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Figure 8. Rupture time contours and rupture velocity for a higher resolution two-segment fault system with (a) fault geometry and stress equivalent to Marmara
segments E and F and (b) 20◦ change in strike with stress pattern shown in Table 2. The geometrically induced supershear transition is evident in the former
case, but is absent in the latter.

Table 2. Stress field for high-resolution
model with 20◦ change in strike.

Fault Shear stress Normal stress
segment (MPa) (MPa)

I 7.6 26.5
II 2.9 22.7

propagates outside of the area of significant dynamic unclamping.
The rupture front therefore slows down to subshear speed (blue line),
and falls back to be closer (0.7 s) to the slip-rate peak. Note that
through all this rupture complexity, the slip-rate peak propagates at
almost a constant velocity, indicated by the continuity of the green
line connecting peaks in the synthetic slip-rate records.

The above discussion poses two further related questions: (1)
Which quantity is more important for seismic radiation: ‘rupture
velocity’ measured by the onset of non-zero slip-rate, or ‘velocity
of the slip rate peak?’ and (2) Which of these quantities can po-
tentially can be resolved from kinematic inversions? We conjecture
that the peak of the slip-rate pulse is the strongest source of seismic
radiation, and thus the quantity determined by typical slip inver-
sions (e.g. Goto & Sawada 2010). These two measures of rupture
velocity may be quite similar in some cases, but quite different in
others; in any case, their distinction may be important for a full
understanding of rupture propagation and for constructing physics-
based kinematic source models for ground-motion simulation (e.g.
Mai et al. 2001; Guatteri et al. 2003; Guatteri et al. 2004; Graves
& Pitarka 2010; Mai et al. 2010; Mena et al. 2010). As one ex-

ample, it may be very difficult to infer the propagation of the true
rupture front from a typical kinematic inversion (Goto & Sawada
2010). As another example, consider a kinematic source model
based on the rupture time contours from the B nucleation model,
and imagine using it to generate ground motion for a potential fu-
ture earthquake. A typical assumption is to make constant the time
between the initial rupture of a point and its peak slip rate. In this
case, the ‘constructed’ velocity of the peak slip-rate pulse would
be as heterogeneous as the dynamic rupture velocity of the first
non-zero slip-rate. This enhanced variability in rupture propagation
speed would likely generate quite different ground motion than the
actual dynamic model. Most likely, a kinematic source characteriza-
tion based on the propagation of the peak slip-rate would represent a
more accurate physics-based approximation to the dynamic model.

4.3 Uncertainty in stress and predictability of results

It has long been known that rupture propagation and fault slip dis-
tribution depend on the applied stress field. However, it is perhaps
unexpected how radically the rupture dynamics change for models
in which the initial tectonic stress field is rotated only 10◦ clockwise.
This finding is due to the range of fault orientations in this system;
a small rotation of the stress field can bring some segments much
closer to failure, whereas other segments are brought much farther
from failure. This effect presents significant challenges to the pre-
diction of earthquake size and ground motion for future events, as
the local stress field is rarely known within a 10◦ precision. The
problem is even more aggravated when considering other sources
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Figure 9. Contours showing timing of peak slip-rate (top panels) and the ‘velocity’ of the peak slip-rate (bottom panels) for (a) the B nucleation case, (b) the
high-resolution model with supershear rupture transition and (c) the high-resolution model with no supershear rupture transition. The ‘velocity’ of the peak
slip-rate pulse is more homogeneous than the rupture velocity for the cases of supershear rupture propagation.

of stress heterogeneity. Our current models make a zeroth-order ap-
proximation: the stress field everywhere is simply a regional triaxial
field, resolved into the different fault segments. However, natural
stress fields are modulated by the effects of prior earthquakes on the
fault system (e.g. Tse & Rice 1986; Rice 1993; Nielsen & Knopoff
1998; Lapusta et al. 2000; Duan & Oglesby 2005), which can lead to
elevated stress levels near the corners of the segments (e.g. Fig. 3).

Such stress build-up will be sensitive to the details of the loading
history, any potential off-fault relaxation and the detailed geome-
try of the bend, each of which is estimated only with considerable
uncertainty. Furthermore, the stress field near these geometrical
discontinuities largely determines whether rupture may propagate
through these obstacles or not. Thus, we find ourselves in the un-
comfortable position in which the dynamics of the event, including
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Figure 10. Synthetic slip-rate records for B nucleation case in the vicinity of segment D. Propagation of rupture fronts and slip velocity pulses are marked;
see text for discussion. To facilitate the comparison, black lines labelled Vp and Vs display the moveout of the rupture front propagating at the P- and S-wave
speed, respectively, at that depth.

its final size, may depend critically on the most uncertain aspects of
the model.

For example, in our current models, segment H is unfavourably
oriented in the regional tectonic stress field, and hence tends to
act as a barrier to rupture under a wide range of assumptions.
However, unclamping of this segment via slip on the adjacent strike-
slip segments may accumulate over multiple earthquake cycles.
Eventually, the stress on H (and elsewhere on the fault system)
may depart significantly from the regional stress field, and allow
through-going rupture on H more easily. Thus, precise knowledge
of the regional stress field and its potential rotation close to the fault
(Townend & Zoback 2004; Townend 2006) are needed to estimate
more reliably the potential properties of future earthquakes on a
given fault system. Additionally, more accurate data on fault-zone
geometry and material properties near fault segment intersections,
as well as true 3-D multicycle earthquake models, may help to
reduce some of this uncertainty.

4.4 Implications for ground motion

Previous ground-motion simulations for rupture scenarios on the
NAF in the Marmara Sea considered kinematic source models re-
solved on a simplified two-segment fault geometry (Pulido et al.
2004; Sørensen et al. 2007). In these configurations, the size and
location of high stress-drop asperities are deterministically varied,
along with the rupture starting point, assuming one long fault seg-
ment extending ∼100 km westward from the major change in strike
of the NAF south of Istanbul (between segment G and H in our
model setup), and a shorter ∼50 km long segment extending to-
wards the southeast of this intersection. Their hybrid broad-band
ground-motion simulations reveal the sensitivity of the spatial dis-
tribution of shaking levels to the hypocentre position and asperity
locations, explained largely by the relative strength of directivity ef-
fects. Because their assumed rupture models are purely kinematic,

ground-motion patterns are essentially symmetric with respect to
the individual segments for the lower frequencies (i.e. PGV); seis-
mic radiation effects due to rupture dynamics at fault bends are thus
not included.

In contrast to the research described earlier, our work describes
implications of fault geometry and associated dynamic effects on
near-source ground motion. Bouchon & Streiff (1997), Duan &
Oglesby (2005) and Adda-Bedia & Madariaga (2008) have noted
in 2-D dynamic models that rupture-front acceleration at a fault
bend may lead to strong radiation of seismic waves. However, this
effect might not necessarily be expected for faults in 3-D because
the curved rupture front might not arrive at a fault corner simulta-
neously, thus leading to a temporal smoothing of the corner effect
(more precisely: there would be few points on the surface for which
seismic waves from multiple points on the corner arrive simulta-
neously). However, the lobes of high ground motion around the
segment boundaries in our dynamic models indicate that this radi-
ation from fault corners is indeed important in 3-D as well. The
most plausible explanation, in case of long strike-slip faults with
relatively homogeneous initial stress, is that rupture contours are
almost vertical lines once the earthquake has propagated a cer-
tain distance, generating a 2-D-like rupture behaviour and arriv-
ing at fault corners almost simultaneously. We conjecture that for
short faults or faults with highly heterogeneous initial stress (e.g.
Ripperger et al. 2007; Ripperger et al. 2008) these effects may be
diminished. However, dynamic rupture simulations as carried out
in this study, considering the large-scale geometric features of the
fault system, capture only the more coherent low-frequency seismic
radiation. Therefore, these geometrical effects on ground motion
will be strongly modulated due to other forms of stress heterogene-
ity leading to complex slip distribution and rupture incoherence.
Additionally, wave propagation in 3-D Earth’s structure and local
site conditions will further complicate the ground-motion pattern,
potentially masking the features due to geometric complexity (Olsen
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et al. 2008). Higher resolution models, potentially including small-
scale stress and geometric inhomogeneity, are necessary to more
fully address this question of near-field ground-motion complexity.

Nevertheless, we observe some ground-motion features that
probably are more general, including the asymmetry of ground
motion on either side of the fault at a corner, and along short seg-
ments bounded by double bends (such as segments D and F). Such
asymmetric ground motion might contribute to asymmetric off-
fault damage in the surrounding rock (Aydin & Du 1995; Duan &
Oglesby 2005; Duan & Day 2008), especially in the presence of
other mechanisms for preferred rupture orientation, such as loading
from a creeping region, or a bimaterial interface (e.g. Dor et al. 2006;
Shi & Ben-Zion 2006; Brietzke et al. 2007; Ampuero & Ben-Zion
2008; Dalguer & Day 2009). If there is no preferred direction of
rupture propagation, then some (but not all) of the damage asymme-
try may flip sides for ruptures of different directivity, making their
effects more difficult to predict ahead of time. However, the inside
corners of faults will remain locations of high ground motion.

5 C O N C LU S I O N S

We have performed spontaneous dynamic rupture simulations for
scenario earthquakes on the NAF under a variety of assumptions
about hypocentre location and stress orientation. Our simulations
clearly show that earthquake size and low-frequency ground motion
are sensitive to the particular choices for these physical parameters.
New observational data and more accurate modelling methods may
help to reduce these uncertainties. Additionally, such uncertainty
should be part of a probabilistic seismic hazard analysis for any
region around the world with geometrically complex fault systems.
In the case of the NAF in the Marmara Sea, through-going rupture
is possible under a variety of reasonable assumptions, but may be
inhibited under a variety of equally reasonable assumptions. Thus,
seismic hazard estimation in the region must fully incorporate both
possibilities. Additional work under different assumptions about
the fault geometry and other sources of stress heterogeneity may be
necessary to fully capture the uncertainty in seismic hazard. From
a more theoretical standpoint, our study demonstrates a number of
important physical features of earthquakes on geometrically com-
plex fault systems that transcend the specific case of the NAF: (1)
the dependence of the final earthquake size on the nucleation lo-
cation; (2) a new mechanism for supershear rupture propagation
and (3) strong effects of the fault geometry on near-source low-
frequency ground motion. These effects are all due to the interplay
of the local pre-stress field, the fault geometry and the dynamic
stress waves generated during the earthquake. These factors, in-
cluding their epistemic uncertainty, need to be taken into account
to reliably estimate ground motion from future earthquakes, both
in numerical studies of earthquake rupture dynamics as well as in
innovative probabilistic seismic hazard assessment.
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Additional Supporting Information may be found in the online ver-
sion of this article:

Figure E1. Final slip patterns for earthquakes nucleated on seg-
ments B, E, G, H and I for the un-rotated stress pattern, reproduced
from Oglesby et al. (2008).
Figure E2. Time histories of slip velocity for points given in Table
E1 and Fig. 2. Red: strike-slip motion; Blue: dip-slip motion.
Figure E3. Time histories of ground velocity for the two points
denoted in Fig. 7(d). Red: north of fault (6.75 km along the strike
of segment D, –1 km perpendicular to strike), Blue: south of fault
(6.75 km along the strike of segment D, 1 km perpendicular to
strike).
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