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Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression

for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites.

We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in

experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with

recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic

magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double

quantum dots tuned to the spin-blockade regime.
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The discovery some ten years ago of spin injection in
organic semiconductors [1] and a giant magnetoresistance in
organic spin valves [2,3] triggered the birth of the thriving
field of organic spintronics [4], which offers interesting new
physics and the potential of industrial applications. An excit-
ing phenomenon in this field is a large (up to 20%) magne-
toresistance observed in different organic materials [5–7],
usually at small magnetic fields (1–10 mT) but sometimes at
larger fields (10–100 mT) and persisting up to room tem-
perature. Since its discovery in 2004, different explanations
for this organic magnetoresistance (OMAR) have been
proposed: For bipolar devices, it was suggested that spin-
dependent electron-hole recombination and dissociation
rates could be responsible [8,9], whereas a model based on
nuclear-field-mediated bipolaron formation could explain
OMAR in both bipolar and unipolar devices [10–12].

More recently, an organic magnetoresistive effect on an
even smaller field scale (0.1–1 mT) has been observed in
unipolar as well as bipolar devices [13]. This ultrasmall
magnetic field effect (USFE) ismanifested by a sign reversal
of the magnetoconductance (MC) at very small fields (scal-
ingwith thewidth of theMCcurve), which creates two small
peaks (dips) around zero field for devices with a negative
(positive) MC [13]. An explanation was suggested in terms
of enhanced singlet-triplet mixing close to the crossings of
the hyperfine sublevels of pairs of charge carriers (polarons)
coupled to single nuclear spins [14]. This explanation is still
under debate, mainly because it is expected that a single
polaron in reality couples to many nuclear spins [15–17].
Others attribute the USFE to the interplay of the polaron
Zeeman and exchange splittings [18], which could be rele-
vant for materials with strong coherent intersite coupling.

Here, we study the OMAR line shape as it naturally
emerges from the spin-blockade model of Ref. [10]. We
present an analytic expression for the charge current
through a polaron-bipolaron link for a given realization
of the nuclear fields. Our results reproduce the USFE and

the different linewidths as observed in experiment and in
numerical calculations based on the same semiclassical
approach [19], and from our analytic insight we can iden-
tify the underlying physical mechanisms. We thus not only
reveal the physical origin of the USFE but thereby also
provide support for the spin-blockade model capturing the
underlying physics of OMAR.
We note that many interesting aspects of spin-blockade

physics have already been investigated in the seemingly
foreign field of spin qubits hosted in semiconductor quan-
tum dots [20,21], where spin blockade is commonly used
as a tool for single-qubit readout [22,23]. Indeed, the
physics of the polaron spin-blockade model for OMAR is
very similar to that governing the electron transport
through a double quantum dot in the spin-blockade regime
[21]. Our investigation thus builds on the theoretical frame-
work of Ref. [21], and our explanation of the USFE relies
on a subtlety which was not addressed in Ref. [21]. We
therefore also provide a refined understanding of quantum
dot spin-blockade physics and claim that the USFE also
must be present in electron transport through double quan-
tum dots. Indeed, a close inspection of the experimental
data presented in Ref. [21] also seems to reveal a faint
USFE, which always has been ignored. In fact, due to its
tunability, we expect that a double quantum dot might be
the best system to experimentally explore the USFE in
more detail.
Let us first briefly review the bipolaron model for

OMAR presented in Ref. [10]. Electric current flows
through the organic material as polarons hop between
different localized molecular sites. Typically, the sites
participating in transport do not form a regular lattice,
and all have a random energy offset with a distribution
width � of 0.1–0.2 eV [10]. Sites with a relatively large
negative energy offset are likely to trap a polaron for a long
time, but since the on-site polaron-polaron repulsion is
typically of the same order of magnitude as �, such
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occupied sites can often still take part in transport by
temporarily hosting a pair of polarons, i.e., a bipolaron.

Because of a relatively large orbital level spacing,
most energetically accessible bipolaron states are spin
singlets. This makes the polaron-bipolaron transition spin
selective, ultimately leading to OMAR. The mechanism
can be understood from Fig. 1, where we focus on a single
polaron-bipolaron transition. We assume that the spins of
the two encountering polarons are random, and for sim-
plicity we describe the problem in the basis of spin eigen-
states quantized along the direction of the local magnetic
fields BL;R. Two possible initial spin states are depicted:

(i) the left spin antiparallel and the right spin parallel to
the local field and (ii) both spins parallel. In the absence of
an external field, the magnetic fields at the two sites are the
local random effective nuclear fields [Fig. 1(a)]. Generally,
all initial states can then transition to a spin-singlet bipo-
laron and current runs through the system. If, on the other
hand, a magnetic field much larger than the typical nuclear
fields is applied, then BL and BR are (almost) parallel
[Fig. 1(b)]. In this case, situation (ii) is a spin triplet, out
of which a bipolaron cannot be formed: the current is
blocked. Of course, in experiment, there are many possible
paths for charge carriers through the material and not all of
them contain bipolaron sites. The visibility of all effects of
spin blockade will thus be reduced, but the characteristic
features survive [10].

In this work, we will focus on the physics of a single
polaron-bipolaron transition and its MC line shape. To
describe the transition, we use five states: the four possible
initial spin states of the polaron pair (both sites hosting one
polaron)—one spin-singlet state jSi and three spin-triplet
states jT0i and jT�i—and the spin-singlet bipolaron state
jSbi. The Hamiltonian we use to describe the coherent
dynamics of these states reads [21]

Ĥ ¼

Bz
s B�

s 0 �B�
a 0

Bþ
s 0 B�

s Bz
a 0

0 Bþ
s �Bz

s Bþ
a 0

�Bþ
a Bz

a B�
a 0 t

0 0 0 t ��

0
BBBBBBBB@

1
CCCCCCCCA
; (1)

written in the basis fjTþi; jT0i; jT�i; jSi; jSbig. This
Hamiltonian includes a coupling energy t between the
two singlets (which enables polaron hopping) and the
relative energy offset (detuning) � of the bipolaron state,
typically �� �. The effect of the local magnetic fields
BL;R is expressed in terms of the sum and difference

fields Bs ¼ ð1=2ÞðBL þBRÞ and Ba ¼ ð1=2ÞðBL �BRÞ,
and we use the notation B�

sðaÞ ¼ ð1= ffiffiffi
2

p ÞðBx
sðaÞ � iBy

sðaÞÞ.
Note that we have set g�B ¼ 1 for convenience.
As pointed out in Ref. [21], we can deduce already from

Eq. (1) that there exist in the space of (BL, BR) so-called
‘‘stopping points’’ where the current is blocked. To see this,
we take the spin quantization axis to point along Bs, which
amounts to setting B�

s ! 0 in Eq. (1). Then, we find that
current vanishes when Ba k Bs or Ba ? Bs, since at these
points one or more of the triplet states are not coupled to
jSi. The sum and difference fields Bs;a both contain a

contribution from the effective nuclear fields KL;R on the

two sites, whereas the external field Bext only adds to the
sum field: Bs ¼ Ks þ Bextẑ and Ba ¼ Ka. For a given
random realization of KL;R, one can thus always find

a field Bext for which Ba ? Bs, and a sweep of Bext for a
fixed KL;R will always exhibit a stopping point where the

current vanishes. The position of this stopping point is
determined by the relative orientations of Ks and Ka and
is thus random. In an experiment, one usually sweeps Bext

so slowly that at each measurement, many configurations of
the fields KL;R are probed. As a result, the stopping points

are averaged out and one finds a smooth MC curve [21].
However, this is not the full story. A subtlety, not dis-

cussed in Ref. [21], is that there exists one more stopping
point [24]: When Bs ¼ 0, the triplet subspace in the
Hamiltonian is degenerate and Eq. (1) can be equivalently
written in terms of one coupled triplet state

jTmi ¼ �B�
a jTþi þ Bz

ajT0i þ Bþ
a jT�i

jBaj
and two orthogonal triplet states jT1i and jT2i which have

hT1;2jĤjSi ¼ 0 and are thus blocked. Why would we

bother? We argued above that stopping points occur at
random positions, leaving no trace after averaging over
KL;R. This new stopping point, however, is fundamentally

different from the ones discussed above: It suppresses
current close to where Bext¼�Ks, which is always in the
vicinity of Bext ¼ 0. It is therefore possible that after aver-
aging over KL;R, this new stopping point leaves a trace in

the MC curve: a small dip around zero field, like the USFE.
Let us now explicitly calculate the current as governed

by this polaron-bipolaron transition. To describe charge
transport, we write a time-evolution equation for the
5� 5 density matrix of the system. To the coherent evo-

lution dictated by Ĥ, we add incoherent rates describing
dissociation of the bipolaron to the environment and hop-
ping of a new polaron onto the empty left site. This yields
(where we have set @ to 1)

(a) (b)

FIG. 1 (color online). When a site already contains a polaron
(the right site in the pictures), charge transport through this site
relies on the formation of a bipolaron (thick blue arrows). This
bipolaron must be a spin singlet, which leads to spin blockade.
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@t
¼ �i½Ĥ; �̂� � �

2
fP̂b; �̂g þ �

4
�b;bð1� P̂bÞ1̂; (2)

where � is the rate of bipolaron dissociation to the environ-

ment, P̂b ¼ jSbihSbj is the projection operator onto the

bipolaron state, and 1̂ is the identity matrix. In writing
so, we assumed for simplicity that the refilling of the left
site takes place immediately after the dissociation of the
bipolaron. If this is not the case, the prefactor for the
current changes but the MC characteristics stay the same.

We add the normalization condition Tr½�̂� ¼ 1 to the set

of equations and then solve @t�̂
ðeqÞ ¼ 0 to find the sta-

tionary density matrix. The charge current is then given by

I ¼ e��ðeqÞ
b;b and can be found explicitly. We assume for

convenience that � � t, Bs, Ba, � is the largest energy
scale in the problem [12], and then find

I ¼ e�s

4x2sin2�

x4 þ ax2 þ 1
; (3)

in terms of x � Bs=Ba. Here, �s � t2=� is the singlet-
singlet hopping rate from the left to the right site and �
is the angle between Bs and Ba [25]. We also used

a ¼ �2
s

B2
a

�
3þ 1

cos2�

�
� 2 cos2�: (4)

We see that all stopping points predicted above are indeed
reflected in Eq. (3): At Bs ¼ 0, we have x¼0, which yields
I ¼ 0, and Ba k Bs or Ba ? Bs corresponds to � ¼ 0, �
or � ¼ �=2, respectively, both also giving I ¼ 0.

Equation (3) is the most important analytic result of our
work. It gives the current for one single realization of KL,
KR, and Bext. The MC measured in experiment is found by
averaging Eq. (3) over the random nuclear fields. In con-
trast to the analytic results presented in Ref. [21], our result
is valid for arbitrary �s and not only for limiting cases. One
word of caution is required here concerning the interpre-
tation of Eq. (3): If one wants to plot IðBextÞ for a single
realization of KL;R, one should not only use Bs ¼ jKs þ
Bextẑj in Eq. (3) but also implement the dependence of �
on Bext implied by cos� ¼ ðBs � BaÞ=BsBa.

Let us now investigate Eq. (3) and see what we can infer
about the line shape of the predicted MC curve. We always
have a >�2, which ensures that I 	 0 everywhere. The
current vanishes for x ¼ 0 or x ! 1, and in the range x 2
½0;1�, we have a single maximum at x ¼ 1 where the
current is Imax ¼ 4e�ssin

2�=ðaþ 2Þ. In Fig. 2(a), we
plot the expression given in Eq. (3) for different a. The
FWHMs w� of the dip around x ¼ 0 and wþ of the overall
peak structure (as indicated in the plot for a ¼ 4) are found

to be w2� ¼ 2þ ð1=2Þa� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2aþ ð1=4Þa2p

.
We see from Eq. (4) that an important parameter is

�s=K, the ratio of the intersite hopping rate and the typical
magnitude of the nuclear fields K, typically �0:1 �eV
[15]. We will thus now investigate the cases of small and
large �s=K.

In the limit of �s=K 
 1, we can write

I � e�s

4x2sin2�

x4 � 2x2 cos2�þ 1
¼ �sðnL � nRÞ2; (5)

where we used the unit vectors nL;R ¼ BL;R=BL;R. As it

should, this result coincides with that of Ref. [21] in the
same limit: There are no intersite exchange effects, and
the situation is exactly like the picture of Fig. 1 where the
current only depends on the relative orientations of BL and
BR. As was shown in Ref. [21], Eq. (5) can be averaged
analytically over random KL;R taken from a normal distri-

bution, yielding a MC curve with a flat peak at Bext ¼ 0, a
maximum of hIimax � e�s, and a linewidth of�K. Indeed,
for all a 2 ½�2; 2�, we find that wþ � 1, so for any � the
current is suppressed when x * 1. In Fig. 2(b) (blue trace),
we plot the resulting MC line shape, where we defined
MCðBextÞ ¼ ½IðBextÞ � Ið0Þ�=Ið0Þ.
In the opposite limit of �s=K � 1, we have a �

ð�s=BaÞ2ð3þ cos�2�Þ � 1. We can already see from the
properties of Eq. (3) that in this case, hIimax � eK2=�s, and

that wþ � a1=2 � �s=K implies a MC linewidth of ��s.
Indeed, �s sets the level broadening of jSi, and as long as
Bs & �s, generally all three triplet states can efficiently
transition to jSi with the coupling provided by Ba. The
width of the dip around the stopping point at x ¼ 0 is

w� � a�1=2 � K=�s in terms of x, or �K2=�s in terms
of Bs. This energy scale can also be understood: If Bs ¼ 0,
the decay rate of jTmi is �t � K2=�s, which is the only
energy relevant in the triplet subspace. When Bs * �t, the

(a) (b)

(c)

FIG. 2 (color online). (a) The current given by Eq. (3) as a
function of x ¼ Bs=Ba for fixed Ba and �, evaluated for differ-
ent parameters a. (b),(c) The averaged MC. (b) The blue
trace represents �s=K 
 1. The field Bext is plotted in units of
K ¼ hK2

L;Ri1=2. The peak of this curve is flat [21]. The green

trace represents �s=K ¼ 3=2. (c) �s=K ¼ 50. Now, Bext is
plotted in units of �s. Inset: The range where Bext � K.
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decay of the other two triplet states becomes comparable to
�t and the blockade is lifted.

In this limit of large �s=K, the current cannot be aver-
aged analytically over the nuclear fields, and one has to
evaluate the integrals over the distribution ofKL;R numeri-

cally. Figure 2(c) shows a plot of the MC integrated over
normal distributions for all six components ofKL andKR.

For all components, we used a standard deviation of K=
ffiffiffi
3

p
and we have set �s=K ¼ 50. The resulting line shape is
Lorentzian since it is determined by the level broadening of
jSi. Close to zero field, where Bext � K, we find a very faint
USFE, as shown in the inset. When we set �s=K even
larger, we find that the visibility of this USFE is suppressed
further, ultimately reaching zero.

We can understand this USFE from the expression for
the current given in Eq. (3). For a given realization ofKL;R,

the current trace IðBextÞ ‘‘misses’’ the zero-field stopping

point by K?
s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKx

s Þ2 þ ðKy
s Þ2

p
, as illustrated in Fig. 3.

Some realizations have K?
s 	 Ba so that the current trace

has a single maximum [see Fig. 2(a)]. Other realizations
have K?

s < Ba, and the current exhibits a dip at small
fields, the position of the dip at Bext ¼ �Kz

s . For large
�s=K, the dip around the zero-field stopping point becomes
narrow, of the order of �K2=�s 
 K, and only the very
few curves of IðBextÞ with K?

s & K2=�s have an appre-
ciable dip. This can still produce a faint dip in the averaged
current. However, the position of each single-realization
narrow dip is at Bext ¼ �Kz

s , so averaging over Kz
s makes

the averaged dip even less pronounced and results in a dip
width of �K.

The regime to look for a pronounced USFE is thus at
intermediate �s=K � 1. In Fig. 2(b) (green trace), we plot
the averaged MC for �s=K ¼ 3=2 and we see indeed a
strong USFE, its visibility being �5%. This regime is
optimal for the USFE since here the width of the zero-field
dip is still �K, but the symmetric situation where the
current only depends on the angle between nL and nR is
significantly perturbed. In other words, at �s=K ! 0, the
overall MC linewidth is minimal and �K. The two USFE
‘‘bumps’’ are still there but are split by the same energy
scale �K and thus appear just left and right of the top of

the MC curve. In the limit of �s=K ¼ 0, the bumps and the
underlying MC curve have exactly compatibly shaped line
shapes, together resulting in the characteristic flat peak.
If one moves away from �s=K ¼ 0, the underlying MC
line shape becomes broader, which makes the USFE
bumps more visible. However, as soon as �s=K becomes
too large, one enters the regime discussed above, where
the USFE disappears again. The optimal regime is thus at
�s=K � 1, in agreement with the results presented in
Figs. 2(b) and 2(c) as well as with previously obtained
numerical results [12].
To summarize, we studied the two-site spin-blockade

model for OMAR and derived an analytic expression for
the polaron-bipolaron transition rate, which provides an
explanation of the USFE in terms of a persistent spin
blockade at the special point where the average effective
field vanishes Bs ¼ 0. Our work also deepens the under-
standing of spin-blockade physics in semiconductor quan-
tum dots, and we predict the existence of an USFE in these
systems as well.
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[6] Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng,
D. T. Nguyen, M. Wohlgenannt, A. Köhler, M.K. Al-Suti,
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