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Abstract

This paper addresses the problem of multi-class image classification by propos-
ing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short)
model. Given images (including test images and training images) representing
with multiple visual features, the MMKR first maps them into a high-dimensional
space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are
then linearly reconstructed by some representative training images, rather than all
of them. Furthermore a classification rule is proposed to classify test images. Ex-
perimental results on real datasets show the effectiveness of the proposed MMKR
while comparing to state-of-the-art algorithms.

Keywords: image classification, multi-view classification, sparse coding,
Structure sparsity, Reproducing kernel Hilbert space

1. Introduction

In image classification, an image is often represented by its visual feature,
such as HSV (Hue, Saturation, Value) color histogram, LBP (Local Binary Pat-
tern), SIFT (Scale invariant feature transform), CENTRIST (CENsus TRansform
hISTgram), and so on. Usually, different representations describe different char-

∗Corresponding author.
Email address: zhangsc@mailbox.gxnu.edu.cn (Shichao Zhang2)

Preprint submitted to Neurocomputing May 25, 2015



acteristics of images. For example, CENTRIST [32] is a suitable representation
for place and scene recognition.

Recent studies (e.g., [32]) have shown that although an optimal representation
(such as SIFT) is better for some given tasks, it might no longer be optimal for
the others. Moreover, a single visual feature is not always robust to all types
of scenarios. Give an example illustrated in Figure 2, we can easily classify the
two figures (e.g., Figure 2.(a) and 2.(b)) into the category IRIS according to the
extracted local feature. However, we maybe not easily make the same decision
while giving their global feature, such as HSV. Actually, in this case, we may
category two figures (e.g., Figure 2.(a) and 2.(c)) into IRIS. According to our
observation, we cannot category Figure 2.(c) into IRIS since the captions in Figure
2.(c) makes the classification difficult.

(a) (b) (c)

Figure 1: A illustration on image IRIS with different representations.

In contrast, literatures (e.g., [41, 39]) have shown that representing image data
with multiple features really reflects the specific information of image data. More-
over, this case is complementary each other and helpful for disambiguation. For
example, the local feature HSV is less robust to the changes in frame rate, video
length, captions. SIFT is sensitive to changes in contrast, brightness, scale, rota-
tion, camera viewpoint, and so on [13, 42].

Aforementioned observation motivates us to combine several visual features
(rather than a single type of visual feature) to perform image visual classification
for discriminating each class best from all other classes. In the machine learn-
ing domain, learning with multiple representations is well known as multi-view
learning (MVL) or multi-modality learning [2].

Using multi-view learning brings clear advantages over traditional single-view
learning: First, multi-view learning is more effective than generating a single
model via considering all attributes at once, especially when the weaknesses of
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one view complement the strengths of the others [7]. In many application ar-
eas, such as bioinformatics and video summarization, literatures have shown that
multimedia classification can achieve greatly benefit from multi-view learning
[21, 23]. Second, different information about the same example in multi-view
learning can help solve other issues, such as transfer learning and semi-supervised
learning [32]. Therefore, multi-view learning is becoming popular in real applica-
tions [11, 16, 33], such as web analysis, object recognition, image classification,
and so on.

However, previous studies on multi-view learning contain at least two follow-
ing drawbacks. First, multi-view learning employ all the views for each data point
without considering the individual characteristics of each data point. For example,
sometimes a data point can be described well with several representations and can
not be added any other. In this case, we really expect to select the best suitable
views according to its characteristics. Second, in real application, image datasets
are often corrupted by noise, but existing multi-view learning approaches have
difficulty for dealing with noisy observations [6]. Therefore, we expect to remove
the noise or redundancy from the training data for selecting appropriated views
for each image.

In this paper we extend our previous work [43]1 to conduct multi-class im-
age classification by proposing a multi-view multi-sparsity kernel reconstruction
(MMKR) model. Specifically, the MMKR performs kernel reconstruction in a
RKHS, in which each test image is linearly reconstructed by training images
coming from a few object categories, via a new designed multi-sparsity regu-
larizer, which concatenates an �1-norm with a Frobenius norm (F -norm for short)
for achieving following advantages, such as selecting training images from a few
object categories to reconstruct the test image via the F -norm regularizer, and re-
moving noise in visual features via the �1-norm regularizer. Finally, experimental
results on challenging real datasets show the effectiveness of the proposed MMKR
to the state-of-the-art algorithms.

The remainder of the paper is organized as below: Preliminary is described
in Section 2, followed by the proposed MMKR approach in Section 3 and its
optimization in Section 4. The experimental results are reported and analyzed in
Section 5 while Section 6 concludes the paper.

1Different from our conference version [43], this paper added the Related Work, rewrote the
Introduction, and revised the parts, such as Approach and Experimental Analysis.
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2. Related work

In this section, we give a brief review on multi-view learning and spare learn-
ing.

2.1. Multi-view learning
Multi-view learning learns one task of the data with multiple visual features.

The basic idea of multi-view learning is to make use of the consistency among
different views to achieve better performance. Many literatures (e.g., [12, 26])
showed that multi-view learning can improve learning performance in all kinds
of real applications, such as natural language tasks, computer vision, and so on
[8, 16].

The study in [2] may be the earliest work on multi-view learning, where the
authors proposed a co-training approach to learn the data described by two distinct
views. Recently, Chaudhuri et al. [5] employed canonical correlation analysis
(CCA) to perform clustering and regression in multi-view learning. Chen et al.
[6] proposed a large-margin framework for learning multi-view data.

In multi-view learning, the information in some a view can help to solve the
weakness of the other views, so multi-view learning has been embedded into many
types of learning tasks, such as semi-supervised multi-view learning and transfer
multi-view learning. For example, the literatures (e.g., [35]) found that each view
should follow same data distribution in semi-supervised learning, but their pro-
posed semi-supervised multi-view learning can be used to more flexible cases, i.e.,
views can follow different data distribution each other. Moreover, they incorpo-
rated the consistency among views to perform semi-supervised multi-view learn-
ing. Finally, they showed that their proposed semi-supervised multi-view learning
is with a substantial improvement on the classification performance than existing
methods. In transfer multi-view learning, the literatures (e.g., [4, 38]) leveraged
the consistency of the views and considered the domain difference among the
views to learn heterogenous data.

2.2. Sparse learning
The objective function of traditional sparse learning can be represented as the

following form:
min

parameters
loss function + regularizer (1)

Loss function in Eq.1 is used to achieve minimal regression (or reconstruction)
error. Existing loss functions include least square loss function, logistic loss func-
tion, squared hinge loss function, and so on. The regularizer is often used to meet
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some goals, such as avoiding the issue of over-fitting, leading to the sparsity, and
so on. In real applications, sparse learning has been applied in reconstruction
process (e.g., [9, 20]) or regression process (e.g., [14, 27]).

(a). Element sparsity

(d). Row sparsity (e). Group joint sparsity (f). Mixed joint sparsity

(b). Group sparsity (c).  Mixed sparsity
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Figure 2: An illustration on different types of sparsity in separable sparse learning (i.e., the left
three subfigures) and joint sparse learning (i.e., the right three subfigures). Note that, a red box
means one group. For better viewing, please see the original color pdf file.

Sparse learning codes a sample (e.g., a signal) using a few number of dictio-
naries (or atoms in signal analysis) via the form in Eq.1. The key idea of sparse
learning is to generate sparse results, which makes the learning more efficient
[40]. The literatures (e.g., [14, 27]) showed different regularizers encourage var-
ious sparsity pattern in sparse learning. According to the way to generate spar-
sity patterns, we categorize existing sparse learning into two parts, i.e., separable
sparse learning (e.g., [9, 36], or please see examples form Fig.2.(a) to Fig.2.(c))
and joint sparse learning (e.g.,[1, 31, 34], or please see examples form Fig.2.(d)
to Fig.2.(f)) respectively. Separable sparse learning codes one sample once. Joint
sparse learning model simultaneously codes all samples. For example, there are
four samples in each subfigure of Fig.2, each column is the sparse codes of one
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sample. To generate sparse codes for all four samples, separable sparse learn-
ing needs to perform its optimization process four times. However, joint sparse
learning only needs one time.

Separable sparse learning employs different regularizers to lead to different
sparse patterns. For example, the �1-norm regularizer (e.g., [9]) leads to the el-
ement sparsity; the �2,1-norm regularizer (e.g., [36]) for the group sparsity and
the mixed-norm regularizer (concatenating a �1-norm regularizer with a �2,1-norm
regularizer, e.g.,[22]) for the mixed sparsity. To generate the sparsity, the �1-norm
regularizer makes each code as a singleton, then generates four codes in the first
column of Fig.2.(a) independently. The �1-norm regularizer also generates codes
of each sample in Fig.2.(a) independently. The resulted sparsity is called as ele-
ment sparsity. The groups sparsity is obtained by forcing a group in one column
as a singleton, so its sparsity is generated in the whole group, e.g., the second
red box (i.e., group) in the first column of Fig.2.(b). Obviously, the �2,1-norm
regularizer inducing the group sparsity takes the natural group structure in one
example into account. However, it still generates sparse codes one sample once.
The mixed sparsity has been explained (e.g., [22]) as first generating the group
sparsity for each sample, e.g., sparsity in the second red box (i.e., group) in the
first column of Fig.2.(c), and then generating the element sparsity in the dense
(i.e., non-sparse) groups, e.g., the second element in the first column of Fig.2.(c).
In a word, although the mixed sparsity hierarchically generates the group sparsity
and the element sparsity, it is generated one sample once.

The regularizers (e.g.,the �2,1-norm regularizer (e.g., [28, 31]), the �22,1-norm
regularizer (e.g., [1]), the �1,∞-norm regularizer (e.g., [24])) are often used in joint
sparse learning. Different from generating sparse codes one sample once in sep-
arable sparse learning, joint sparse learning considers to simultaneously encode
all samples (i.e., all four sample in Fig.2) by requiring them to share same dictio-
naries. For example, the row sparsity (via the �2,1-norm regularizer) in Fig.2.(d)
enables all four samples to be encoded at the same time, and the sparsity through
the whole row, such as the first row and the third row. The block sparsity via
the F -norm regularizer considers the natural group structure, i.e., first two rows
as one block, and the last two rows as another block, so it generate the sparsity
through the whole block, e.g., the second block in Fig.2.(e).

3. Approach

In this paper, we denote matrices as boldface uppercase letters, vectors as
boldface lowercase letters, and scalars as normal italic letters, respectively. For
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a matrix X = [xij ], its i-th row and j-th column are denoted as xi and xj , re-
spectively. Also, we denote the Frobenius norm and �2,1-norm of a matrix X as

‖X‖F =
√∑

i ‖xi‖22 =
√∑

j ‖xj‖22 and ‖X‖2,1 =
∑

i ‖xi‖2 =
∑

i

√∑
j x

2
ij ,

respectively. We further denote the transpose operator, the trace operator, and the
inverse of a matrix X as XT , tr(X), and X−1, respectively.

Given a set of training images X, each image is represented with V visual
features (or views) and described by one of C object categories appeared in X.
We denote xv

c (xv
c ∈ Rmv , c = 1, ..., C, v = 1, ..., V ) as the v-th view of an

image in c-th object category. Xv
c (Xv

c ∈ Rmv×nc) is a set of training images
associated with the c-th object category and represented by the v-th view. We also

denote
V∑

v=1

mv = M , and
C∑
c=1

nc = N , where N is training size and mv is the

dimensionality of the v-th view.

3.1. Objective function

Sparse learning distinguishes important elements from unimportant ones by
assigning the codes of unimportant elements as zero and the important ones as
non-zero. This enables that sparse learning reduces the impact of noises and in-
crease the efficiency of learning models [17]. Thus it has been embedded into var-
ious learning models, such as sparse principal component analysis (sparse PCA
[44]), sparse non-negative matrix factorization (sparse NMF [15]), and sparse
support vector machine (sparse SVM [29]), in many real applications [3, 13],
including signal classification, face recognition and image analysis [30]. In this
paper, we cast multi-view image classification as multi-view sparse learning in the
RKHS.

Given the v-th visual feature of a test image yv (yv ∈ Rmv), we first search for
a linear relationship between yv and the v-th visual feature of training images. For

this, we consider to build a reconstruction process as: f(yv) =
C∑
c=1

yv
cw

v
c , where

wv
c ∈ Rnc is the v-th view reconstruction coefficient.

To perform the reconstruction process in multi-view learning, we expect to
minimize reconstruction error across all the views. To avoid the issue of over-
fitting as well as to obtain sparse effect, we propose a regularizer leading to multi-
ple sparsity into the framework of sparse learning, i.e., the proposed multi-sparsity
regularizer includes an �1-norm and an F -norm for achieving the element sparsity
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and the block sparsity respectively. The objective function is defined as:

min
w1

c ,...,w
V
c

V∑
v=1

‖yv −
C∑
c=1

Xv
cw

v
c‖22 + λ1

V∑
v=1

C∑
c=1

|wv
c |+ λ2

C∑
c=1

√
V∑

v=1

(wv
c )

2 (2)

where λ1 and λ2 are trade-off parameters. The first term in Eq.2 is to minimize
the reconstruction error through all views. The last two terms are introduced to
avoid the issue of over-fitting and to pursue multi-sparsity.

For convenience, we denote: x̃v
c = [0, ..., 0, (xv

c)
T , 0, ..., 0]T , ỹv =

[0, ..., 0, (yv)T , 0, ..., 0]T , w̃v
c = [0, ..., 0, (wv

c )
T , 0, ..., 0]T , and W̃ =

[(w̃1)
T , ..., (w̃C)

T ]T ∈ RM×V , where w̃c ∈ Rnc×V , where both x̃v
c(∈ RM) and

ỹv(∈ RM) are a one-dimensional column vector with the (
v−1∑
i=1

mi + 1)-th to the

v∑
i=1

mi-th elements being nonzero. Therefore, Eq.2 can be converted as:

min
W̃

‖Ỹ − X̃W̃‖2F + λ1‖W̃‖1 + λ2

C∑
c=1

‖W̃c‖F (3)

where ‖.‖F denotes F norm, X̃c ∈ RM×nc , Ỹ ∈ RM×V and Ỹ ∈ Rnc×V .
However, Eq.3 is developed for image classification in original space. Mo-

tivated by the fact that kernel trick can capture nonlinear similarity, which has
been demonstrated to reduce feature quantization error and boost learning per-
formance, we use a nonlinear function φv in each view v to map training im-
ages and test images from original space to a high-dimensional space, e.g., the
RKHS, via defining k(xi, xj)

v = φ(xv
i )

Tφ(xv
j ) for some given kernel functions

kv, where v = 1, ..., V . That is, given a feature mapping function φ : RM → RK ,
(M < K), both training images and test images in feature space RM are mapped
into a RKHS RK via φ, i.e., X̃ = [x̃1, ..., x̃M ] → φ(X̃) = [φ(x̃1, ..., φ(x̃M)].
By denoting A = φ(X̃)Tφ(Ỹ) and B = φ(X̃)Tφ(X̃), we convert the objective
function defined in the original space (see eq.3) to the objective function of the
proposed MMKR as:

min
W̃

‖A−BW̃‖2F + λ1‖W̃‖1 + λ2

C∑
c=1

‖W̃c‖F (4)

where A ∈ RK×V and B ∈ RK×N .
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According to the literatures, e.g.,[14], the λ1-norm regularizer generates the
element sparsity, whose sparsity is in single element of W̃, and benefits for re-
moving noise by assigning its codes as sparse, i.e., 0. The F -norm regularizer
generates the block sparsity, whose sparsity is through the whole block, i.e., zero
through the whole object category in this paper. Thus the F -norm regularizer
enables the object categories with the block sparsity (i.e., sparsity in each code
through the whole objective category) not to be involved into the reconstruction
process. By inducing the multi-sparsity regularizer, only a few training images
from representative object categories are used to reconstruct each test image.
Meanwhile, removing noise is also considered.

3.2. Classification rule

By solving the objective function in Eq.4, we obtain the optimal W̃. Accord-
ing to the literature in [37], for each view v, if we use only the optimal coefficients
Wv

c associated with the c-th class, we can approximate the v-th view yv of the test
image as φ(yv) = φ(Xv

c)W
v
c . Then the classification rule is defined as in favor of

the class with the lowest total reconstruction error through all the V views: where

θv, (c = 1, ..., V and
V∑

v=1

θv = 1) is the weight measuring the confidence of the

v-th view in the final decision. We only simply set θv = 1
V

in this paper.

4. Optimization

Eq.4 is convex, so it admits the global optimum. However, its optimization is
very challengeable because both the ‖W̃‖F -norm and the ‖W̃‖1-norm in Eq.4 are
convex but non-smooth. In this section we propose a simple algorithm to optimize
Eq.4.

By setting the derivative of Eq.4 with respect to w̃i (1 ≤ i ≤ V ) as zero, we
obtain:

(BTB+ λ1Ei + λ2D)w̃i = BTai (5)

where Ei is a diagonal matrix with the k-th diagonal element as 1
2|w̃i

k|
and A =

{a1, ..., aV }. D = diag(D1, ...,DC), the ‘diag’ is the diagonal operator and each
Dc (c = 1, ..., C) is also a diagonal matrix with the j-th diagonal element as
Dj,j =

1
2‖w̃c‖F , j = 1, ..., nc.

By observing Eq.5, we find that both Ei and D depend on the value of W̃.
In this paper, following the literatures [18, 42], we design a novel iterative algo-
rithm (i.e., Algorithm 1) to optimize Eq.4 and then prove its convergence. Here
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we introduce Theorem 1 to guarantee that Eq.4 monotonically decreases in each
iteration of Algorithm 1.

We first give a lemma as follows:

Lemma 1. For any positive values αi and βi, i = 1, ..., m, the following holds:

m∑
i=1

β2
i

αi
≤

m∑
i=1

α2
i

αi
⇐⇒

m∑
i=1

(βi+αi)(βi−αi)
αi

≤ 0

⇐⇒
m∑
i=1

(βi − αi) ≤ 0 ⇐⇒
m∑
i=1

βi ≤
m∑
i=1

αi (6)

Theorem 1. In each iteration, Algorithm 1 monotonically decreases the objective
function value in Eq.4.

Proof. According to the sixth step of Algorithm 1, we denote W [t+1] as the results
of the (t + 1)-th iteration of Algorithm 1, then we have:

W̃[t+1] = min
W̃

1

2
‖A−BW̃‖2F + λ1

V∑
i=1

W̃T
i E

[t]
i W̃i

+λ2

C∑
c=1

tr((W̃c)
T (Dc)

[t]W̃c) (7)

then we can obtain:

1

2
‖A−B(W̃[t+1])T‖2F + λ1

V∑
i=1

W̃T
i E

[t]
i W̃i

+ λ2

C∑
c=1

tr((W̃c)
T (Dc)

[t]W̃c)

≤ 1

2
‖A−B(W̃[t])T‖2F + λ1

V∑
i=1

W̃T
i E

[t]
i W̃i

+ λ2

C∑
c=1

tr((W̃c)
T (Dc)

[t]W̃c)

(8)
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which indicates that:

1

2
‖A−B(W̃[t+1])T‖2F + λ1

M∑
i=1

N∑
j=1

((w̃j
i )

[t+1])2

2‖(w̃j
i )

[t]‖2

+ λ2

C∑
c=1

‖(W̃c)
[t+1]‖2F

2‖(W̃c)[t]‖F

≤ 1

2
‖A−B(W̃[t])T‖2F + λ1

M∑
i=1

N∑
j=1

((w̃j
i )

[t])2

2‖(w̃j
i )

[t]‖2

+ λ2

C∑
c=1

‖(W̃c)
[t]‖2F

2‖(W̃c)[t]‖F

(9)

Substituting βi and αi with ((w̃j
i )

[t+1])2 (or ‖(W̃c)
[t+1]‖F ) and ((w̃j

i )
[t])2 (or

‖(W̃c)
[t]‖F ) in Lemma 1, we have:

1

2
‖A−B(W̃[t+1])T‖2F + λ1‖W̃[t+1]‖1 + λ2

C∑
c=1

‖(W̃c)
[t+1]‖F

≤ 1

2
‖A−B(W̃[t])T‖2F + λ1‖W̃[t]‖1 + λ2

C∑
c=1

‖(W̃c)
[t]‖2F

(10)

This indicates that Eq.4 monotonically decreases in each iteration of Algorithm 1.
Therefore, due to the convexity of Eq.4, Algorithm 1 can enable Eq.4 to converge
to its global optimum.

To evaluate the effectiveness of the proposed MMKR, we apply it and several
state-of-the-art methods to multi-class object categorization on real datasets [19],
such as 17 category and Caltech101 respectively. The comparison algorithms
include KMTJSRC [37] only considering the block sparsity in RKHS, KSR [10]
only considering the element sparsity in RKHS, the representatives of multiple
kernel learning (MKL) methods, e.g., [25].

In our experiments, we obtain kernel matrices by computing
exp(−χ2(x, x′)/μ, where μ is set to be the mean value of the pairwise χ2

distance on training set.
In the following parts, first, we test parameters’ sensitivity of the proposed

MMKR according to the variation on parameters λ1 and λ2 in Eq.4, aiming at
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Algorithm 1: The proposed method for solving Eq.4.

Input: A,B, λ1 and λ2;
Output: W̃ ∈ RN×V ;

1 Initialize t = 1;W̃[1] ;
2 repeat
3 Update the k-th element in the diagonal matric E

[t+1]
i via 1

2|(w̃i
k)

[t]| ;

4 Update the c-th diagonal matrix in the diagonal matrix D[t+1] via
(Dj,j)

[t] = 1
2‖(W̃c)[t]‖F ;

5 for each i,1 ≤ i ≤ C,

6 W̃
[t+1]
i = (BTB+ λ1E

[t]
i + λ2D

[t])
−1
BTai;

7 t = t+1;
8 until No change on the objective function value in Eq.4;

achieving its best performance. Second, we compare the MMKR with comparison
algorithms in terms of average accuracy, i.e., classification accuracy averaged over
all classes.

4.1. Parameters’ sensitivity

In this subsection we test different settings on parameters (i.e., λ1 and
λ2 in Eq.4) in our proposed model, and set the value of them varying as
{0.01, 0.1, 1, 10, 100}. The performance on average accuracy of the MMKR is
illustrated in Fig.2.
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Figure 3: Average accuracy on various parameters’ setting at different datasets.
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Table 1: Average accuracy (mean±standard deviation)on all algorithms at different datasets. Note
that the best results are emphasized through bold-face.

Method Flower Caltech
KSR 0.6301±0.0308 0.4063±0.07545
MKL 0.7460±0.0171 0.4674±0.03956

KMTJSRC 0.7522±0.0336 0.4856±0.05952
MMKR 0.8022±0.0357 0.5124±0.03457

From Figure 3, we also find the best performance is always obtained in cases
with moderate value on both the λ1 and the λ2. For example, while the value of
parameters’ pair (λ1, λ2) is (1, 1) for both dataset Flower and dataset Caltech, our
MMKR achieves the best average accuracy. Actually, according to our experi-
ments, these cases lead to both the element sparsity (via the λ1) and the block
sparsity (via the λ2). This illustrates it is feasible to select some training images
from a few object categories to perform multi-class image classification.

4.2. Results
In this subsection, we set the values of parameters for the compared algo-

rithms by following the instructions in [37]. For all the algorithms, we repeated
each sample ten runs. We recorded the best performance on each combination of
their parameters’ setting in each run, and reported average results and the corre-
sponding standard deviation in ten runs. The results were illustrated in Table 1.

From Table 1, we can make our conclusions as: 1) The proposed MMKR
achieved the best performance. It illustrated that our MMKR was the most effec-
tive for multi-class image classification in our experiments. This occurred because
the MMKR performed multi-class image classification via deleting noise in train-
ing data as well as representing the test image with only some training images
from a few object categories. 2) The KMTJSRC outperformed traditional mul-
tiple kernel learning methods. This conclusion was consistent to the ones in the
literature [37]. 3) Both the proposed MMKR and the KMIJSRC outperformed
the KSR because the former two methods reconstructed the test image with some
training images, rather than using all training images used in the KSR.

5. Conclusion

In this paper we have addressed the issue of multi-class image classification
by first mapping the images (including training images and test images) into a

13



RKHS. In the RKHS, each test image was linearly reconstructed with training
images from a few object categories. Meanwhile, removing noise was also con-
sidered. Then a classification rule was proposed by considering the derived re-
construction coefficient. Finally, experimental results showed that the proposed
method outperformed state-of-the-art algorithms. In the future, we will extend the
proposed method into the scenario of multi-label image classification.
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