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Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary

differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations,

especially if a high order ODE solver is required. Recently, in [1], a new class of Runge-Kutta methods was proposed

that requires only two storage locations per ODE, even when an error estimate is needed. This class generalizes and

extends the previously-existing classes of low-storage Runge-Kutta methods. In this talk, we review this new class of

low-storage Runge-Kutta methods and present newly developed methods that have particularly good error constants

and/or stability regions. We also present new methods that maintain the linear stability properties of well-known full

storage methods, like the method of Fehlberg, or of Dormand & Prince, while offering a low-storage implementation.

The two previously-known classes of low-storage methods were developed by Williamson [2] and by van der

Houwen & Wray [3], respectively. During the last decade, both classes of methods have been further developed,

to include methods optimized for special properties and methods with embedded error estimators. Existing classes of

low-storage embedded methods require an extra (third) memory register to provide the error estimate. If a desired error

tolerance is exceeded in a given step, it may be necessary to restart that step. In this case, another additional register is

necessary for storing the previous step solution. In some applications where no error estimate is used, restarting may

still be required based on some other condition (such as a CFL condition) that is checked after each step. In this case,

again, existing low-storage methods require the use of an extra register.

The new methods developed in [1] are capable of providing a solution and an error estimate with only two registers,

or a solution, error estimate, and restart capability with only three registers; for this reason we refer to them as

minimum-storage methods. In [1], a few reasonably good fourth-order methods of these types were presented. The

focus of this talk is the presentation of new methods of third to fifth order with even better properties. These methods

compare favorably with those developed by Kennedy et. al. [4], in the most extensive previous work on low-storage

methods. Namely, the new methods possess smaller error constants, larger stability regions, and/or less demanding

memory requirements.

Changing the time integrator in a production method-of-lines PDE solving code is typically one of the simplest

numerically significant modifications that can be made. Hence these new methods should quickly yield a high payoff

for codes that operate on memory-limited supercomputers. In order to encourage practitioners to switch to minimum-

storage methods, it may be helpful to provide integrators with properties similar to those currently in use. To this end,

we develop new methods whose stability functions coincide with those of important existing full-storage methods, like

Fehlberg’s, or Dormand & Prince. We demonstrate through computational examples that these new methods behave

similarly to the methods they are modeled on, while providing the additional benefit of low storage.
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