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The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great
relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing
of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of
fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical
simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and
−3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar
scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure
functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞ = 0.4 at
large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density
functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the
cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise
increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with
mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared
to assess anisotropy.

DOI: 10.1103/PhysRevE.88.033013 PACS number(s): 47.27.−i, 47.51.+a

I. INTRODUCTION

The advection of a substance by a turbulent velocity field
is a fundamental process in nature and many engineering
applications [1,2]. Examples include moisture and pollutants
in the atmosphere or chemical species in a combustion
chamber. If the substance does not affect the dynamics of
the velocity field, the substance is referred to as a passive
scalar.

The turbulent velocity field folds and stretches the trajec-
tories of fluid parcels, inducing large scalar gradients. The net
effect is a significant increase in scalar mixing (the dissipation
of the scalar variance) associated with large fluctuations in the
spatiotemporal scalar field.

From a practical point of view, large fluctuations and
extreme events play a critical role. For example, the probability
of exceeding a certain concentration threshold is of primary
importance in the dispersion of a pollutant or the ignition
of a nonhomogeneous mixture [3]. Moreover, phenomena
relevant in applications such as mixing and reaction occur
at the smallest scales, so engineering models cannot ignore
the statistics and morphology of the scalar field at these
scales where the strongest deviations from Gaussian behavior
are observed [2]. Examples of the strong effects that the
non-Gaussian and intermittent scalar field has on quantities
of practical relevance are reported by Sreenivasan [4], who
describes how intermittency in the scalar dissipation rate
affects reactive turbulent flow physics and modeling, and
Edouard et al. [5], who provide an example of how small-scale
inhomogeneities control the overall rate of depletion of ozone
in the Arctic region.

In real flows, turbulence is often generated by instabilities
and mean flow shear is important. The turbulent mixing
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layer is one of the simplest canonical flow characterized by
shear, instability, and large coherent structures. The large-scale
motion of the flow is dominated by quasi-two-dimensional
structures, described for the first time in the seminal work
of Brown and Roshko [6]. These structures originate from
the roll-up of the vortices generated by the Kelvin-Helmholtz
instability [7] and persist in the far field, where well-developed
turbulence is usually observed [8]. Significant efforts have
been directed toward the analysis of the mixing layer by
theoretical [9,10], experimental [6,11,12], and numerical
[7,13–18] means in order to characterize the dynamics of large
organized structures [6,7,13,14], the process of the transition
to turbulence [7,16], the self-similar state [11,12,15], and the
mixing layer’s nonuniversal nature [16–18]. By contrast, a
limited number of studies describe the statistical features of
fluctuations in the mixing layer turbulence [8,19–21] and a
detailed statistical analysis of passive scalar fluctuations in a
turbulent mixing layer is lacking.

It is well known [1,2] that high-order statistics of passive
scalar turbulence are characterized by strong deviations from
predictions based on classical dimensional scaling arguments
proposed by Corrsin [22] and Obukhov [23]. Like veloc-
ity, scalar transport is dominated by intermittency. This is
apparent in both the scale dependence of the probability
density functions (PDFs) of the scalar increments and the
deviation of the high-order structure functions scaling from
dimensional predictions. The so-called anomalous scaling
of the scalar is more pronounced than that observed for
velocity. This is not a consequence of the intermittency of
the velocity field since the anomalous scaling of the scalar
is observed for nonintermittent velocity fields also [24–27].
The statistical behavior of the scalar field is explained by the
appearance of frontlike structures [28,29]. These fronts occur
frequently, causing anomalous scaling and compromising
isotropy recovery, possibly down to the smallest scales [30].
The quasidiscontinuous nature of these scalar fronts leads
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to saturation of intermittency [28,31–33], i.e., the scaling
exponents of the structure function reach an asymptotic value
as the order increases.

Even though intermittency is expected to have limited
effects on the scalar spectrum and the second-order structure
function, significant deviations from the classical Obukhov-
Corrsin −5/3 scaling [22,23] have been reported for these
low-order statistics. In the case of shear flows, the deviations
are quite large and apparent even when the velocity spectrum
is characterized by a well-defined inertial range with a
scaling exponent very close to −5/3 [2,34–36]. Only at
very large Reynolds numbers (Reλ � 2000) is the −5/3
scaling recovered. Recently, Celani et al. [37] proposed
a theoretical argument, based on Lagrangian dynamics, to
explain the scaling of the passive scalar spectra observed
in shear turbulence. The presence of shear introduces a new
length scale Ls [38]. At scales larger than Ls and assuming
constant shear, Celani et al. [37] calculate spectra scaling
exponents of −4/3 and −3/2 for the directions parallel and
perpendicular to the mean shear, respectively.

Given the relevance of the configuration and the limited
literature on the subject, it is of great interest to characterize
the role of mean shear and coherent large structures in
the statistics of passive scalar fluctuations in the turbulent
mixing layer. After a brief description of the configuration and
methods (Sec. II), the scaling of second-order statistics, i.e.,
spectra and second-order structure functions, is analyzed and
compared to theoretical predictions for constant shear flows
[37] (Sec. III). In Sec. IV, high-order statistics are reported and
intermittency saturation is assessed using scaling of structure
functions. Moreover, the PDFs of scalar increments in the
three directions are analyzed to confirm the presence of
intermittency saturation and to evaluate the anisotropy of the
scalar fields.

II. PRELIMINARIES

The direct numerical simulation (DNS) presented in this
work is performed by solving the unsteady, incompressible
Navier-Stokes equations. An additional transport equation for
a passive scalar � with Schmidt number equal to 0.7 is also
solved.

The parallel flow solver NGA [39] developed at Stanford
University is used to solve the transport equations. The solver
implements a finite-difference method on a spatially and
temporally staggered grid with the semi-implicit fractional-
step method of Kim and Moin [40]. Velocity and scalar
spatial derivatives are discretized with a second-order finite-
difference-centered scheme.

A complete description of the flow parameters and methods
used for the computation is reported in [8], together with
a detailed analysis of the spatial evolution of the flow and
velocity statistics in the transitional and fully developed
turbulent regions. Therefore, only a brief summary is reported
here.

A schematic description of the geometry is shown in Fig. 1.
The flow is imposed at the inlet plane (x = 0) and free
convective outflow [41] is specified at x = Lx . The boundary
conditions are periodic in the spanwise direction z and free
slip in the crosswise direction y. The flow at the inlet (x = 0)

FIG. 1. Schematic description of the flow configuration. The inlet
is on the left (x = 0) and the outlet on the right (x = 473δω,0).
The statistical analysis of scalar fluctuations was performed in
the region marked by the white boxes: 350δω,0 < x < 425δω,0 and
y = −9δω,0 < y < −δω,0. A two-dimensional cut of the scalar field,
ranging from � = �2 (dark gray) to � = �1 (light gray), is shown
in the bottom figure. The top figure shows an enlarged view of the
squared gradient of the scalar field (scalar dissipation) in the region
analyzed. Light (dark) gray corresponds to large (small) values of the
gradient.

is a hyperbolic tangent profile for the streamwise velocity U

with prescribed vorticity thickness δω,0:

U (x = 0,y,z) = Uc + 1

2
�U tanh

(
2y

δω,0

)
, (1)

where Uc = (U1 + U2)/2 is the convective velocity, U1 and
U2 are the high- and low-speed stream velocities, and
�U = U1 − U2 is the velocity difference across the layer.
The Reynolds number based on the vorticity (momentum)
thickness at the inlet is Reω = 600 (Reθ = 150), increasing
up to Reω = 25 000 (Reθ = 4250) as the mixing layer de-
velops. The ratio of the two velocities is U1/U2 = 3. Low-
amplitude white noise is superimposed on the hyperbolic
tangent profile, resulting in the onset of the Kelvin-Helmholtz
instability at a short distance downstream of the inlet (x ≈
50δω,0). The crosswise and spanwise velocity components
are perturbed with the same type of disturbance. At the
inlet boundary, the passive scalar is �1 and �2 in the high-
and low-speed streams, respectively, with a smooth transition
between the two values.

The computational domain extends over Lx = 473δω,0,
Ly = 290δω,0, and Lz = 157.5δω,0 in the streamwise x,
crosswise y, and spanwise z directions, respectively. The
domain is discretized with 3072 × 940 × 1024 ≈ 3 × 109 grid
points (Nx × Ny × Nz). In the region centered around y = 0
(|y| � 45δω,0), the grid is homogeneous in the three directions:
�x = �y = �z = 0.15δω,0. Outside the core region for |y| >

45δω,0, the grid is stretched linearly up to �y = 0.6δω,0 at
|y| = 55δω,0 and is homogeneous up to the boundary. In the
region 45δω,0 < |y| < 55δω,0, the vorticity and the fluctuating
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vorticity root mean square are respectively three and five orders
of magnitude smaller than inside the layer, meaning that the
turbulent flow never reaches |y| = 45δω,0. Overall, the spatial
resolution is such that �x = �y = �z � 2.5η everywhere,
where η = ν3/4ε−1/4 is the Kolmogorov scale and ε the
turbulent kinetic energy dissipation rate. The time step size
is calculated in order to have a unity Courant-Friedrichs-Lewy
number.

The simulation was performed on the IBM Blue Gene/P
system Shaheen available at King Abdullah University of
Science and Technology, using up to 65 536 processing cores
(16 racks of the Blue Gene/P architecture). Statistics were
accumulated over time for 3500τ (τ = �U/δω,0) and 1400
flow field samples were used to evaluate statistics. Several
time signals were sampled at various spatial locations to
complement the spatial statistics with their temporal surro-
gates by Taylor’s hypothesis. The simulation required around
10 × 106 CPU hours and produced approximately 100 TB
of data.

It is well known that at a certain distance from the inlet,
the mixing layer evolves self-similarly. Appropriate scaling
velocity and length scales are the constant velocity difference
�U across the mixing layer and a measure of the local layer
thickness, e.g., momentum or vorticity thickness [42,43]. In a
previous analysis of the same DNS database [8], it was shown
that the local layer thickness and the mean and variance of
velocity evolve self-similarly for x > 300δω,0.

The analysis presented in this paper was performed in
the self-similar region between x = 350δω,0 and 425δω,0 and
between y = −9δω,0 and −δω,0, near the crosswise location
of maximum velocity variance (see Fig. 1). Figure 2 shows
the crosswise profiles of the mean and variance of velocity
and passive scalar at x = 383δω,0. Angular brackets indicate
a statistical mean obtained by averaging in the spanwise
direction z and time t and u = U − 〈U 〉, v = V − 〈V 〉, and
w = W − 〈W 〉 are the velocity fluctuations in the three direc-
tions. Analogously, φ = � − 〈�〉 indicates the fluctuations of
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FIG. 2. Mean velocity (〈U〉 − Uc)/�U (open squares) scaled
with the convective velocity Uc = (U1 + U2)/2 and velocity differ-
ence �U = U1 − U2, velocity fluctuation variance 〈uu〉/�U 2 (open
circles), mean passive scalar (〈�〉 − �c)/�� (closed squares) scaled
with �c = (�1 + �2)/2 and �� = �1 − �2, and passive scalar
fluctuation variance σ 2 = 〈φφ〉/��2 (closed circles).

TABLE I. Flow parameters in the region used for the analysis
(x = 350δω,0 and 425δω,0). The values of the Kolmogorov scale,
production, and dissipation are calculated at the crosswise position of
maximum turbulent kinetic energy (y ≈ −5δω,0). Here Ls = √

ε/S3

is the shear length scale, S being the local mean shear and ε the
dissipation.

Kolmogorov scale η 0.07δω,0

turbulence production/dissipation ratio P/ε 1.4
resolution �x/η 2
shear length scale Ls ≈40η

vorticity thickness δω ≈500η

Taylor microscale λT ≈43η

Reynolds number (Taylor microscale) Reλ ≈250

the scalar field � with respect to its mean 〈�〉 and σ is the
root mean square (rms). In the region analyzed, the stream-
wise and crosswise variations of mean shear, mean scalar
gradient, and velocity and scalar variance are less than 5%.
Table I summarizes some important flow parameters in this
region.

III. SECOND-ORDER STATISTICS

A. Shear effects on passive scalar spectra

In the presence of mean shear, an additional length scale
Ls =

√
ε/S3 may be introduced, where S is the local mean

shear and ε the dissipation [38,44,45]. This scale identifies
the cutoff between the small scales, which are not affected
by mean shear and display homogeneous isotropic turbulence
scaling, and larger scales dominated by mean shear, showing
different scaling properties (see [44] for a detailed analysis of
the velocity scaling in shear flows).

The effect of mean shear on the scaling of second-order
statistics for the passive scalar is described by Celani et al.
[37,46] using Lagrangian dynamics [47]. A brief summary of
the derivation is reported here for clarity.

The second-order structure function for the scalar is defined
at position ρ = {x,y,z} as

S2(ρ,r) = 〈[φ(ρ + r) − φ(ρ)]2〉, (2)

where r is a spatial separation and angular brackets denote
an appropriate statistical average. The scaling of the spectrum
E(k) versus k is related to the scaling of the second-order
structure function with respect to the separation r = |r| [48]:
The scaling E(k) ∝ k−α corresponds to S2(r) ∝ rα−1. The
structure function S2(r) has a straightforward Lagrangian
interpretation: Its value is proportional to the time T (r)
required for two particles, initially at the same position, to
separate by a distance r [47]. For simple flow configurations,
it is possible to estimate the scaling ofT (r) so that the spectrum
exponent α can be calculated. In the case of constant shear,
Celani et al. [37] provide a quantitative estimation of the
spectra scaling in the direction parallel and perpendicular to
the shear.

First, a simple model for the velocity advecting the passive
scalar is assumed:

v(ρ,t) = Syx̂ + u(ρ,t). (3)
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This velocity field is a combination of a linear shear with
constant intensity S and a three-dimensional isotropic field
obeying Kolmogorov’s k−5/3 scaling. The evolution of the
separation between two particles is given by

Ṙx = SRy + δux(R,t), (4)

Ṙ⊥ = δu⊥(R,t). (5)

The overdot indicates a time derivative, δu is the velocity
difference between two particles, and Rx and R⊥ = {Ry,Rz}
are the components of the particles’ separation in the directions
parallel and perpendicular to the mean shear. At scales
smaller than Ls , the dynamics are dominated by the turbulent
component δu and the effects of the shear term SRy are
negligible. In this limit, δu scales with exponent 1/3 due
to classical Kolmogorov scaling and Richardson’s law holds:
〈R2(t)〉 ∝ t3, or equivalently T (r) ∝ r2/3. Hence the scalings
r2/3 and k−5/3 are recovered for the second-order structure
function and scalar spectrum. At scales larger than Ls , or
equivalently for times greater than ts , defined as the time
required for two particles to reach a separation comparable to
Ls , the dynamics are dominated by the term SRy . Therefore,
Rx and R⊥ show a different scaling, i.e., 〈R2

x〉 ≈ 〈R2〉 ∝ t2a

and 〈R2
⊥〉 ∝ t2b, respectively. Invoking Kolmogorov’s scaling

δu⊥(R,t) ∝ R1/3 and neglecting δux(R,t), the two relations
a − 1 = b and b − 1 = a/3 are obtained. Hence the following
scalings apply:

Sx,2 ∝ r1/3, Ex(k) ∝ k−4/3 (6)

and

S⊥,2 ∝ r1/2, E⊥(k) ∝ k−3/2, (7)

where x and ⊥ indicate the directions parallel and perpendic-
ular to the mean shear.

B. Passive scalar spectra and second-order structure function
in the turbulent mixing layer

Spectra and second-order structure functions for the passive
scalar were calculated in the self-similar region of the turbulent
mixing layer for the streamwise x and spanwise z directions,
which are respectively parallel and perpendicular to the mean
shear. The flow is highly nonhomogeneous in the crosswise
direction, therefore the spectrum and structure functions have
not been calculated in this direction. It is worth noting that
in a previous work using the same database [8], it has been
shown that velocity spectra in the fully turbulent region show
a wide inertial range with k−5/3 scaling and, at scales smaller
than 250η, the structure functions are similar to those in
homogeneous isotropic turbulence at a comparable Reynolds
number.

Passive scalar spectra are shown in Fig. 3. The spectra in
both the x and z directions show an inertial range with constant
scaling. The compensated spectra, shown in the inset, illustrate
that appropriate scalings are k−4/3 and k−3/2 for the x and z

directions, in agreement with the theoretical analysis of Celani
et al. [37] summarized in Eqs. (6) and (7). It is also evident that
the scaling k−5/3 is not appropriate to describe the inertial range
for either spectrum. In the theoretical analysis it is assumed that
the mean shear is constant in space and time. In a mixing layer,
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FIG. 3. Passive scalar spectra in the streamwise x (solid lines)
and spanwise z (dashed lines) directions. The straight dotted lines
represent the predictions of equations (6) and (7). The vertical straight
line indicates the shear length scale Ls ≈ 40η. The inset shows
the streamwise and spanwise spectra multiplied by k4/3 and k3/2,
respectively. The spectra compensated by the classical scaling k−5/3

are also shown for comparison.

mean shear is constant in time but varies in the streamwise and
crosswise directions. In the region considered, the variations of
mean shear and relevant turbulent quantities are small (Fig. 2).
Therefore, the hypotheses for which the scalings k−4/3 and
k−3/2 hold are satisfied. The present configuration does not
allow for investigating the recovery of the classical k−5/3

scaling at scales smaller than Ls because Ls ≈ 40η, so the
entire inertial range is dominated by shear.

Figure 4 show the second-order structure function in the
streamwise and spanwise directions. The insets show the
logarithmic derivative, corresponding to the local slope in a
log-log plot. At scales of the order of the Kolmogorov length,
the viscous scaling is recovered and the structure functions are
proportional to r2. As it is usually observed in turbulent fields,
the inertial range in the second-order structure function appears
to be smaller than in the spectrum and a constant scaling
range is not evident. Nevertheless, it is apparent that, for the
streamwise direction, the exponent 2/3, which corresponds to
the classical spectrum scaling k−5/3, is rather unlikely, while
the value 1/3 may better describe the structure function. In the
spanwise direction, the range of scales with an approximately
constant scaling exponent is even smaller. In order to identify
scaling ranges for the analysis to follow, a procedure analogous
to the one used by and Anselmet et al. [49] and Lepore and
Mydlarski [50] has been employed. The upper and lower
bounds of the scaling range are defined by the locations
at which the compensated second-order structure functions
fall to 90% of their maximum value. In this approach, the
structure functions are compensated by the scaling observed
for the spectra, in agreement with the theory by Celani
et al. [37] for shear flows. These bounds are reported in the
insets of Fig. 4. The scaling ranges are 120η < r < 280η and
100η < r < 200η for the streamwise and spanwise directions,
respectively. Differently from the procedure used here, Lepore
and Mydlarski [50] employ the compensated mixed third-order
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FIG. 4. Second-order structure function (circles) in the
(a) streamwise x and (b) spanwise z directions. In the x direction,
the structure function calculated using time signals and Taylor’s
hypothesis is also shown (solid line). The dashed lines show the
scaling in the viscous and inertial ranges. The insets show the
logarithmic derivative of the structure function with respect to sepa-
ration. The dashed lines indicate the Kolmogorov-Obukhov-Corrsin
dimensional scaling (2/3) and the anomalous scaling exponents (1/3
and 1/2) consistent with those of the spectra. The vertical solid
lines mark the regions with scaling exponent in agreement with the
spectra.

structure function because the statistic are not affected by
intermittency and, at least in the homogeneous and isotropic
case, are expected to scale according to the dimensional
prediction [22,23]. In the present case dominated by mean
shear, the dimensional prediction may be invalid. Therefore,
the second-order structure functions have been preferred given
the availability of a theoretical prediction for their scaling in
flows with mean shear [37].

For the streamwise direction, the second-order structure
function obtained from temporal surrogates via Taylor’s
hypothesis is also shown. The temporal surrogate is obtained
by sampling the passive scalar field in time at an array of
128 spatially distributed points. The probes are distributed
across the spanwise z direction at x = 383δω,0 and y =
−5δω,0. The temporal and spatial statistics are in excellent
agreement.

IV. HIGH-ORDER STATISTICS AND SATURATION
OF INTERMITTENCY

The statistical properties of turbulent fluctuations in the
inertial range can be characterized in terms of the scaling of
high-order structure functions [48,51]. The nth-order structure
function for the passive scalar φ is defined as

Sn(ρ,r) = 〈δrφ(ρ)〉 = 〈[φ(ρ + r) − φ(ρ)]n〉, (8)

where δrφ(ρ) is the scalar increment at position ρ =
{x,y,z} over the spatial separation r. For even-order structure
functions, classical theoretical arguments for homogeneous
isotropic turbulence [22,23] predict

Sn(r) ∝ rζn , (9)

with ζn = n/3. In the isotropic case, odd-order structure
functions vanish by symmetry. In the presence of a mean scalar
gradient, dimensional arguments give, for odd orders,

S2n+1(r) ∝ rζ2n+1, (10)

with ζ2n+1 = 2n/3 + 1. Theoretical, experimental, and numer-
ical studies support the hypothesis that the exponents ζn are
anomalous, i.e., they differ from those implied by dimensional
arguments in Eqs. (9) and (10) [1,2].

Structure functions for the passive scalar have been an-
alyzed in the turbulent mixing layer in a range of scales
extending from a few Kolmogorov scales up to scales as
large as the mixing layer vorticity thickness. As already
observed for the second-order structure function, the Reynolds
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FIG. 5. Scaling of passive scalar structure functions for in-
crements in the streamwise direction x. The relative logarithmic
derivative d log10 Sx,n(r)/d log10 Sx,2(r) of structure functions of
order 4 (open squares), 6 (closed squares), and 8 (open circles)
is shown. The relative logarithmic derivatives are approximately
constant over the range 120η < r < 280η. The inset shows values
of the scaling exponents, evaluated as the average of the logarithmic
derivatives over the range 120η < r < 280η. Error bars are estimated
from the fluctuations of the logarithmic derivatives with respect to the
average over the range 120η < r < 280η. The dashed line in the inset
is the Kolmogorov-Obukhov-Corrsin dimensional scaling [22,23].
The horizontal line in the main figure indicates the asymptotic value
γ∞,2 = 1.2.
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number achieved in our simulation is not high enough to
observe a well-defined inertial range that allows calcula-
tion of reliable scaling exponents. In flows at moderate
Reynolds number, the extended self-similarity (ESS) concept
introduced by Benzi et al. [52] has been widely applied
in analyzing the scaling properties of turbulence [53–56].
The ESS concept relies on analyzing Sn(r) as a function
of S2(r) or S3(r) rather than Sn(r) as a function of r .
In the present work the relative exponents are computed
using the second-order structure function: γn,2 = ζn/ζ2 =
d log10 Sn(r)/d log10 S2(r).

The logarithmic derivative d log10 Sn(r)/d log10 S2(r) for
structure functions of order 4, 6, and 8 is shown in Fig. 5 for
spatial separations r in the streamwise direction x. The ESS
slopes display a wide plateau in the range of scales between
120η and 280η. In this scaling range, the exponent is the same
for all the structure functions of order greater than 4. This
behavior is referred to as saturation of intermittency [28]. The
asymptotic value of the relative exponent is approximately
γ∞,2 = 1.2. Assuming the spectrum scaling is k

−4/3
x , so that

the second-order structure function scales as r
ζ2
x with ζ2 = 1/3,

one obtains ζ∞ = 0.4 from γn,2 = ζn/ζ2.
The results for separations in the spanwise direction z

are shown in Fig. 6. As shown in the inset, the scaling
exponents are in agreement with recent results reported by
Gotoh et al. [57] for a DNS of passive scalar mixing in
homogeneous isotropic turbulence with a mean scalar gradient.
For separations in the spanwise direction, the exponent does
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FIG. 6. Scaling of passive scalar structure functions for incre-
ments in the spanwise direction z. The relative logarithmic derivative
d log10 Sz,n(r)/d log10 Sz,2(r) of structure functions of order 4 (open
squares), 6 (closed squares), and 8 (open circles) is shown. The
horizontal lines identify the plateaus characterizing constant scaling
ranges. The inset shows values of the scaling exponents (closed
symbols), evaluated as the average of the logarithmic derivatives
over the range 100η < r < 200η, and scaling exponents from the
DNS data by Gotoh et al. [57] for homogeneous isotropic turbulence
advecting a passive scalar injected using a mean gradient (open
symbols). Error bars are estimated from the fluctuations of the
logarithmic derivatives with respect to the averages over the range
100η < r < 200η. The dashed line in the inset is the Kolmogorov-
Obukhov-Corrsin dimensional scaling [22,23].

TABLE II. Relative scaling exponents computed using the ESS
approach [52]. The exponents are computed as the average of
the logarithmic derivatives over the range indicated. The error is
estimated using the maximum deviation from the average. The
scaling ranges have been defined from the scaling of the second-order
structure function (see the discussion in Sec. III).

γ x
n,2 γ z

n,2

Order 120η < r < 280η 100η < r < 200η

2 1 1
4 1.2 ± 0.05 1.4 ± 0.007
6 1.2 ± 0.15 1.61 ± 0.02
8 1.2 ± 0.35 1.74 ± 0.06

not saturate for the orders analyzed. The values of the relative
scaling exponents are summarize in Table II.

From the theoretical point of view, the existence of
intermittency saturation in the passive scalar field has been
proved by Balkovsky and Lebedev [58] in the idealized case
of the Kraichnan model in high spatial dimensions. Celani et al.
[28,29] observed intermittency saturation in two-dimensional
turbulence with an asymptotic exponent ζ∞ = 1.4 and in
numerical simulations of the Kraichnan model [59] with
ζ∞ = 0.2. In the Kraichnan model, saturation was observed
for a roughness exponent γ = 0.125 at order n � 4, while for
larger roughness exponent values, saturation was not observed
up to order 6 and higher-order statistics were not reported. For
a two-dimensional Boussinesq model of thermal convection,
Celani et al. [60] show saturation with ζ∞ = 0.8. In a more
realistic configuration, Antonelli et al. [32] and Mazzitelli
and Lanotte [33] observe saturation of intermittency with
ζ∞ = 0.6 in large eddy simulations of convective boundary
layers.

Kolmogorov’s theory [61–63] and its extension to the
passive scalar [22,23] invoke global scale invariance in the
inertial range to describe the statistics of fluctuations. For
the passive scalar field, this hypothesis implies that the scalar is
scale invariant with exponent 1/3, i.e., δrφ ∼ r1/3, and that the
structure functions Sn are power laws rζn with ζn = n/3. It is
well known that the hypothesis of global scale invariance does
not hold for three-dimensional turbulent velocity fields [48]
and for the passive scalar [1], even in the simplified case of a
Gaussian, nonintermittent, advecting velocity field [27,59,64].
Power laws for the structure functions are still observed, but
the scaling exponents ζn deviates from the linear behavior
ζn = n/3 (anomalous scaling). The limiting behavior is the
saturation of intermittency, i.e., a constant value of ζn = ζ∞ at
large n (it is possible to show, using the maximum principle
for the advection-diffusion equation, that ζn cannot decrease
as n increases [48]). Global scale invariance implies that the
PDF of the scalar increment at different scales r admits a
universal form P (δrφ) = r−1/3P̂ (δrφ/r1/3), where P̂ does
not depend on the separation r . This rescaling does not
apply in the anomalous scaling case. However, in the limit
of intermittency saturation, the PDF still admits a simple
rescaling, but restricted to the tails (κ > 1):

P (δrφ/σ ) = rζ∞P(δrφ/σ ) for |δrφ/σ | > κ (κ > 1),

(11)
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FIG. 7. (a) Probability density functions of the scalar increments
δφ for values of the separation rx between 10η and 300η, rescaled with
the factor r−ζ∞

x . The arrow indicates increasing rx . (b) Contribution
of the PDFs to the sixth-order moment (the sixth-order structure
function) for different separations. In the range of scale 120η < r <

280η, the relative scaling exponents of structure functions saturate to
a constant value (Fig. 5). The value ζ∞ is 0.4.

where P is some function that does not depend on the
separation r and σ is the rms of the scalar field.

Figure 7(a) shows the PDFs of the scalar increments in the
streamwise direction for separations between 10η and 300η.
Probability density functions are rescaled with r

−ζ∞
x , where

the value of the exponent extrapolated from the ESS scaling
of the structure functions is used, ζ∞ = 0.4. In the limit of
intermittency saturation, the tails of the rescaled PDFs should
collapse on the function P defined in Eq. (11). This property
is satisfied by negative scalar increments, while the collapse
is not recovered for positive increments. In order to analyze
the lack of symmetry of the distribution, the contribution to
the moments (i.e., the structure functions) of increments of
different magnitude P (δrx

φ/σ )δrx
φn is considered for different

separations. The results are shown in Fig. 7(b) for the sixth-
order moment (again rescaled by r

−ζ∞
x ). It can be observed that

the major contribution to the moments comes from negative
increments showing remarkable scale-independent behavior.
On the contrary, the collapse is less evident for positive
increments. Nonetheless, the contribution of positive scalar
increments to the moment is less significant. The same be-
havior has been observed for all the moment orders analyzed:
As the order increases, so does the difference between the
two peaks; therefore the contribution of positive increments
becomes less significant. The scale independence of negative
increments under the rescaling in Eq. (11) and the dominant
role played by the negative increments as the moment order
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FIG. 8. Cumulative probability of having |δrφ| > κσ , with
κ = 2, for increments in the streamwise x (squares) and spanwise
z (circles) directions. The result for the spanwise direction is shifted
in the vertical direction by one decade to improve readability. The
inset shows the local slopes, calculated as logarithmic derivatives.

increases explain the occurrence of intermittency saturation
shown in Fig. 5. The same analysis in the spanwise direction
z does not show the existence of an exponent ζ∞, making it
possible to collapse different PDFs satisfactorily on the same
curve using Eq. (11).

Figure 7(b) provides an indication of the convergence
of the statistics. The bulk contribution to the moment
P (δrx

φ/σ )δrx
φ6 decays before the tails of the PDF become

noisy. The same behavior was observed for the bulk contribu-
tion to the moment of order 8.

In addition to the direct calculation of the scaling exponents
and the analysis of the tails of the PDFs, intermittency
saturation can manifest in the behavior of the cumulative
probability of large scalar increments [28,29,33]. Integrating
Eq. (11) in the range (−∞, − κσ ) ∪ (κσ,∞) with κ > 1, the
scaling Prob[|δrφ| > κσ ] ∝ rζ∞ for the cumulative probability
of large fluctuation is obtained. Figure 8 shows the cumulative
probability of scalar increment larger than 2σ . The result
is shown for separations in the streamwise and spanwise
directions. A scaling range with constant slope is evident
in the streamwise direction for scales 120η < r < 280η. In
the spanwise direction there is no evidence of a plateau in
the slope. Similar results have been obtained for different
values of κ in the range (1.5,3]. These observations confirm
that intermittency saturation is present for increments in the
streamwise direction and it is absent for increments in the
spanwise direction.

Celani et al. [28,29,60] linked the asymptotic exponent
ζ∞ to the geometry of frontlike structures. The asymptotic
exponent is related to the fractal dimension DF of the set
constructed as the union of all the points where the scalar
difference across a very small separation (of the order of the
Kolmogorov’s scale η) is very large (of the order of the rms
σ ): DF = d − ζ∞ (d = 3 in three dimensions). Using a box
covering algorithm [65], the set of points where the scalar
difference, across a length η, exceeds κσ (κ = 2) is found to
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FIG. 9. Results obtained from the application of a box covering
algorithm to the set of points characterized by fluctuations larger than
2σ . The number of boxes needed to cover the set N (r) is plotted
as a function of the size of the box r (circles). The scaling of N (r)
versus r is the fractal dimension of the set and it is close to the value
DF = 2.6, in agreement with the value of the asymptotic exponent
ζ∞ = 0.4. The bottom inset shows the absolute value of the local
slope (circles), calculated as a logarithmic derivative, corresponding
to the fractal dimension of the set. The solid line marks the value 2.6.
The top inset shows an example of an instantaneous, two-dimensional
slice of the set of points where fluctuations are larger than 2σ in the
region of the mixing layer considered for the analysis.

have a fractal dimension DF = 2.6. This value agrees with
the value of the asymptotic exponent ζ∞ = 0.4 (see Fig. 9).
The same result was obtained for different values of κ in the
range (1.5,3].

As shown in Fig. 7, the PDFs of the scalar increments in the
streamwise direction are highly asymmetric. Sreenivasan et al.
[66] and Onorato and Iuso [67] investigated the asymmetry of
the velocity increment PDFs by means of the plus and minus
structure functions. For scalar increments in the streamwise
direction, these are defined as S±

x,n = 〈[(|δrx
φ| ± δrx

φ)/2]n〉
and characterize the scaling of the left and right sides of
the PDFs. In the mixing layer, the plus and minus structure
functions for increments in the spanwise direction coincide
with the total structure function. Figure 10 shows a comparison
of the relative scaling exponents of the total, plus, and minus
structure functions in the streamwise direction and the total
structure function in the spanwise direction. The scaling
exponents of the minus and the total structure functions in the
streamwise direction are the same, while the scaling exponent
of the plus structure function in the streamwise direction is very
close to that for the total structure function in the spanwise
direction. The same result is observed also for structure
functions of order 8 (not shown). This analysis confirms that
the saturation of intermittency observed for increments in the
streamwise direction is due to the negative tails of the PDFs
shown in Fig. 7.

In order to characterize anisotropy at different scales, PDFs
for the scalar increments in the three directions have been
calculated and are shown in Fig. 11. Increments are normalized
with the rms of the distribution at the specific separation;
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FIG. 10. Relative logarithmic derivative of the total (open
squares), plus (open diamonds), and minus (closed triangles) structure
functions for streamwise increments and of the total structure function
for spanwise increments (closed circles). The results are shown for
structure functions of order (a) 4 and (b) 6.

therefore all curves have zero mean and unit variance. The size
of the subdomain analyzed makes it possible to calculate scalar
increments in the crosswise direction only across separations
ry < 100η; therefore PDFs in the crosswise direction are
shown only up to this limit. For all three directions, the PDFs
have long exponential tails at small separations and show a
tendency to converge to a Gaussian shape at larger separations.
The distributions in the x and y directions are similar and show
high asymmetry while, as expected, the PDFs are symmetric
in the z direction.

Similar results for PDFs of scalar increments are described
by Ferchichi and Tavoularis [68] for a set of measurements
of a passive scalar, in homogeneous shear turbulence with
mean scalar gradient. Highly asymmetric PDFs are reported
in the streamwise and transverse directions with respect to the
mean shear and scalar gradient. Measurements in the spanwise
direction were not performed.

Intermittency saturation is usually related to the presence of
frontlike structures. The similarity between PDFs in the x and
y directions can be explained by the fact that these fronts are
approximately aligned at 45◦ with respect to the x axis. Finally,
intermittency saturation is not observed for the spanwise
increments and the scaling exponents are indeed very similar
to those obtained in homogeneous isotropic turbulence with
mean scalar gradient [57]. Therefore, the signature of these
structures is less evident in the z direction. It is well known that
the mixing layer is characterized by the quasi-two-dimensional
large-scale structures observed by Brown and Roshko [6].
These structures exist in the present configuration, even in
the fully turbulent far field [8]. It is likely that the geometrical
structure of the passive scalar and resulting statistics of the
scalar increments are closely related to these two-dimensional
large structures.
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FIG. 11. Probability density functions of scalar increments for separation in the three directions: (a) streamwise rx , (b) crosswise ry , and
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normalized with the rms at the specific separation so that all curves have zero mean and unit variance. The solid lines represent a Gaussian
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The deviation of the statistics of scalar increments from
Gaussian behavior is summarized in Fig. 12. The skewness
and flatness of the scalar increments at different separation
distances are shown. The flatness peaks at around 5η for
the streamwise and crosswise directions, while for the span-
wise direction it decreases monotonically and converges
to the Gaussian value 3. As expected, the skewness for
spanwise increments is zero. The skewness for increments
in the crosswise direction is always smaller than that in the
streamwise direction and peaks at 5η, while for streamwise
increments it is monotonic. Finally, the absolute value of the
skewness decreases as the separation distance increases.

V. CONCLUSION

A detailed statistical analysis of passive scalar fluctuations
in a turbulent mixing layer has been performed using DNS
results. The analysis has been conducted in the fully turbulent
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FIG. 12. Skewness (open symbols) and flatness (closed symbols)
of the scalar differences for different separations in the three
directions: x (squares), y (triangles), and z (circles).

far field region, where the Reynolds number based on the
Taylor length scale achieves the value Reλ ≈ 250. While the
velocity spectrum shows an inertial range characterized by a
scaling exponent close to −5/3 [8], for the passive scalar spec-
tra more appropriate scaling exponents appear to be −4/3 and
−3/2 in the streamwise and spanwise directions, respectively.
These values are in agreement with the theoretical analysis
by Celani et al. [37] for flows with mean shear. Although not
wide, the inertial range of the second-order structure functions
shows a scaling compatible with the spectra. The analysis of
high-order statistics using the extended self-similarity concept
shows that the scaling exponents of structure functions for
passive scalar increments in the streamwise direction saturate
to a constant value ζ∞ ≈ 0.4 for large-order n (saturation
of intermittency). For the spanwise direction, saturation is
not observed, at least up to structure functions of order 8.
Nonetheless, relative scaling exponents agree with recent DNS
results for homogeneous isotropic turbulence with mean scalar
gradient [57]. Saturation of intermittency for increments in the
streamwise direction is confirmed by the collapse of the tails of
the PDF under rescaling by the factor r−ζ∞ and by the scaling
of the cumulative probability of large fluctuations. The fractal
dimension of the scalar fronts is coherent with the asymptotic
scaling exponent of the high-order structure function in the
streamwise direction. Based on the analysis of PDFs in the
three directions, it is likely that the passive scalar fronts that
generate saturation of intermittency in the streamwise direction
are related to the existence of the Brown and Roshko [6]
structures. In contrast, these structures seem to have negligible
effects on the high-order statistics in the z direction.
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