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Fig. 15. The normalized electric field over the graphene plane at resonant
frequencies f1 = 1.445 THz, f2 = 3.735 THz, and f3 = 5.291 THz for
period p = 10 µm case.

clearly observed.

IV. CONCLUSION

In this paper, a DGTD based algorithm is developed to mod-
el the graphene described by a surface conductivity σg. Instead
of volumetrically meshing the atomically-thick graphene, a R-
BC is applied by considering the graphene as an infinitely thin

TABLE IV
THE TIME STEP SIZE δtDG FOR DG AND δtBI FOR BI AND THE NUMBER

OF MESH ELEMENTS N .

p (µm) δtDG(s) δtBI(s) N
6 6.25× 10−17 1.45× 10−17 85, 128
8 7.92× 10−17 1.52× 10−15 94, 501
10 7.01× 10−17 1.55× 10−15 99, 988

TABLE V
THE POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET WITH

µc = 0.5 eV.

m am cm
1 −1.351× 1010 0.0655
2 −1.209× 1012 1.177× 1011

3 −(0.0012− j2.635)× 1015 8.852× 1010 + j5.297× 105

4 −(0.0012 + j2.635)× 1015 8.852× 1010 − j5.297× 105

TABLE VI
THE POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET WITH

µc = 1.0 eV.

m am cm
1 −1.395× 109 0.9325
2 −1.209× 1012 1.177× 1011

3 −(0.0013− j5.289)× 1015 1.783× 1011 + j1.588× 106

4 −(0.0013 + j5.289)× 1015 1.783× 1011 − j1.588× 106

TABLE VII
THE POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET WITH

µc = 1.5 eV.

m am cm
1 −1.561× 108 -0.1366
2 −1.209× 1012 1.766× 1011

3 −(0.00094− j7.808)× 1015 2.591× 1011 − j8.879× 106

4 −(0.00094 + j7.808)× 1015 2.591× 1011 + j8.879× 106

conductive sheet with the surface conductivity σg described by
the Kubo-formula. To incorporate this boundary condition into
DGTD analysis, the formulation of numerical upwind flux is
rederived based on the Rankine-Hugoniot jump relations. By
approximating the surface conductivity with rational functions
using the FRVF technique, the corresponding time-domain
matrix equations can be obtained in an integral form over time
t via the inverse Laplace transform. The integral operators
are discretized by FIT. The validation and applicability of the
proposed algorithm are demonstrated by a set of numerical
examples.

APPENDIX A
THE RESIDUES AND POLES OF THE RATIONAL FUNCTIONS

CORRESPONDING TO DIFFERENT µc

This part shows the poles and residues of the rational
functions used to approximate the surface conductivity σg

of the graphene patch corresponding to different chemical
potentials µc. To facilitate the FRVF technique, the sampling is
conducted from 500 MHz to 10 THz with sampling resolution
fstep = 500 MHz. The number of poles and residues are set
to four, as shown in the following tables.
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