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ABSTRACT

Approximate images of the earth’s subsurface structures are
usually obtained by migrating surface seismic data. Least-
squares migration, under the single-scattering assumption, is
used as an iterative linearized inversion scheme to suppress mi-
gration artifacts, deconvolve the source signature, mitigate the
acquisition fingerprint, and enhance the spatial resolution of mi-
grated images. The problem with least-squares migration of pri-
maries, however, is that it may not be able to enhance events that
are mainly illuminated by internal multiples, such as vertical and
nearly vertical faults or salt flanks. To alleviate this problem, we
adopted a linearized inversion framework to migrate internally

scattered energy. We apply the least-squares migration of first-
order internal multiples to image subsurface vertical fault
planes. Tests on synthetic data demonstrated the ability of
the proposed method to resolve vertical fault planes, which
are poorly illuminated by the least-squares migration of primar-
ies only. The proposed scheme is robust in the presence of white
Gaussian observational noise and in the case of imaging the
fault planes using inaccurate migration velocities. Our results
suggested that the proposed least-squares imaging, under the
double-scattering assumption, still retrieved the vertical fault
planes when imaging the scattered data despite a slight defocus-
ing of these events due to the presence of noise or velocity
errors.

INTRODUCTION

Seismic imaging using Kirchhoff-type integrals, based on the
high-frequency asymptotic solution to the wave equation, is a
powerful tool to map the data recorded on the surface of the earth
into representative subsurface structures (Claerbout, 1992). How-
ever, a major drawback of standard Kirchhoff migration is that it
mainly images reflectors that are primarily illuminated by single-
scattering energy. In other words, it focuses the seismic energy that
travels from a source point and bounces only once off a subsurface
scattering point before it is received at a surface receiver. The reason
is that the recording surface in seismic acquisition surveys does not
typically enclose the medium containing the scattering points.
Therefore, in the case of a complex velocity structure, some seismic
energy may bounce once off a subsurface scattering point without
ending up at the recording surface (Zuberi and Alkhalifah, 2014).
Figure 1a shows schematically a reflected ray that does not reach a
recording station after a single reflection, pointing away from the
recording surface.

Imaging internal multiples has the potential to retrieve seismic
events that are poorly illuminated by single-scattering energy, such
as vertical and nearly vertical fault planes or salt flanks (Aldawood
et al., 2014b). Internally scattered seismic energy may have a path
that could end up on the recording surface, allowing the illumina-
tion of such reflectors. Figure 1b shows schematically a doubly re-
flected ray with a raypath that ends up on the recording surface.
Malcolm et al. (2009) propose a methodology to image internal
multiples, in which they image prismatic waves and other higher
order internal multiples. Behura et al. (2012) propose an iterative
imaging procedure to image internal scattering along with sin-
gle-scattering energy. Their methodology is based on virtual source
creation using inverse scattering (Wapenaar et al., 2012). Zuberi and
Alkhalifah (2013) propose a three-step interferometric imaging pro-
cedure to image first-order internal scattering energy. Zuberi and
Alkhalifah (2014) generalize their interferometric technique to
include higher order internal multiples. Their generalized interfero-
metric multiple imaging method simultaneously creates and images
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internal multiples given that they are kinematically allowed to be in
the recorded data.
Standard Kirchhoff-based, or reverse time migration (RTM)-

based imaging is performed by applying the corresponding adjoint
of the forward-modeling operators to the single-scattered surface
seismic data and correlating it with the forward-modeled source
wavefield to predict the location of the single-scattering energy.
Standard migration suffers from migration artifacts, which results
in a blurred depiction of the true subsurface reflectivity distribu-
tions. This effect is primarily caused by the limited acquisition
aperture, coarse source-receiver sampling, band-limited nature
of the source wavelet, and low subsurface illumination (Nemeth
et al., 1999; Tang, 2009). To remedy this problem, least-squares
migration (LSM) can be used to enhance the quality of migrated
images and suppress the migration artifacts when imaging primar-
ies and to properly deconvolve the source wavelet and acquisition
fingerprint (LeBras and Clayton, 1988; Nemeth et al., 1999). LSM
provides an approximate solution for the subsurface reflectivity as
demonstrated by the linearized waveform inversion (Snieder et al.,
1988; Landa et al., 1989; Crase et al., 1990; Roth and Tarantola,
1992). Dai et al. (2012) adapt LSM to image blended data in a
multisource RTM framework. Wang and Sacchi (2007), Herrmann
and Li (2012), and Aldawood et al. (2014a) improved the least-
squares imaging by imposing sparseness constraints on the
least-squares solution to enhance the spatial resolution of the seis-
mic events.
In this paper, we extend the theory of LSM to include the im-

aging of multiply scattered seismic energy. First, we describe how
we linearize the problem of imaging internal multiples. Then,
we apply the proposed linearized inversion to delineate synthetic
vertical fault planes that are generally poorly illuminated by pri-
maries. Finally, we demonstrate the robustness of the proposed
linearized inversion framework to image these fault planes in
the presence of white Gaussian observational noise and in
the case of imaging the subsurface using erroneous migration
velocities.

SINGLE-SCATTERING MODELING
AND INVERSION

The Kirchhoff forward-modeling operator L is a linear operator
that maps the subsurface reflectivity distribution to single-scattered
seismic data. Mathematically, generating synthetic seismic data cor-
responding to a reflectivity model of the earth mðxÞ is obtained us-
ing the following forward-modeling operator in the frequency
domain:

dðs; g;ωÞ ¼
Z
V
mðxÞWðωÞeiωðτsxþτxgÞdx; (1)

where dðs; g;ωÞ is the modeled single-scattered seismic data re-
corded at a surface receiver g due to a surface source located at
s for a particular frequency ω. A point in the subsurface volume
V is given by x, and WðωÞ denotes the source wavelet. In addition,
τsx is the traveltime from the source point s to the subsurface scat-
tering point x and τxg is the traveltime from the subsurface scattering
point x to the receiver point g. In matrix form, the modeling can be
represented by the following matrix-vector multiplication:

d ¼ Lm; (2)

where d is the recorded single-scattered data vector and m is the
subsurface reflectivity vector. A standard migrated image is ob-
tained by applying the adjoint of the forward-modeling operator
LT to the single-scattered seismic data (Claerbout, 1992). The ad-
joint operator linearly maps the single-scattered seismic data to sub-
surface structures of the earth as follows:

mmigðxÞ ¼
Z
s

Z
g

Z
ω
dðs; g;ωÞW�ðωÞe−iωðτsxþτxgÞdsdgdω;

(3)

where mmigðxÞ is the standard migrated image and W�ðωÞ is the
complex conjugate of the source wavelet. Although the integration
is over the model space x for modeling seismic data, it is over
the data space s, g, and ω for imaging recorded data. Physically,
the single-scattered data dðs; g;ωÞ are back propagated from the
receiver point g to the trial imaging point at x and the source func-
tion is forward propagated from the source point s to the trial im-
aging point at x. Then, the image value at the trial imaging point x is
given by the zero-lag cross correlation between the forward and
backward propagated wavefields, which is obtained by the summa-
tion over frequencies in equation 3. In a matrix representation, the
Kirchhoff migration is given by a matrix-vector multiplication as
follows:

mmig ¼ LTd: (4)

The migration operators are adjoint operators of the forward-
modeling ones as they undo the time and phase shifts of the model-
ing operators but do not account for the amplitude (Claerbout and
Fomel, 2008). Substituting the expression of d in equation 2 into
equation 4 yields

mmig ¼ LTLm; (5)

b)

a)

Figure 1. Ray diagrams: (a) A singly scattered ray is reflected off
the vertical fault plane away from the recording surface, and (b) a
doubly reflected ray ends up at the recording surface illuminating
the vertical fault plane.
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where LTL is known as the Hessian matrix and reflects the amount
of smearing in the seismic image resulting from many factors, in-
cluding the limited recording aperture, the coarse source-receiver
samplings, and the band-limited nature of the source wavelet.
The standard migrated image is, therefore, a linear combination
of the columns of the Hessian matrix weighted by the true reflec-
tivity model (Aster et al., 2005), providing a physical interpretation
of the model resolution.
LSM yields an approximate reflectivity image that minimizes the

sum of the squares of the residual vector. Mathematically, the un-
constrained objective function is defined as

J ¼ 1

2
kLm − dk22 ¼

1
2
mTLTLm −mTLTdþ 1

2
dTd: (6)

The minimizer of this objective function is found by computing the
gradient with respect to m and setting it to zero:

∇mJ ¼ LTLm − LTd ¼ 0: (7)

A more accurate solution to the migration problem is the least-
squares migrated image mls, which is obtained by solving equa-
tion 7, the so-called normal equation:

LTLmls ¼ LTd: (8)

Gradient-based algorithms are generally used to solve this equa-
tion iteratively where data residuals are imaged at every iteration to
obtain model updates. By rearranging the terms in equation 7, the
gradient at every iteration is given by

∇mJ ¼ LTðLm − dÞ ¼ LTr; (9)

where r is the data residual vector. An initial guess is usually given
by the image resulting from the standard Kirchhoff migration in
equation 3. At each iteration, the forward-modeling operator in
equation 1 is used to synthesize single-scattered seismic data to
be compared with the recorded data. Then, the data residual is back
projected using the adjoint operator in equation 3 to determine the
subsurface reflectivity model updates.
LSM, under the single-scattering assumption, suppresses the mi-

gration artifacts and enhances the seismic reflectors, which are
mainly illuminated by primaries (Nemeth et al., 1999). However,
it hardly delineates reflectors that are mainly illuminated by inter-
nally scattered energy (Aldawood et al., 2014b). Consequently, im-
aging internal multiples potentially helps illuminate subsurface
areas that are poorly illuminated by primaries, such as vertical
and nearly vertical fault planes (Zuberi and Alkhalifah, 2013).

DOUBLE-SCATTERING MODELING AND
INVERSION

The following forward-modeling operator maps the reflectivity
model to doubly scattered seismic data as

ddðs; g;ωÞ ¼
Z
V

Z
V
vðxÞvðx 0ÞWðωÞeiωðτsxþτxx 0 þτx 0gÞdxdx 0;

(10)

where ddðs; g;ωÞ is the recorded doubly scattered seismic data. vðxÞ
and vðx 0Þ are the subsurface reflectivity functions at subsurface
points x and x 0, respectively. In addition, τsx is the traveltime from
the source point s to the first scattering point x. τxx 0 is the traveltime
from the first scattering point x to the second scattering point x 0.
Similarly, τx 0g is the traveltime from the second scattering point
x 0 to the receiver point g.
Clearly, equation 10 shows that generating first-order internal

multiples is not obtained by a linear mapping of the subsurface
reflectivity model because of the multiplication of two reflectivity
functions inside this double-summation modeling step. To linear-
ize this operator, we propose replacing vðx 0Þ by the fixed LSM
solution pðx 0Þ under the single-scattering assumption, obtained
by iteratively solving the normal equation 8. Equation 10 then
becomes

ddðs; g;ωÞ ¼
Z
V

Z
V
vðxÞpðx 0ÞWðωÞeiωðτsxþτxx 0þτx 0gÞdxdx 0:

(11)

Physically, the scattering points in the least-squares image pðxÞ
under the single-scattering assumption act as secondary sources to
predict the doubly scattered internal multiples. To predict a first-or-
der internal multiple, the seismic energy is forward propagated from
the source point s to the known scattering point x 0 and scaled by its
reflectivity value pðx 0Þ. Then, the energy is emitted from this sec-
ondary source at x 0 and forward propagated to the second scattering
point x and scaled by its reflectivity value vðxÞ. Last, the energy is
further propagated from the second scattering point to the receiver
point g to predict the internally scattered first-order multiple. In a
similar approach, Zhang and Duan (2012) use the RTM reflectivity
image as a secondary source in the subsurface to predict the interbed
and surface-related multiples in their reverse time demigration
(RTDM) framework.
Our proposed prediction step of first-order multiples can then be

represented by the following matrix-vector multiplication:

dd ¼ Gv; (12)

where G is the forward-modeling operator that linearly maps the
subsurface reflectivity distribution, which is mainly illuminated
by the doubly scattered energy v, to first-order internal multiples
dd. The corresponding adjoint of this forward-modeling operator
can be applied to image the doubly scattered data as follows:

vmigðxÞ ¼
Z
s

Z
g

Z
ω

Z
V
ddðs; g;ωÞpðx 0ÞWðωÞ

× e−iωðτsxþτxx 0 þτx 0gÞdsdgdωdx 0: (13)

The physical interpretation of this equation is that the subsurface
reflectivity image, under the double-scattering assumption, can be
obtained by applying the following steps:

1) The doubly scattered seismic data are back propagated from the
receiver point g to the known scattering point x 0 and the seismic
energy is scaled by the known reflectivity value pðx 0Þ at this
subsurface scattering point.

LSM of internal multiples S95
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2) The scaled redatumed data at the known scattering point x 0 is
further back propagated to the trial imaging point x.

3) The source wavefield is forward propagated from the source
point s to the trial imaging point x.

4) We obtain the final image at the trial subsurface scattering point
x by applying the zero-lag imaging condition of the forward and
backward propagated wavefields.

In matrix form, the subsurface image, under the double-scattering
assumption, vmig, is obtained by applying the adjoint operatorGT to
the first-order internal multiples dd:

vmig ¼ GTdd: (14)

Similarly to the single-scattering case, computing the doubly
scattered migrated image is determined by a linear mapping of
the doubly scattered seismic data. One can also solve a correspond-
ing normal equation iteratively to obtain a least-squares-migrated
image vls under the double-scattering assumption as follows:

GTGvls ¼ GTdd: (15)

LSM of the single-scattering and double-scattering energy helps
suppress the migration artifacts, remove the acquisition footprint,
and deconvolve the source wavelet. It further enhances the spatial
resolution of the horizontal reflectors and vertical fault planes.
Equations 8 and 15 are usually solved iteratively using a gra-
dient-based optimization algorithm. Here, we use the limited-
memory Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS) opti-

mization algorithm to obtain the least-squares solutions. See Ap-
pendix A for a more detailed description of the algorithm.

IMAGING VERTICAL FAULT PLANES

In the following two examples, the grid spacings of the 100 × 50
grids are Δx ¼ Δz ¼ 30 m and the time sampling is 4 ms. We com-
puted 100 noise-free common shot gathers along the surface using
the forward-modeling operators to generate the primaries and first-
order internal multiples. A Ricker wavelet with a peak frequency of
20 Hz was used to model the seismic data. The first shot is at the
top-left corner, and the last shot is at the top-right corner. The re-
maining equally spaced shots are placed at grid points along the
earth surface. Similarly, there are 100 equally spaced receivers
placed at the grid points along the earth surface.
The first velocity and reflectivity models are shown in Figure 2a

and 2b, respectively. In this example, the two-layer velocity is given
by 2500 and 3000 m∕s from top to bottom and the common-depth-
point (CDP) sampling is 15 m. The dominant frequency of 20 Hz
results in a dominant wavelength of 125–150 m. Thus, the image
point is sufficiently sampled at about 8–10 points per wavelength.
On the other hand, the second velocity and reflectivity models are
shown in Figure 3a and 3b, respectively. In this case, the velocity
varies between 1500 and 3900 m∕s and the CDP sampling is 15 m.
Using the same Ricker wavelet, the dominant wavelength ranges
from 75 to 195 m. Hence, the image point is sampled sufficiently
at 5–13 points per wavelength. Our goal is to apply our proposed
LSM of first-order internal multiples to properly image the vertical
fault planes in these two different models.
The images obtained using the standard migration of the noise-

free data, under the single-scattering assumption, are shown in Fig-
ure 4a and 4b, respectively. The panels show blurry depictions of
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Figure 2. A vertical fault plane: (a) True velocity model. (b) True
reflectivity model.
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Figure 3. Buried vertical faults: (a) True velocity model. (b) True
reflectivity model.
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the true subsurface reflectivity distributions due to the migration
artifacts, the acquisition fingerprint, and the limited bandwidth
of the source wavelet. To alleviate these problems, LSM, under
the single-scattering assumption, is applied to suppress the migra-
tion artifacts and sharpen the reflectors as shown in Figure 5a and
5b, respectively. After 30 quasi-Newton L-BFGS iterations, this lin-
earized inversion mainly enhances the horizontal reflectors, which
are mostly illuminated by primaries. The vertical fault planes, how-
ever, are not well delineated because they are mainly illuminated by
internally scattered seismic energy.
The least-squares solutions in Figure 5a and 5b, under the single-

scattering assumption, are then used in equations 11 and 13 to lin-
earize the inversion of the first-order internal multiples using our
proposed framework. These solutions are further used as an initial
guess to start the proposed linearized inversion. After 11 quasi-
Newton L-BFGS iterations, the LSM results, based on the dou-
ble-scattering assumption, are shown in Figure 6a and 6b, respec-
tively. Clearly, inverting the first-order internal multiples delineates
the fault planes and localizes them in their true subsurface positions.

ROBUSTNESS TO OBSERVATION NOISE

A challenging question is to assess whether one can accurately
delineate the vertical fault plane in the presence of white observa-
tional noise. To answer this question, we added white Gaussian ran-
dom noise to the two synthetic noise-free data sets. We then used

our LSM framework to image the first-order internal multiples to
assess the robustness of this linearized inversion.
The least-squares images, under the double-scattering assump-

tion, of the two noisy data sets with a signal-to-noise ratio (S/N)
of −15 and −10 dB are shown in Figure 7a and Figure 7b, respec-
tively. These solutions, obtained after 10 quasi-Newton L-BFGS
iterations, still show a clear delineation of the fault planes despite
the defocusing of the seismic events. However, as the data become
noisy, the quality of the LSM images, under the double-scattering
assumption, deteriorates compared with the noise-free images
shown in Figure 5a and 5b.

ROBUSTNESS TO VELOCITY ERROR

Velocity model building to estimate accurate migration veloc-
ities is one of the major challenges in seismic imaging. Hence,
another question of interest is to study whether our proposed lin-
earized inversion of doubly scattered data is robust in the case of
imaging with inaccurate migration velocities. In other words,
What is the effect of velocity errors on the final image quality
and on the ability of the proposed framework to resolve the vertical
fault planes?
To answer these questions, we applied the linearized framework

to image first-order internal multiples using slower and faster mi-
gration velocities. We first compute the least-squares solutions,
under the single-scattering assumption, to image the recorded data
with velocity models that are 1% faster and slower than the exact
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Figure 4. Standard Kirchhoff migration: (a) Example 1: Kirchhoff
migration of the two-layer model. (b) Example 2: Kirchhoff migra-
tion of the buried vertical faults model. The standard Kirchhoff
imaging of primaries only yields a blurry representation of the sub-
surface structures.
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Figure 5. Imaging vertical faults: (a) Example 1: Single-scattering
least-squares migrated image. (b) Example 2: Single-scattering
least-squares migrated image. The LSM of primaries better empha-
sizes only the horizontal reflectors.
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velocity model. The LSM solutions of the first and second exam-
ples, imaged using the slower and faster velocities, are plotted in
Figure 8a and 8b, and in Figure 8c and 8d, respectively. One
can see that these least-squares images become more defocused
and mispositioned as the velocity becomes erroneous. Although
the horizontal reflectors are pulled up when migrating the data using
slower migration velocities, they are pushed down when the re-
corded data are imaged with faster migration velocities.
These images are then used as constraints and initial guesses in

the linearized inversion framework under the double-scattering
assumption. The least-squares solutions, obtained by imaging
first-order internal multiples using the slower and faster velocities,
are plotted in Figure 9a and 9b for the first example and in Figure 9c
and 9d for the second example. The vertical fault planes are fairly
spatially focused in case the migration velocity error is �1% as
demonstrated in these figures.
The results suggest that the proposed least-squares imaging,

under the double-scattering assumption, can be sensitive to the ac-
curacy of the migration velocity model and the accuracy of the scat-
terers’ locations obtained by inverting the primaries. As a result,
these two factors could cause more defocusing and mispositioning
of the vertical fault planes compared with the horizontal reflectors,
which are mainly delineated by the LSM of primaries.

DISCUSSION

Standard migration suffers from migration artifacts and low spa-
tial resolution due to the limited acquisition aperture, coarse source-

receiver sampling, limited bandwidth of the source wavelet, and low
subsurface illumination as shown in Figure 4. LSM helps suppress
migration artifacts, remove the acquisition fingerprint, and enhance
the spatial resolution of the migrated section by iteratively finding a
subsurface reflectivity model that better explains the observed data
in a least-squares sense.
However, the standard and iterative LSM algorithms, under the

single-scattering assumption, yield migrated sections that focus
seismic events, which are mainly illuminated by primaries, such
as horizontal reflectors as seen in Figures 4 and 5, respectively.
We have demonstrated that modeling the doubly scattered data is
mathematically not represented by a linear mapping of the subsur-
face reflectivity distribution. Thus, we proposed a linearization step
in which we use the least-squares image, under the single-scattering
assumption, as a constraint in the forward modeling and adjoint op-
erators, which models and images first-order multiples, respec-
tively. We then demonstrated the effectiveness of the proposed
linearized inversion scheme of doubly scattered energy and its abil-
ity to localize vertical fault planes in Figure 6.
We also demonstrated the robustness of this inversion framework

in the presence of white Gaussian random observational noise.
Overall, the proposed least-squares imaging, under the double-
scattering assumption, still retrieves the vertical fault planes when
imaging the noisy data sets despite the slight defocusing of these
events due to the presence of noise as illustrated in Figure 7.
We finally studied the robustness of our proposed linearized in-

version when imaging data with inaccurate migration velocities. In
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Figure 6. Imaging vertical faults: (a) Example 1: Double-scattering
least-squares migrated image. (b) Example 2: Double-scattering
least-squares migrated image. The LSM of first-order internal multi-
ples better delineates the vertical fault plane.

Distance (m)

D
ep

th
 (

m
)

Least-squares double-scattering migration (S/N = −15dB)

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

Distance (m)

D
ep

th
 (

m
)

Least-squares double-scattering migration (S/N = −10dB)

500 1000 1500 2000 2500 3000

200

b)

a)

400

600

800

1000

1200

1400

Figure 7. Double-scattering LSM of noisy data sets: (a) Example 1:
double-scattering LSM with S∕N ¼ −15 dB. (b) Example 2: dou-
ble-scattering LSM with S∕N ¼ −10 dB. When the data become
noisy, the ability of the least-squares imaging of first-order internal
multiples to delineate the vertical fault planes deteriorates.
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Figure 9, we showed how the LSM of the doubly scattered data
could delineate the vertical fault planes although they become mis-
positioned and unfocused in the presence of velocity errors. We

conclude that our linearized inversion of first-order internal multi-
ples can be sensitive to the migration velocity models and the con-
straining least-squares images of primaries.
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Figure 8. LSM of primaries using the slower and faster migration
velocities. Example 1: LSM using (a) 1% slower velocity model and
(b) 1% faster velocity model. Example 2: LSM using (c) 1% slower
velocity and (d) 1% faster velocity.
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Figure 9. LSM of first-order multiples using the slower and faster
migration velocities. Example 1: LSM using (a) 1% slower velocity
model and (b) 1% faster velocity model. Example 2: LSM using
(c) 1% slower velocity and (d) 1% faster velocity.
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CONCLUSIONS

We proposed a linearized inversion framework to invert first-
order internal multiples in the seismic records. The least-square
image, based on the single-scattering assumption, was used as a
constraint to linearize the forward modeling and adjoint operators
of doubly scattered energy. Our results on synthetic data revealed
the effectiveness of the proposed linearized inversion in delineating
vertical fault planes, which are mainly illuminated by doubly scat-
tered seismic energy. We further demonstrated the robustness of the
LSM of first-order multiples in the presence of noise and in case of
imaging using inaccurate velocities. In conclusion, we would expect
the proposed LSM, under the double-scattering assumption, to work
best if the data quality is high, and the single-scattered least-squares
image and the migration velocity model are quite accurate.
Future work will consider using a sparsity-promoting imaging

framework to obtain highly focused images with our proposed lin-
earized inversion. It will also include the application of this least-
squares imaging technique to real data examples and 3D synthetic
models in an efficient RTM framework instead of the currently used
Kirchhoff-based framework.
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APPENDIX A

GRADIENT-BASED OPTIMIZATION

The L2-norm least-squares misfit objective function has the form

J ¼ 1

2
kΨm − dobsk22; (A-1)

whereΨ is a linear operator that maps the observed data vector dobs

to the vector of model parameters m. This objective function is
minimized and the model parameters are updated after each itera-
tion by moving along the negative gradient direction (i.e., the di-
rection of maximum descent) to obtain the next iterate using a
steepest descent algorithm. The gradient is obtained by back pro-
jecting the data residual vector onto the model space using the ad-
joint operator. However, the steepest descent algorithm suffers from
slow convergence because it only uses the gradient direction at
every iteration (Aster et al., 2005). A better search direction is
the quasi-Newton direction, which uses the gradient direction
and the curvature information of the objective function character-
ized by the Hessian matrix. An approximate Hessian can be de-
duced by monitoring how the gradient changes with respect to
the model update after each iteration.
The BFGS quasi-Newton algorithm, named after its discoverers

Broyden, Fletcher, Goldfarb, and Shanno, uses an approximate
Hessian Bk in finding the new search direction at the kth iteration
given by the projection of the gradient vector onto the column space
of the inverse Hessian approximation (i.e., −B−1

k ∇mJk) (Nocedal
and Wright, 2006). The value Bk is a symmetric positive definite
matrix that is updated after each iteration, and ∇Jk is the gradient

direction evaluated at the current iterate. In the steepest-descent al-
gorithm, the search direction is the negative gradient direction with
B ¼ I. The BFGS formula for updating the approximate Hessian is
given by

Bkþ1 ¼ Bk −
BksksTkBk

sTkBksk
þ ykyTk

yTk sk
; (A-2)

where sk ¼ mkþ1 −mk and yk ¼ ∇mJkþ1 − ∇mJk. Notice that the
difference between Bkþ1 and Bk is a rank-two matrix. The major
advantage of the quasi-Newton BFGS algorithm is that it does
not require the calculation of second derivatives, using the gradient
changes to obtain curvature information (Nocedal and Wright,
2006). The reflectivity model is updated by moving along this
quasi-Newton direction as follows:

mkþ1 ¼ mk − αB−1∇mJk; (A-3)

where α is a scalar value that determines how much one should
move along the quasi-Newton direction and it could be obtained
by a numerical line search scheme (Nocedal and Wright, 2006).
The “fmincon” function, included in the MATLAB optimization

toolbox, computes the minimum of a scalar objective function of
several variables. It implements an L-BFGS optimization algorithm,
which is based on the BFGS optimization algorithm. L-BFGS is
used to solve large-scale problems, whose approximate Hessian ma-
trices of size n × n, where n is the number of knowns, cannot be
computed and/or stored (Nocedal and Wright, 2006). Instead, they
store just a few vectors of length n that represent the Hessian
approximation implicitly. We used it here to solve the single-
and the double-scattering imaging problems. The stopping criteria
of the optimization is when the number of function evaluations
reaches a maximum of 50 evaluations.
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