣ is a Gaussian kernel with225

standard deviation Σ, which is proportional to the size of image patch R.226

(2) Computation of the second order gradients : Once these first order227

OGMs of all quantized directions are generated, they are used as the inputs228

for computing the second order gradients. Precisely, for each OGM Jo(x, y),229

we calculate its gradient magnitude mago(x, y) and orientation θo(x, y) at230

every pixel location. The orientation value θo(x, y) is then re-scaled from the231

range of [−π/2, π/2] to [0, 2π], and quantized into L dominant orientations.232

After quantization, the entry no of each orientation θo is calculated as:233

nθo(x, y) = mod

(⌊
θo(x, y)

2π/L
+

1

2

⌋
, L

)
, o = 1, 2, · · · , L. (3)

(3) Spatial pooling : Daisy-style spatial pooling strategy is used in HSOG234

as illustrated in Fig.2. It is easy to find that there are four parameters that235

determine the HSOG descriptor, i.e., the size of the patch (R); the number of236

quantized orientations (L); the number of concentric rings (CR); the number237

of circles on each ring (C). The total number of the divided circles can be238

calculated as T = CR × C + 1. Within each circle CIRj, and for each239

Figure 2: The daisy-style spatial pooling. Left: three concentric rings, and each with eight
circles in HSOG. Right: one concentric ring with eight circles in meshHOG and meshHOS.
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OGM Jo, a second order gradient histogram is constructed by accumulating240

the gradient magnitudes mago of all the pixels with the same quantized241

orientation entry no.242

hoj(i) =
∑

(x,y)∈CIRj

δ(nθo(x, y) == i) ∗mago, (4)

where i = 0, 1, · · · , L − 1; o = 1, 2, · · · , L, j = 1, 2, · · · , T , and δ is the243

characteristic function. Then, for each first order OGM Jo, its second order244

gradient histogram ho is generated by concatenating all the histograms from245

T circles:246

ho = [ho1,ho2, · · · ,hoT ]T , (5)

where o = 1, 2, · · ·L. Finally, the HSOG descriptor is obtained by concate-247

nating all L histograms of the second order gradients as in Eq. (6). Each248

histogram ho is normalized to a unit norm vector ĥo before concatenation.249

HSOG = [ĥ1, ĥ2, · · · , ĥL]T . (6)

Similar to SIFT, the HSOG feature based expression representation of a250

2D texture image is generated by concatenating all HSOG features of the251

localized landmarks and then normalized to the unit length. In this paper,252

we set R = 25, L = 8, CR = 3, C = 4 as in [36]. Thus, the dimension of the253

final HSOG feature vector for a face image is T×L×8×49 = 13×8×8×49 =254

40, 768.255

4. Construction of local 3D shape descriptors256

The meshHOG and meshHOS descriptors were originally proposed in our257

previous work [37], [38] and proved efficient in 3D face identification. In258

this paper, we employ them in 3D FER. Similar to HSOG, meshHOG and259

meshHOS are built by the following three steps:260

(i) Computation of facial surface normal and curvature: Each 3D facial261

surface is represented by a triangular mesh T = (F ,V), where F and V are262

the face and vertex sets. We compute the unit normal vector of each face263

by the cross product of its two edge vectors. Then the unit normal of each264

vertex nv = [nvx, n
v
y, n

v
z]
T is achieved by averaging the normal vectors of its265

one-ring faces. The mesh gradient magnitude magv and orientation θv at266

each vertex are calculated as:267

magv =
√

(nvx/n
v
z)

2 + (nvy/n
v
z)

2, θv = arctan(nvy/n
v
x). (7)
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According to [42], the principal curvatures kmax and kmin are computed268

by fitting a cubic-order surface:269

f(x, y) =
A

2
x2 +Bxy +

C

2
y2 +Dx3 + Ex2y + Fxy2 +Gy3 (8)

and its normal vectors (fx(x; y), fy(x; y),−1) using both the 3D coordinates270

and the normal vectors of the associated local neighbor points (two-ring).271

Once we have two principle curvatures, the shape index values, which describe272

different shape classes by a single number ranging from 0 to 1, is calculated273

as:274

SI =
1

2
− 1

π
arctan

(
kmax + kmin

kmax − kmin

)
. (9)

Figure 3 shows the shape index maps of sampled 3D faces with six prototyp-275

ical expressions.

Figure 3: The shape index maps of sampled 3D faces with six prototypical expressions
(from left to right, anger, disgust, fear, happiness, sadness, and surprise).

276

(ii) Canonical orientation(s) assignment : Similar to the SIFT feature,277

to achieve rotation invariance, one or more local coordinate systems (i.e.,278

canonical orientations) should be determined at each localized 3D landmark.279

This can be accomplished by the following three steps: First, we build an280

initial local coordinate system, where the landmark v and its normal nv are281

the origin and the positive z axis, respectively. And two perpendicular vec-282

tors in the tangent plane of v are randomly chosen as the x axis and y axis,283

respectively. Then, the gradient magnitudes and orientations of the ver-284

tices around the landmark with a given geodesic distance r0 are computed,285

Gaussian-weighted by their corresponding gradient magnitudes, and put in286

a histogram of 360 bins. Dominant gradient orientations, that is, peaks in287

the histogram, are used to assign one or more canonical orientations to the288

landmark. Finally, the initial local coordinate system is rotated in the local289

tangent plane, making each canonical orientation as new x axis, and the new290
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y axis is computed by the cross product of the z axis (i.e., normal vector nv)291

and the new x axis (i.e., canonical orientation). Once the canonical orienta-292

tions are determined, all the neighbor vertices and their normal vectors are293

transformed to the new local coordinate system for the following processes.294

(iii) Spatial pooling : Similar to the HSOG feature, a simplified daisy-style295

spatial pooling strategy is also used for meshHOG and meshHOS. However,296

the pooling strategy here is performed on the tangent plane of each 3D land-297

mark and on the local coordinate system determined by the assigned canoni-298

cal orientations. As illustrated in Fig. 2, for the 3D descriptors, there is only299

one concentric ring associated with eight circles, resulting in nine sequential300

circles. Within each circle CIRj, a mesh gradient histogram and a shape in-301

dex histogram are constructed respectively. The histogram of mesh gradient302

is constructed by accumulating the gradient magnitudes magv of all vertices303

with the same quantized orientation entry nθ(v) as:304

hogj(i) =
∑

v∈CIRj

δ(nθ(v) == i) ∗magv, (10)

where i = 0, 1, · · · , 7; j = 1, 2, · · · , 9, nθ(v) is entry of the quantized gra-305

dient orientation computed the same as nθo(x, y) in (3). The histogram of306

shape index is constructed by accumulating the Gaussian weights GΣ(v) of307

all vertices with the same quantized shape index value nSI(v)308

hosj(i) =
∑

v∈CIRj

δ(nSI(v) == i) ∗GΣ(v), (11)

where i = 0, 1, · · · , 7; j = 1, 2, · · · , 9, nSI(v) is the quantized shape index309

values. Then, for each 3D landmark, its 3D descriptors are generated by310

concatenating all the histograms from nine circles in a clockwise direction,311

HOG = [hog1,hog2, · · · ,hog9]T , HOS = [hos1,hos2, · · · ,hos9]T . (12)

Each sub-histogram (hogi or hosi) is normalized to the unit length before312

concatenation to eliminate the influence of non-uniform mesh sampling. Note313

that, intuitively, HOG describes the point-level bending pattern of the local314

shape around a landmark while HOS indicates the distribution of different315

shape categories. The expression representation (based on meshHOG or316

meshHOS) of a 3D face surface is generated by concatenating all HOG or317

HOS features of the localized 3D landmarks and then normalized to the unit318
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length. Following [37], the geodesic radius r0 is set to 22.50 mm, the radius of319

each circle is set to 10 mm, and the distance between the center of the centric320

circle and the one of each rounding circle is set to 15 mm. As a result, the321

dimension of the final meshHOG or meshHOS feature is 9× 8× 49 = 3, 528.322

5. Experimental results323

5.1. The BU-3DFE database324

We make use of the widely used BU-3DFE database [43] to evaluate the325

proposed multimodal 2D + 3D local feature-based FER approach. This326

database consists of 2,500 textured 3D face scans of 100 persons in differ-327

ent expression, gender, race, and age. Six prototypical facial expressions328

(anger, disgust, fear, happiness, sadness, and surprise) with four intensity329

levels plus a neutral expression are displayed for each person. Examples of330

some projected 2D texture face images in BU-3DFE database are shown in331

Fig.1.332

5.2. Experimental setup333

To fairly conduct the identity-independent FER, we use the evaluation334

protocol in [13]. More precisely, we randomly select 60 persons, and keep335

the samples with the six prototypical facial expressions of two highest in-336

tensity levels. That is, 60 × 6 × 2 = 720 samples are used for training and337

testing in total. Then, 648 samples of 54 persons (90%) and 72 of 6 persons338

(10%) are randomly divided for the training and testing data partition. To339

achieve stable recognition accuracy, this kind of 10-fold subject-independent340

cross-validation is conducted 100 rounds for all of our experiments. Based on341

these data partition strategies and the constructed 2D and 3D features, we342

utilize the SVM classifier with the Radial Basis Function (RBF) kernel for343

expression classification. The parameters for SVMs are tuned according to344

the 10-fold cross-validation in the training sets. To find the complementary345

characteristics between 2D descriptors, 3D descriptors, as well as 2D and 3D346

descriptors, we conduct both the early fusion (feature-level) and late fusion347

(score-level). For early fusion, the fused feature is generated by simply con-348

catenating different descriptors. For late fusion, the mean of the recognition349

accuracies of different descriptors are used as the final accuracy.350
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5.3. Performance evaluation351

5.3.1. Local 2D texture descriptors and their fusion352

Table 1 shows the average expression recognition accuracies achieved us-353

ing the single 2D descriptors and their fusion. From this table, we can see354

that: i) The average accuracies of the HSOG descriptor are much better355

than the ones of SIFT for anger and sadness, and comparable for the other356

expressions. ii) Early fusion largely improves the average accuracies of anger357

and sadness for SIFT, but also largely impairs the one of sadness for HSOG.358

iii) Late fusion generally performs better than early fusion, especially for the359

fear and sadness expressions. iv) Overall, the average accuracy of HSOG is360

84.49%, which is better than SIFT (81.85%), and even slightly better than361

the ones of early fusion (82.85%) and late fusion (84.29%). We can conclude362

that the second-order gradient based local texture descriptor (HSOG) has363

more powerful discriminative ability than the popular first-order gradient364

based one (SIFT) for local texture-based FER. Moreover, there also exists365

some complementarity between different order descriptors for some specific366

expressions (e.g., anger and fear).

Table 1: Average confusion matrices of SIFT, HSOG, and their early and late fusions on
BU-3DFE database.

SIFT (81.85) HSOG (84.49)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 76.55 6.53 2.83 0 14.09 0 83.09 4.24 3.21 0 9.37 0.08
DI 5.16 84.51 2.37 1.28 2.39 4.29 5.75 85.00 2.14 2.41 2.46 2.24
FE 3.64 6.41 72.61 5.73 8.85 2.76 1.06 5.63 72.41 9.48 8.35 3.07
HA 0 0.98 8.77 89.37 0 0 0.79 2.45 6.02 89.82 0.03 0.90
SA 20.25 1.43 7.29 0 70.71 0.32 12.82 3.42 3.57 0 80.20 0
SU 0.01 0.04 1.12 0.64 0.82 97.38 0 0.23 1.74 0.75 0.82 96.47

early fusion: SIFT + HSOG (82.86) late fusion: SIFT + HSOG (84.29)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 83.91 4.29 2.86 0 8.87 0.08 82.16 5.05 2.92 0 9.87 0
DI 6.12 83.27 2.87 1.68 1.66 4.42 5.81 83.87 2.56 1.64 2.22 3.9
FE 1.42 7.73 70.82 8.60 8.35 3.07 1.16 6.48 74.40 7.38 7.80 2.77
HA 0.03 2.59 8.28 88.20 0 0.90 0.02 1.70 7.52 89.86 0 0.90
SA 19.06 2.00 5.03 0 73.91 0 14.67 2.45 4.48 0 78.42 0
SU 0 0 2.13 0.01 0.82 97.05 0 0.07 1.33 0.72 0.82 97.07

367

5.3.2. Local 3D shape descriptors and their fusion368

Table 2 shows the average expression recognition accuracies achieved us-369

ing the single 3D descriptors and their fusion. From this table, we can370

find that: i) Except anger expression, meshHOS achieves better results than371

meshHOG, especially for happiness. ii) Early fusion and late fusion generally372
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improve the accuracies of both 3D descriptors for all expressions except hap-373

piness with a slight drop in early fusion. iii) Overall, the average recognition374

accuracy of meshHOS is 80.55%, which is better than meshHOG (77.62%),375

and late fusion (82.70%) is superior to early fusion (81.23%). We can con-376

clude that the second-order surface gradient-based local shape descriptor377

(meshHOS) has stronger discriminative capability than the first-order surface378

gradient-based one (meshHOG). Moreover, they also contain some comple-379

mentary information when classifying some specific expressions (e.g., sadness380

and surprise).381

Table 2: Average confusion matrices of meshHOG, meshHOS, and their early and late
fusions on BU-3DFE database.

meshHOG (77.62) meshHOS (80.55)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 79.75 2.47 2.60 1.48 13.70 0 77.96 4.36 2.16 1.17 14.36 0
DI 4.11 75.00 8.89 4.92 2.17 4.91 3.34 78.99 6.78 3.83 3.31 3.74
FE 3.39 7.32 66.23 14.44 4.30 4.33 0.92 6.63 69.50 13.27 4.69 4.99
HA 0.77 0.59 15.52 80.79 0 2.33 0 0.37 9.85 88.38 1.40 0
SA 22.58 2.09 2.91 0 72.32 0.11 18.28 3.01 4.15 0 74.52 0.04
SU 0 1.01 7.38 0.01 0 91.61 0 2.08 3.98 0 0 93.93

early fusion: meshHOG + meshHOS (81.23) late fusion: meshHOG + meshHOS (82.70)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 80.93 2.56 2.56 1.45 12.50 0 82.63 2.48 2.56 1.48 10.85 0
DI 4.43 80.12 5.55 4.76 2.01 3.13 3.84 80.97 5.13 4.62 1.93 3.51
FE 1.29 6.18 71.06 13.08 3.29 5.10 1.67 5.72 72.08 12.22 3.44 4.87
HA 0 1.18 13.79 85.03 0 0 0 0.68 12.02 87.21 0.09 0
SA 19.13 1.38 2.82 0 76.67 0 15.78 1.57 3.91 0 78.74 0
SU 0 0.13 6.32 0.01 0 93.54 0 0.04 5.38 0 0 94.57

5.3.3. Local multimodal 2D + 3D descriptors and their fusion382

In this section, we indicate that the local 2D texture and 3D shape de-383

scriptors contain strong complementary characteristics, and thus their fusion384

largely improves the expression recognition accuracies.385

Table 3 lists the average expression recognition results of fusing the same386

order gradient-based 2D and 3D descriptors lead increase performance. Com-387

pared with the results in Table 1 and Table 2, we can see that both early388

fusion and late fusion of the same order gradient-based 2D and 3D descrip-389

tors are very efficient, especially for the case of late fusion, with an improve-390

ment up to 3% for SIFT, 7% for meshHOG, 2.3% for HSOG, and 6.3% for391

meshHOS in the average accuracy. Moreover, the improvement of sadness392

expression is up to 8% for meshHOG and 10% for SIFT. And the accuracies393

of happiness are improved about 5% for HSOG and 6% for meshHOS.394
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Table 3: The effectiveness of fusing the same order gradient-based 2D and 3D descriptors
on BU-3DFE database.

early fusion: SIFT + meshHOG (83.68) late fusion: SIFT + meshHOG (84.91)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 82.09 5.25 1.83 0.08 10.75 0 83.14 4.07 1.59 0.56 10.63 0
DI 5.67 84.75 4.00 1.33 0.08 4.17 6.38 82.65 3.47 2.04 0.75 4.68
FE 1.50 6.00 71.33 11.00 6.67 3.50 0.20 6.63 74.02 8.06 7.85 3.24
HA 0 1.08 8.67 89.50 0 075 0 0.87 6.98 91.74 0 0.41
SA 17.33 1.08 3.42 0 78.17 0 15.28 0.91 3.36 0 80.45 0
SU 0 0.58 2.83 0 0.33 96.25 0 0.04 1.75 0 0.77 97.43

early fusion: HSOG + meshHOS (84.49) late fusion: HSOG + meshHOS (86.80)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 83.50 5.75 2.17 0 8.58 0 86.10 3.23 1.64 0.33 8.70 0
DI 5.42 85.67 1.42 2.17 2.33 3.00 4.96 85.45 1.66 2.29 2.48 3.17
FE 0.25 6.92 70.58 8.08 9.75 4.42 0.05 4.31 75.87 9.33 6.77 3.67
HA 0 2.08 6.25 91.67 0 0 0.02 1.08 3.47 94.85 0.59 0
SA 14.00 2.50 4.42 0 79.08 0 13.47 0.75 4.4 0 81.38 0
SU 0 0.08 3.17 0 0.33 96.42 0 0.01 1.96 0.07 0.82 97.15

Table 4 shows the average expression recognition results of fusing different395

order gradient-based 2D and 3D descriptors. Compared with the results396

in Table 1 and Table 2, we can find that the fusion of the different order397

gradient-based 2D and 3D descriptors is also very efficient except the case of398

early fusion of HSOG and meshHOG. Take the results of late fusion as an399

example, the average recognition accuracies are improved by 3.2% for SIFT,400

5% for meshHOS, 1.3% for HSOG and 8.1% for meshHOG. In particular,401

the improvement of happiness expression is 5.5% in the case of fusing SIFT402

and meshHOS. And the accuracy of the sadness expression is improved up403

to 11% when lately fusing HSOG and meshHOG.404

As reported in Table 5, when considering the fusion of all the first-order405

and second-order gradient-based local 2D texture and 3D shape descriptors,406

our approach achieves an average recognition accuracy of 85.92% for early407

fusion and 86.32% for late fusion. These scores largely outperform the ones408

achieved by only fusing 2D descriptors (82.86% and 84.29%) in Table 1 or 3D409

descriptors (81.23% and 82.70%) in Table 2. More precisely, the confusion410

matrices of these scores indicate that the 2D descriptors and 3D descriptors411

have strong complementary characteristics for all the six prototypical facial412

expressions.413

5.3.4. Comparison with other methods414

To validate the effectiveness of the proposed method in FER, we com-415

pare it with the state-of-the-art methods on the BU-3DFE dataset. To give416

a comprehensive analysis, four aspects, including the data modality, facial417

landmark, expression classifier, and recognition accuracy are compared.418
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Table 4: The effectiveness of fusing different order gradient-based 2D and 3D descriptors
on BU-3DFE database.

early fusion: SIFT + meshHOS (85.15) late fusion: SIFT + meshHOS (85.07)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 85.42 5.75 2.25 0 6.58 0 80.67 5.08 1.83 0.08 12.33 0
DI 5.00 86.92 0.92 1.75 1.50 3.92 4.67 86.33 2.17 0.83 2.50 3.50
FE 0 6.25 73.67 6.42 9.58 4.08 0 6.92 75.50 7.08 7.33 3.17
HA 0 1.00 7.33 91.67 0 0 0 1.00 5.08 93.92 0 0
SA 16.83 1.25 5.75 0 76.17 0 15.58 0.83 6.92 0 76.67 0
SU 0 0.25 1.92 0 0.75 97.08 0 0 1.83 0 0.83 97.33

early fusion: HSOG + meshHOG (83.17) late fusion: HSOG + meshHOG (85.75)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 81.00 4.33 1.83 1.00 11.83 0 82.58 3.92 1.92 1.50 10.08 0
DI 4.75 85.83 3.67 2.58 1.17 2.00 5.33 86.67 1.67 2.50 1.33 2.50
FE 1.17 5.92 72.75 10.25 6.25 3.67 0 6.58 74.83 8.25 7.00 3.33
HA 0.08 1.83 9.58 87.83 0 0.67 0 2.42 6.00 90.17 0 1.42
SA 19.17 1.08 3.50 0 76.25 0 11.42 1.17 4.17 0 83.25 0
SU 0 1.08 3.58 0 0 95.33 0 0 2.08 0 0.92 97.00

Table 5: The effectiveness of fusing all four gradient-based 2D and 3D descriptors on
BU-3DFE database.

early fusion: all features (85.92) late fusion: all features (86.32)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 86.33 3.91 1.58 0.06 8.13 0 85.56 3.88 1.58 0.17 8.81 0
DI 5.78 84.27 2.19 2.32 0.98 4.47 5.17 84.35 2.00 2.50 2.03 3.95
FE 0.02 4.06 75.03 10.93 6.41 3.56 0 4.64 75.77 9.26 7.02 3.30
HA 0 0.99 7.15 91.86 0 0 0 0.92 5.62 93.42 0 0.05
SA 14.69 0.43 3.52 0 81.36 0 14.28 0.92 3.55 0 81.26 0
SU 0 0 2.52 0 0.82 96.67 0 0 1.63 0 0.82 97.55

From Table 6, we find that all previous methods (except [25] and [14])419

reported their FER accuracies on BU-3DFE using only 3D modality data.420

As mentioned in Section 1, the results of 2D and 3D data are separately421

reported in [25] and jointly reported in [14]. Complementarity analysis of422

2D and 3D data in FER is missing. On facial landmark, early studies such423

as [25], [16], [18], [17], and [26] rely on a large number of manual landmarks.424

Recent studies try to avoid this impractical framework by utilizing global425

registration algorithms (e.g., [12], [13], [21], [24]), or building general face426

models (e.g., [14], [44]). Our method solves this problem by exploring the427

iPar-CLR algorithm to jointly detect a large number of 2D and 3D landmarks.428

For expression classification, SVM is the most popular classifier compared429

with the others such as Neutral Networks (NN), Sparse Representation-based430

Classifier (SRC), Bayesian Belief Net (BBN), and Multiple Kernel Learning431

(MKL).432
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Table 6: Performance comparison with the state-of-the-art methods on BU-3DFE
database.

Method Modality Landmark Classifier
Accuracy in protocol (%)

I II III

Wang et al. (2006) [25] 2D/3D 64 manual LDA 83.60 61.79 -
Soyel et al. (2007)[15] 3D mesh 11 manual NN 91.30 67.52 -
Soyel et al. (2008) [16] 3D mesh 83 manual NN 93.72 - -
Tang et al. (2008)[18] 3D mesh 83 manual LDA 95.10 74.51 -
Tang et al. (2008) [17] 3D mesh 83 manual SVM 87.10 - -
Mpiperis et al. (2008) [12] 3D mesh global registration ML 90.50 - -
Gong et al. (2009)[13] 3D depth global registration SVM - 76.22 -
Zhao et al. (2010)[14] 2D+3D 19 automatic BBN 82.30 - -
Berretti et al. (2010) [26] 3D depth 27 manual SVM - - 77.54
Lemaire et al. (2011) [44] 3D mesh 21 automatic SVM - 75.76 -
Li et al. (2012) [21] 3D depth global registration MKL - - 80.14
Zeng et al. (2013) [22] 3D depth 3 automatic SRC - - 70.93
Zhen et al. (2015) [24] 3D mesh global registration SVM - 84.50 83.20
Yang et al. (2015) [45] 3D mesh global registration SVM - 84.80 82.73
Ours (2D+3D features) 2D+3D 49 automatic SVM - 86.32 -

In the literature, there are three FER protocols on BU-3DFE. Early tasks433

(e.g., [14], [16], [17], [18], [25]) chose 60 subjects and average the accuracies434

of one or two rounds of 10-fold cross-validation, totally with 10 or 20 times435

of train and test sessions (denoted by protocol I). This protocol has proved436

very sensitive to the identity variations of training and testing samples [13].437

Gong et al. [13] later suggested to choose 60 subjects and average the ac-438

curacies of 100 rounds of 10-fold cross-validation, resulting in 1000 times of439

train and test sessions in total (i.e., protocol II). A similar protocol (i.e.,440

protocol III) [26], randomly chose 60 subjects in each round of 10-fold cross-441

validation and average the accuracies of 100 rounds. From Table 6, we can442

find that the accuracies of the same methods [25], [15], [18] dropped more443

than 20% from protocol I to protocol II. Moreover, the accuracies of the same444

method achieved by protocol II and protocol III were close to each other as445

shown in [24] and [45]. Our proposed multimodal 2D+3D local feature-based446

approach reaches the highest average accuracy (86.32%) in protocol II.447

6. Discussion448

6.1. Generalization capability on Bosphorus database449

In this section, we study the generalization capability of our proposed ap-450

proach on the Bosphorus database. This database contains 4666 textured 3D451
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face models of 105 subjects in various facial expressions, action units, poses452

and occlusions. To fairly conduct the identity-independent facial expression453

recognition, we still use the experimental protocol in [13] (i.e., protocol II).454

That is, we randomly select 60 persons who display all the six prototypical455

facial expressions. Totally, there are 60× 6 = 360 samples used for training456

and testing. And 324 samples of 54 persons (90%) and 36 of 6 persons (10%)457

are randomly divided for the training and testing data partition. This kind of458

10-fold cross-validation is conducted 100 rounds to achieve stable recognition459

accuracies, and the results are listed in Table 7.460

Table 7: The average accuracies and confusion matrices (in %) on Bosphorus database.

SIFT (82.89) HSOG (80.31) meshHOG (65.39) meshHOS (74.94)

late fusion of SIFT + meshHOS (84.44) late fusion of HSOG + meshHOS (83.56)

early fusion of 2D+3D descriptors (84.33) late fusion of 2D+3D descriptors (84.72)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 83.00 5.83 0.17 0 11.00 0 82.33 6.67 0 0 11.00 0
DI 5.83 82.50 5.67 1.33 4.67 0 5.83 82.83 5.17 1.33 4.67 0.17
FE 1.17 1.67 69.83 1.50 4.00 21.83 0.17 3.17 72.33 2.17 3.67 18.50
HA 0 0.17 0 99.83 0 0 0 0 0 100 0 0
SA 3.83 8.00 0 0 88.17 0 4.33 6.67 0 0 89.00 0
SU 0 0 17.33 0 0 82.67 0 0 18.17 0 0 81.83

Compare the results in Table 7 with the ones achieved on the BU-3DFE461

dataset, we can see that: 1) except the SIFT descriptor, the accuracies of462

other 2D and 3D descriptors are decreased. For example, the performance of463

meshHOG is dropped from 77.62% on BU-3DFE to 65.39% on Bosphorus.464

2) The fusion of 2D and 3D descriptors is still efficient such as the late fusion465

of SIFT and meshHOG, HSOG and meshHOS. 3) Comparable expression466

recognition accuracies (86.32% vs. 84.72%) are achieved on the two datasets467

when fusing all the 2D and 3D local descriptors. 4) Compare with the re-468

sults in Table 5, the accuracies for happiness and sadness are much better on469

Bosphorus, while the ones for surprise are much better on BU-3DFE. The470

possible reasons resulting in 1) and 4) come from the large expression varia-471

tions of different persons when they displaying the same expression. Noted472

that all the persons in Bosphorus are professional actors or actress, while the473

subjects in BU-3DFE are ordinary people such as the university students.474

As shown in Fig.4, sadness and anger look very similar for some people, and475

fear is always with month opening, which makes fear and surprise are largely476

confused with each other. Moreover, the disgust expression is very special477

and diversiform, which makes it confusing with sadness, anger and fear. It is478
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Figure 4: Examples of expression pairs with similar expression configurations but different
expression labels in the Bosphorus database. The expression labels of the bottom three
pairs are: anger and disgust, fear and disgust, sadness and disgust.

probably the reason that most anger samples are misclassified into sadness,479

and most surprise samples are misclassified to fear and vice versa as shown480

in the average confusion matrices in Table 7.481

6.2. Complementarity analysis between 2D and 3D descriptors482

To illustrate the complementary characteristics between 2D and 3D mul-483

timodal descriptors, we perform the Gentle AdaBoost algorithm [46] on the484

HSOG and meshHOS descriptors to select the most discriminative 2D and485

3D facial landmarks (i.e., local regions used to compute HSOG or meshHOS)486

on BU-3DEF. More precisely, in each iteration of the Gentle AdaBoost al-487

gorithm, each landmark associated descriptor is first fed into a logistic re-488

gression weak classier, and the one with the lowest error rate is chosen as489

the most discriminative one in current iteration. Then, the weights of all the490

samples (landmarks) are updated, making the algorithm pay more attention491

on the misclassified samples. Finally, the algorithm stops when the top N492

discriminative landmarks are selected. Figure 5 shows the top 15 most dis-493

criminative landmarks automatically selected by this algorithm. From this494

figure, it is not difficult to find that the distributions of the top 15 most dis-495

criminative 2D and 3D facial landmarks are largely different from each other496

for all the six sampled facial expressions. This finding once again indicates497

that our proposed 2D and 3D multimodal local texture and shape descriptors498

indeed have strong complementary characteristics.499
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