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Figure 5. Density plots of objective functions per frequency and depth of the first source using (a) the conventional least-squares misfit objective function,
(b) the stable version of the instantaneous traveltime and (c) using wavefield derivative function given by eq. (8). The true depth is at 1 km.

Figure 6. Density plots of objective functions per frequency and average depth of both sources using (a) the conventional least-squares misfit objective
function, (b) the stable version of the instantaneous traveltime and (c) using wavefield derivative function given by eq. (8). The true average depth is at 1.1 km.

1 km, and thus, we obtain zero misfit at that depth. The level of
non-linearity in the objective function using the wavefield deriva-
tive amplitude (eq. 8) is large. Note in the objective function that the
model-induced non-linearity (cyclical behaviour) is nearly orthog-
onal to the waveform based non-linearity especially near the true
solution. However, if we decide to invert for the average depth of the
two sources (reflectors), which is equivalent to the DC component
of the instantaneous depth described in eq. (12), we obtain very mild
non-linearity for this objective function as shown in Fig. 6c. This
demonstrates the power of inverting for the unwrapped phase reflec-
tivity model using the unwrapped phase wavefield. The additional
details of the reflectors including the thickness between the two
reflectors are embedded in the unwrapped phase representation of
the reflectivity model as a function of wavenumber, which is some-
what synonymous to the Fourier representation of the reflectivity
field.

8 T H E V E L O C I T Y G R A D I E N T

Unlike traveltimes, wavefields contain information about the
smooth velocity variation even with a single measurement. Such
information is stored in the frequency dependency of the wavefield.
Using the new wavefield measure based on the absolute value of the

wavefield derivative with respect to angular frequency, we evaluate
the objective as a function of surface velocity v0 and gradient g.
Fig. 7 focuses on the objective function near the solution given by
the target symbol for three different frequencies. Though there is a
trade-off between the gradient and the velocity per frequency, eq.
(8), which is well known in the high-frequency traveltime limit,
at low frequencies we see variations in the objective function per
frequency. Such variations are also observed with the conventional
objective function at almost the same scale (Fig. 8). In both figures
we focus on the objective function near the solution so non-linearity
is not an issue at these frequencies. This feature emphasizes that
despite the smooth objective function obtained with the unwrapped
phase, which is a feature shared by traveltime tomography, these
objective functions contain also waveform inversion information.
Though the variation seems subtle in both the conventional and
the unwrapped phase inversions, we expect these differences to be-
come more apparent in more complex velocity models and at higher
frequencies.

9 D I S C U S S I O N

The FWI includes complexities far beyond those analysed in this
paper, however, our objective here is to provide insights into the
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Unwrapping phases 1177

Figure 7. Density plots of objective functions for the model described in the caption of Fig. 1 using wavefield derivative function given by eq. (8) for three
different frequencies. The true solution is given by target symbol.

Figure 8. Density plots of objective functions for the model described in the caption of Fig. 1 using the conventional least-squares misfit function for three
different frequencies. The true solution is given by target symbol.

non-linearity (cycle skipping) associated with the inversion process
and suggest credible solutions to these complex non-linearities.
Unwrapping the phase of the wavefield, in its data or model forms,
mitigates the periodic nature of its phase in time and depth, respec-
tively.

The unwrapping of phases in the data and the reflectivity model
is an alternative to implementing the combination of the frequency
and Laplace inversion schemes used to navigate the non-linearity
introduced by the data and model, respectively. To do so the Laplace
and frequency approaches rely heavily, at the initial stages, on good
quality shallow and low-frequency data. The alternative approach
proposed here allows us to keep vital waveform inversion infor-
mation intact while tackling the source of non-linearity, the phase
wrapping of the model and waveform. The process does not require
initial elimination of high-frequency and later data.

The representation of the velocity model based on the resultant
reflectivity is an invertible process provided we know the velocity
at the surface (initial velocity). An inversion process requires the
development of an update procedure given typically by the gra-
dient. Thus, the derivative of the objective function with respect
to the unwrapped phase of the reflectivity can be extracted from
the conventional Jacobian, the first-order partial derivatives of the
residuals with respect to the model parameters, using the chain

rule. Nevertheless, we can equally unwrap the phase of the velocity
model directly, though velocity model discontinuities may pose a
challenge, we leave this subject to another study.

1 0 C O N C LU S I O N S

An analysis of various objective functions for seismic waveform
inversion demonstrates that the type of attribute used in measuring
the misfit between the observed and modelled data plays a crucial
role in reducing the non-linearity in the inversion process. While
the wavefield’s cyclical nature induces non-linearity in the conven-
tional least-squares objective function along the inverted parameter
direction, the reflectivity model introduces its own non-linearity
mostly in the frequency direction. Both non-linearities can be mit-
igated by using instantaneous attributes on the observed data and
the reflectivity (or velocity) model to unwrap their phases.
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