Chemical insight into origin of forming-free resistive random-access memory devices

View online: http://dx.doi.org/10.1063/1.3645623
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/99/13?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory

Switching dynamics and charge transport studies of resistive random access memory devices

Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device

Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

Nanoscale chemical state analysis of resistance random access memory device reacting with Ti
Appl. Phys. Lett. 96, 192107 (2010); 10.1063/1.3373594
Chemical insight into origin of forming-free resistive random-access memory devices

Division of Microelectronics, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685, Singapore
Singapore University of Technology and Design, Singapore 138682, Singapore
Imaging & Characterization Core lab, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 117602, Singapore

(Received 19 May 2011; accepted 12 September 2011; published online 29 September 2011)

We demonstrate the realization of a forming-step free resistive random access memory (RRAM) device using a HfO$_x$/TiO$_x$/HfO$_x$/TiO$_x$ multilayer structure, as a replacement for the conventional HfO$_x$-based single layer structure. High-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy (EELS) analysis has been carried out to identify the distribution and the role played by Ti in the RRAM stack. Our results show that Ti out-diffusion into the HfO$_x$ layer is the chemical cause of forming-free behavior. Moreover, the capability of Ti to change its ionic state in HfO$_x$ eases the reduction-oxidation (redox) reaction, thus lead to the RRAM devices performance improvements.

High performance non-volatile memory (NVM) devices require acceptable endurance and stable resistive switching for practical application. Transition metal oxides (TMOs)-based resistive random access memory (RRAM) attracts attention because of their compatibility with the complementary metal–oxide–semiconductor (CMOS) process technology. The formation and rupture of the localized conductive filament with the assistance of reduction-oxidation reaction are a widely accepted explanation for the bipolar resistive switching mechanism. In this mechanism, an initial “forming” stage is needed to breakdown the TMO layer before ultimately a conductive filament is formed through percolation. Such a two-stage mechanism causes the first transition from a high resistance state (HRS) to low resistance state (LRS). For a virgin oxide layer, the voltage required for forming a percolation path (V_{FORM}) can be relatively high, which imposes severe constraint from a circuit design perspective. It would be more desirable if the forming and successive cycle SET voltages (V_{SET}) are similar to each other and relatively low for stable RRAM operation. Moreover, if the V_{FORM} is very high, it is possible that the oxide suffers substantial degradation (trap generation) prior to reaching the compliance current level, which can in turn affect the endurance behavior of the memory device. This is more so for the thicker (5–10 nm) high-κ dielectrics that are currently being investigated for commercial RRAM application. It is, therefore, necessary to develop approaches that can be used to reduce the V_{FORM} and enhance the performance metrics of the RRAM. To address this issue, we have fabricated a multilayer oxide stack comprising an additional buffer layer consisting of TiO$_x$ on top of a HfO$_x$ TMO layer.

This HfO$_x$/TiO$_x$/HfO$_x$/TiO$_x$ multilayer RRAM shows substantial improvement of SET voltage in cycle-to-cycle uniformity within and between device uniformity. Moreover, electrical characterization shows that these multilayer devices are free from the “forming” process. Here, an in-depth physical analysis to probe the chemical origin for realization of forming-step free RRAM devices has been carried out by advanced nano-scale characterization tools such as transmission electron microscopy (TEM) equipped with electron energy loss spectroscopy (EELS). These findings have potential implications for design of next generation RRAM devices to meet the requirements of commercial product.

The device fabrication process is as follows: a ~20 nm Ti adhesive layer was first deposited on silicon substrates by electron beam evaporation, followed by ~50 nm Pt deposits as a bottom electrode (BE). The multilayer dielectric stack consists of a ~4 nm HfO$_x$ film deposited by reactive sputtering in argon and oxygen ambient, followed by a ~2 nm TiO$_x$ realized by oxidation of a deposited Ti film in oxygen ambient under the temperature of 450$^{\circ}$C. These two processes were repeated to produce the final four-layer oxide structure of HfO$_x$/TiO$_x$/HfO$_x$/TiO$_x$. The top electrode (TE) is a ~50 nm TiN, deposited again using reactive sputtering and patterned with lithography and selective dry etching to obtain square-shaped capacitive devices. Figures 1(a) and 1(b) show the cross-sectional TEM micrograph of the four-layer high-κ RRAM stack device. The four distinctive layers of thin films can be observed clearly. The thickness of each oxide layer was measured by averaging over the whole layer using a full-width-half maximum method using layer contrast peak values. The electrical characterization of the RRAM device was carried out by Keithley 4200 SCS semiconductor parameter analyzer. For all the measurements, the

4Author to whom correspondence should be addressed. Electronic mail: peykinleong@sutd.edu.sg. Tel.: +65-6303-6617, Fax: +65-6792-0415.
voltage was applied to the TiN TE with the Pt BE grounded. The size of the tested device was $100 \mu m \times 100 \mu m$.

Figure 2(a) shows the typical forming, SET and RESET processes of a single layer HfO$_x$ device followed by five successive cycles. The forming voltage (1.7 V) is larger than the SET voltage (1.1 V), by a margin of 0.6 V. The initial (virgin) state resistance (before forming) is much larger (by two orders of magnitudes) than the HRS resistance after the RESET process. For the forming-step free multilayer RRAM fabricated in this study, the virgin state resistance is similar to the HRS resistance after RESET, as can be clearly inferred from Fig. 2(b). Moreover, the forming voltage (1.5 V) is comparable with the subsequent SET (1.4 V) voltage, which suggests that the conventional high voltage forming process is no longer needed for this device. Figure 2(c) shows the SET voltage distribution of the single layer device and multilayer RRAM devices having 500 dc cycles. The distribution of SET voltages in multilayer RRAM devices is more converged as compared with the single layer RRAM devices.

To analyze the chemical distribution and origin in the forming-step free multilayer RRAM device, EELS measurements were performed using an FEI Titan TEM, operated at 200 kV in scanning TEM (STEM) mode. The STEM probe size was set to be approximately 1.3 Å in diameter, and the point-to-point distance is 3.0 Å in the line scan. Figure 3 shows the EELS results of the N K-edge, Ti L$_{2,3}$-edge, as well as the O K-edge of a fresh multilayer oxide RRAM device. The N K-edge can clearly be observed in the TiN TE layer, while no such signal exists in the multiple oxide layers. Oxygen signal clearly shows up in every oxide layer, while negligible counts exist in the TiN top electrode layer.
every oxide layer, indicating that the Ti ions actually diffused/migrated into both the HfOx layers. Figure 4 illustrates the energy-loss near-edge structure (ELNES) at the TiN TE layer, the first HfOx layer, and the second HfOx layer, for the same region shown in Fig. 3. Note that the ELNES is commonly used to elucidate the bonding and localized electronic structure; in this approach, the detailed shape of the EELS edge is studied, as it is a function of the local density of electron states. 9–11 In general, the L3,2 edges of the 3d transition metals contain information about the valence state, coordination, and site symmetry of the central atom. The L3 edge originates from electron transitions from the inner 2p3/2 orbitals to empty 3d orbitals of the metal and the L2 edge originates from 2p1/2 → 3d electron transitions. The relative intensity and energy position of these L3 and L2 lines are strongly dependent on the d-band occupancy and, therefore, on the valence state of the transition element. In the case of Ti compounds, the near-edge structures found in the L3,2 edges mainly reflect the covalent bonding states resulting from direct and/or indirect interactions between Ti and surrounding atoms. In Fig. 4, for the TiN TE, in all the samples, we measured the Ti L2-edge onsets at 453 eV. In both HfOx layers, a shift of the L2 line to higher energy by 1.0 eV is clearly visible in Fig. 4 for the EELS spectra taken from the particle edge with also an increase in L3 line intensity. Based on these results, Ti in the HfO2 has a higher valence state than Ti in the TiN gate.

In summary, forming-step free RRAM has been achieved using a HfOx/TiOx/HfOx/TiOx multilayer structure. Physical analysis using TEM-EELS suggests that Ti diffusion into the HfOx layer is the chemical origin for of the observed forming-step free behavior.

X. Wu would like to thank Gang Zhang from Peking University, China and Ping Bai from Institute of High Performance Computing (IHPC), A*STAR Singapore for technical discussions. X. Wu gratefully acknowledges the scholarship support provided by the Ministry of Education (MOE), Singapore (Grant No. T206B1205). This research work is funded by the Singapore University of Technology and Design (SUTD) Research Grant No. SRG ASPE 2010 004.