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Abstract— This paper proves that exogenous empirical-
evidence equilibria (xEEEs) in perfect-monitoring repeated
games induce correlated equilibria of the associated one-shot
game. An empirical-evidence equilibrium (EEE) is a solution
concept for stochastic games. At equilibrium, agents’ strategies
are optimal with respect to models of their opponents. These
models satisfy a consistency condition with respect to the actual
behavior of the opponents. As such, EEEs replace the full-
rationality requirement of Nash equilibria by a consistency-
based bounded-rationality one. In this paper, the framework
of empirical evidence is summarized, with an emphasis on
perfect-monitoring repeated games. A less constraining notion
of consistency is introduced. The fact that an xEEE in a perfect-
monitoring repeated game induces a correlated equilibrium on
the underlying one-shot game is proven. This result and the new
notion of consistency are illustrated on the hawk-dove game.
Finally, a method to build specific correlated equilibria from
xEEEs is derived.

Nomenclature: t denotes a discrete time step. bt is the
value of variable b at time t. When unambiguous, b, b+,
and b− are short notations for bt, bt+1, and bt−1 respectively.

∆(B) is the set of distributions over finite set B. For β ∈
∆(B), B ∼ β denotes that the random variable B is
drawn according to distribution β. Pβ [E] is the probability
of event E under distribution β. β[b] denotes the quan-
tity Pβ [B = b].

I. INTRODUCTION

The classical solution concept in game theory is the Nash
equilibrium. In a Nash equilibrium, each agent’s strategy
is optimal with respect to the strategies of its opponents.
In a static game, a strategy is an action. In a dynamic
game, a strategy is a contingency plan for every possible
observable history. How can an agent be confident it is
reacting optimally to an entire plan, if it only observes
parts of it? As such, the Nash equilibrium is a reasonable
solution concept for static games, but is not always suited
for dynamic games. The full-rationality requirement of game
theory, i.e., having to optimize against the exact strategies
of the opponents, is a strong condition. An empirical-
evidence equilibrium (EEE) is a different solution concept for
stochastic games, introduced in [1], that drops full rationality.
Instead, in an EEE, each agent’s strategy is optimal with
respect to a mockup of its opponents. This mockup satisfies
a consistency condition; the agent exhibits some bounded
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rationality. [1] proved the existence of EEEs under some
mild technical assumptions.

The present paper studies the behavior of agents in an
EEE. This study takes place on perfect-monitoring repeated
games, and with exogenous empirical-evidence equilibria
(xEEEs), in which each agent’s mockup is independent of its
own action. The main result states that an xEEE in a perfect-
monitoring repeated game induces a correlated equilibrium
on the underlying one-shot game. This result is illustrated on
the hawk-dove game. A constructive result is also presented,
showing how to build certain correlated equilibria from
xEEEs. Along with these results, a new notion of consistency
is defined, which is less constraining than the one from [1].
This notion of consistency, applicable to stochastic games as
well, is illustrated on the same hawk-dove game.

The paper is organized as follows. Section II presents the
game-theoretic concepts of correlated equilibria and repeated
games. Section III summarizes the empirical-evidence setup
with an emphasis on perfect-monitoring repeated games.
The new notion of eventual consistency is also introduced.
Section IV presents the main result of this paper. Any xEEE
in a perfect-monitoring repeated game yields a correlated
equilibrium for the underlying one-shot game. Section V
illustrates this result on the hawk-dove game. A correlated
equilibrium is built by using depth-2 models. The two notions
of consistency are compared on this example. Section VI
builds on the intuition gained from the example. Any cor-
related equilibrium that is the average of Nash equilibria is
built using an appropriate depth-k xEEE.

II. GAMES AND EQUILIBRIA

A. One-shot Games

A one-shot game is a model of interactive decision mak-
ing. Each agent in a set I makes decisions which impact all
the agents in the set. Quantities relative to agent i ∈ I are
denoted by a subscript i. The elements of the set −i = I\{i}
are called the opponents of agent i. Agent i takes an action ai
in the set Ai. The joint action of the agents is a = (ai)i∈I ∈
A =

∏
i∈I Ai. The utility function ui : A → R encodes

agent i’s preferences over the joint actions. Each agent
seeks to maximize its expected utility. The function u =
(ui)i∈I : A → R|I| fully describes the one-shot game.

Game theory studies solution concepts for interactive
decision making. The main solution concept for one-shot
games is the Nash equilibrium. In a Nash equilibrium, each
agent plays a best response to its opponents’ actions.
Definition 1 (Nash Equilibrium). Let u : A → R|I| describe
a game. Let αi ∈ ∆(Ai) be a distribution over the action



space Ai for agent i.
The distribution α = (αi)i∈I ∈

∏
i∈I ∆(Ai) is a Nash

equilibrium for u if, for all i in I and a′i in Ai,

EA∼α[ui(Ai, A−i)] ≥ EA∼α[ui(a
′
i, A−i)].

Another classical solution concept developed for one-shot
games is the correlated equilibrium. A correlated equilibrium
expands the notion of Nash equilibrium from independent
distributions in

∏
i∈I ∆(Ai) to distributions over the joint

action space ∆(A) = ∆
(∏

i∈I Ai
)
. In other words, the

agents do not necessarily pick their actions independently
and they are allowed to correlate their play. The following
two definitions formally introduce the correlated equilibrium.
Definition 2 (Correlated-equilibrium Distribution). Let a
function u : A → R|I| describe a game. Let α ∈ ∆(A)
be a distribution over joint actions.

The distribution α is a correlated-equilibrium distribution
for u if, for all i in I, ai in Ai such that αi[ai] > 0, and a′i
in Ai,

EA∼α[ui(ai, A−i) |Ai = ai] ≥
EA∼α[ui(a

′
i, A−i) |Ai = ai].

Definition 3 (Correlated Equilibrium). Let u : A → R|I|
describe a game. Let Ti be a set of types for agent i, and T =∏
i∈I Ti be the resulting joint type space. Let π ∈ ∆(T ) be

a distribution over joint types. Let σi : Ti → ∆(Ai) be a
strategy for agent i, and σ be the resulting joint strategy.
Consider a random variable Θ = (Θi)i∈I drawn according
to π. Construct the random vector A = (Ai)i∈I such that
for all i ∈ I, Ai ∼ σi(Θi). Let α denote the distribution
of A.

The pair (π, σ) is a correlated equilibrium for u if α is a
correlated-equilibrium distribution for u.

The following characterization is useful in determining if
a pair (π, σ) is a correlated equilibrium.
Proposition 1 (Characterization). Let u : A → R|I| describe
a game. Let Ti be a set of types for agent i, and T =

∏
i∈I Ti

be the resulting joint type space. Let π ∈ ∆(T ) be a
distribution over joint types. Let σi : Ti → ∆(Ai) be a
strategy for agent i, and σ be the resulting joint strategy.

The pair (π, σ) is a correlated equilibrium for u if
and only if, for all i in I, and a′i in Ai, θi in Ti such
that PΘ∼π[Θi = θi] > 0,

EΘ∼π[ui(σi(θi), σ−i(Θ−i)) |Θi = θi] ≥
EΘ∼π[ui(a

′
i, σ−i(Θ−i)) |Θi = θi].

B. Repeated Games

A perfect-monitoring repeated game is a more elaborate
model of interacting decision makers [2]. It stems from
repeatedly playing a one-shot game u at discrete time steps.
At time step t ∈ N, agent i chooses an action ati. The
joint action for time t is at. Agent i observes the actions
chosen by the other agents at−i and receives the one-shot
utility ui(at) = ui

(
ati, a

t
−i
)
. The history up to time t denoted

by ht ∈ Ht is the information available to the agents at the

beginning of time step t. In the perfect-monitoring setting,
all the agents have access to the same information. The set
of all possible histories is denoted by H = ∪t∈NHt. Agent i
selects its action according to a strategy, which is a mapping
from histories to distributions over actions σi : H → ∆(Ai).
The set of all strategies for agent i is denoted by Σi. In a one-
shot game, preferences of agent i are over joint actions. In a
repeated game, they are over joint strategies σ = (σi)i∈I ∈
Σ, where Σ =

∏
i∈I Σi. These preferences are encoded

in the repeated utility Ui : Σ → R, such that Ui(σ) =
Eσ
[∑

t∈N δ
t
iui(a

t)
]
, where δi ∈ [0, 1) is a discount factor.

The pair (u, δ), where δ = (δi)i∈I , fully describes a perfect-
monitoring repeated game.

A perfect-monitoring repeated game can be interpreted
as a one-shot game with joint action space Σ and utility
functions U = (Ui)i∈I . Therefore, the Nash equilibrium is a
solution concept applicable to perfect-monitoring repeated
games. The interaction of the various strategies forms a
coupled dynamical system. As a result, verifying that the
strategy of agent i is a best response to its opponents’
strategies requires solving a Markov decision process (MDP).
The state of this MDP is h and its dynamic is induced
by the joint strategy of its opponents σ−i. For example,
in a two-player game, at equilibrium, agent 1’s strategy is
optimal for the MDP with state h, utility function U1 and
dynamic h+ ∼ (h, σ2(h), a1).

The problem with this requirement is twofold. First, the
state space of this MDP is potentially infinite. The size of
the state space is defined by the part of the history used
by the opponents to compute their actions. Second, and
more importantly, it is, in a lot of applications, unrealistic to
consider that an agent knows its opponents’ strategies. The
strategy is a plan of action for all possible contingencies.
Each agent only observes the result of its strategy with the
strategy of its opponent. As a result, for fixed strategies, only
part of the history is visited.

Numerous concepts lower the requirements of Nash equi-
libria [3]–[5]. The EEE is one such concept and is exposed
in the next section.

III. EMPIRICAL-EVIDENCE EQUILIBRIA

The empirical-evidence framework for stochastic games
was introduced in [1]. A short summary, with an emphasis
on perfect-monitoring repeated games, is given below. For a
proper introduction, with full motivation, please refer to [1].
The next subsection exposes the intuition on a two-agent
example. The following one formalizes the concepts.

A. Intuition

Consider two agents playing a perfect-monitoring re-
peated game. Instead of acknowledging that it is playing a
game, agent 1 considers it is facing a single-agent decision-
making problem. From agent 1’s perspective, agent 2’s action
becomes an external signal and is rewritten s+

1 = a2.
For example, agent 1’s utility is rewritten from u1(a1, a2)
to u1

(
a1, s

+
1

)
. Think of this signal as a disturbance; agent 1

fully understands its impact, but not how it is generated. The



setup is illustrated in Fig. 1. The meaning of m1 and z1 will
become clear shortly. Since agent 1 assumes it faces a single-
agent problem, it only acknowledges the part of this setup
in the gray box. In particular, the signal s+

1 is unspecified.

a1 ∼ σ1(z1) z+
2 ∼ m2

(
z2, s

+
2

)
z+

1 ∼ m1

(
z1, s

+
1

)
a2 ∼ σ2(z2)

a1 s+
2

a2s+
1

z1 z2

Fig. 1. The exogenous empirical-evidence setup R for a two-agent
perfect-monitoring repeated game. The gray box represent what agent 1
acknowledges. In particular, its signal s+1 is unspecified.

The main idea of the empirical-evidence framework is
to use a mockup to specify this signal. In the exogenous
empirical-evidence framework, this mockup is exogenous,
meaning that it does not depend on agent 1’s action a1. This
mockup is composed of two elements called a model and
a predictor. The model is a dynamical system with state z1

in a finite state space Z1 and transition function m1 : Z1 ×
S1 → ∆(Z1). The predictor is a function µ1 : Z1 → ∆(S1)
assigning probabilities to the signal for each state. The model
is fixed. It represents an assumption made by the agent.
The predictor corresponds to some tunable parameters of the
mockup. The way agent 1 uses the mockup to specify the
signal is represented in Fig. 2.

a1 ∼ σ1(z1)

z+
1 ∼ m1

(
z1, s

+
1

)
s+

1 ∼ µ1(z1)

s+
1

z1

a1

Fig. 2. Agent 1’s exogenous empirical-evidence mockup system M1. The
signal is specified by the mockup which is the combination of the model m1

and the predictor µ1.

To better grasp what a mockup is, let us describe a simple
model called the depth-2 model. When using a depth-2
model, agent 1 assumes that the signal at time t+1 depends
on the signals received at time t and t − 1. To do so, it
uses z1 =

(
s−1 , s1

)
and m1 : ((a, b), c) 7→ (b, c). If agent 1

uses predictor µ1, it believes that, having observed s−1 and s1,
the probability of seeing s+

1 is µ1

(
s−1 , s1

)[
s+

1

]
.

Agent 1 has two sets of tunable parameters, its strategy σ1

and its predictor µ1. It uses two different systems to compute
them. The first one, pictured in Fig. 1, composed of the two
agents and their strategies, is denoted by R. This notation
emphasizes that this is the real system, even though agent 1
only acknowledges part of it. The second one is pictured in
Fig. 2. It is denoted by M1 to emphasize this is the mockup
system used by agent 1. When agent 1 has a strategy, it
plays it against agent 2 in R. From their interaction, agent 1
computes adequate values for its predictor. When agent 1
has a predictor, it plugs it into M1 to form an MDP. Since

it knows all the parameters of the MDP, it can compute an
optimal strategy.

When using model m1, agent 1 assumes the state of
the world is z1. As such, its available strategies are ele-
ments σ1 : Z1 → ∆(S1). The role of m1 is to build the
state z1 from the observation of signals. Model and state are
used in R and in M1. In R, z1 is built from observations of
the true signal generated by agent 2’s actions. In M1, z1 is
the true state of the system and is fed to the predictor µ1 in
order to generate a signal. The state z1 in R serves a double
purpose. First, agent 1 uses it to compute its next action.
Second, it is used to compute the probabilities PR,σ

[
s+

1

∣∣ z1

]
.

These are the probabilities with which each signal is ob-
served when being in a given state. A predictor is said to be
consistent if µ1(z1)

[
s+

1

]
= PR,σ

[
s+

1

∣∣ z1

]
. In other words, a

predictor is consistent if it generates a signal with statistics
comparable to the true signal. Similar notions of consistency
have been used in [6], [7].

Given a predictor, agent 1 uses M1 to compute an optimal
strategy. Given a strategy, agent 1 turns to R to compute
a consistent predictor. Agent 2 does the same things in
systems M2 and R. An xEEE is a pair of predictors (µ1, µ2)
and a pair of strategies (σ1, σ2) simultaneously consistent
and optimal.

B. Formal Setup

Consider a perfect-monitoring n-agent repeated game de-
scribed by (u, δ). Let i denote an agent from the set I. The
joint action of agent i’s opponents is called agent i’s signal
and is denoted by s+

i = a−i. Agent i forms a parametric
mockup of signal si described by three components. First,
it uses a model state zi in a finite state space Zi. Second, it
uses an a priori model structure, called the model mi : Zi×
Si → ∆(Zi). Third, it has tunable parameters, called a
predictor µi : Zi → ∆(Si). By adjusting the parameters in
the predictor, the mockup generates a signal resembling the
true observed signal. The signal is exogenously generated
since it is not impacted by agent i’s action.

The model mi represents an assumption by agent i
regarding its signal. It is considered fixed. The tunable
parameters for agent i are its strategy σi : Zi → ∆(Ai) and
its predictor µi.

1) Optimality: Given a predictor µi, agent i computes
an optimal strategy. The notion of optimality is defined in
system Mi, depicted in Fig. 2. The strategy is optimal if it
is a solution to the MDP induced by mi and µi.
Definition 4 (Optimality). The strategy σi ∈ Σi is optimal
for (ui, δi) with respect to mi and µi if, for all σ′i ∈ Σi,

Eσi,mi,µi

[∑∞
t=0 δ

t
iui
(
ati, s

t+1
i

)]
≥

Eσ′i,mi,µi

[∑∞
t=0 δ

t
iui
(
ati, s

t+1
i

)]
.

The following proposition shows that, in this specific
setup, for repeated games, optimality is equivalent to my-
opic optimality. This result relies on the perfect-monitoring
structure of the repeated game and the exogeneity of the
model.



Proposition 2 (Myopic Optimality). Let σi : Zi → ∆(Ai)
be a strategy such that, for all zi in Zi and a′i in Ai

E[ui(σi(zi), µi(zi))] ≥ E[ui(a
′
i, µi(zi))].

The strategy σi is optimal for (ui, δi) with respect to mi

and µi.

Proof. The expected payoff at time t depends on the model
state zti and the action ati. Since the action has no impact
on the dynamic of the model state, myopic optimization is
sufficient to guarantee optimality.

2) Consistency: Given a strategy σi, agent i computes a
consistent predictor. The notion of consistency is defined in
system R, depicted in Fig. 1. The system composed of the
mockups m and the strategies σ forms a Markov chain with
state z = (zi)i∈I . The following assumption is required to
properly define consistency.
Assumption 1. The Markov chain induced by the mockups m
and the strategies σ admits a unique stationary distribu-
tion π.

For example, this assumption is satisfied if the Markov
chain is unichain, i.e., containing a single communication
class.

The quantity PZ∼π
[
σ−i(Z−i) = s+

i

∣∣Zi = zi
]

is well de-
fined when Assumption 1 is verified, . For convenience, it is
given the shorthand notation Pπ

[
s+
i

∣∣ zi]. This quantity is of
interest as it represents the long run behavior of the signal.
Indeed, the following relation holds:

lim
T→∞

1

T

T∑
t=1

Pm,σ
[
St+1
i = s+

i

∣∣Zti = zi
]

= Pπ
[
s+
i

∣∣ zi].
Furthermore, if the chain is unichain and aperiodic, an even
stronger notion of convergence holds. The limit as t goes to
infinity of Pm,σ

[
St+1
i = s+

i

∣∣Zti = zi
]

exists and

lim
t→∞

Pm,σ
[
St+1
i = s+

i

∣∣Zti = zi
]

= Pπ
[
s+
i

∣∣ zi].
Definition 5 (Consistency). Let µi be a predictor, σ be
strategies, and π be the stationary distribution of the Markov
chain with state z induced by m and σ.

The predictor µi is consistent with m and σ if, for all zi
in Zi and s+

i in Si, µi(zi)
[
s+
i

]
= Pπ

[
s+
i

∣∣ zi].
This notion of consistency requires that Pπ

[
s+
i

∣∣ zi] be
defined for all s+

i and zi. In [1], this requirement is met
by assuming the Markov chain is ergodic Indeed, ergodicity
ensures that for all zi, Pπ[zi] > 0. However, ergodicity is
more constraining than Assumption 1.

We now introduce a less constraining notion of consistency
only requiring Assumption 1. Suppose the state zi is such
that Pπ[zi] = 0. By definition, this state is vanishing and
is eventually not seen. Therefore, the value given by the
predictor for this state is irrelevant. The formal definition
of eventual consistency is the following.
Definition 6 (Eventual Consistency). Let µi be a predictor,
σ be strategies, and π be the stationary distribution of the
Markov chain with state z induced by m and σ.

The predictor µi is eventually consistent with m and σ if,
for all zi in Zi and s+

i in Si,

Pπ[zi] > 0 =⇒ µi(zi)
[
s+
i

]
= Pπ

[
s+
i

∣∣ zi].
An eventually consistent predictor takes arbitrary values

on vanishing states.
3) Equilibrium: Combining the definitions of optimality

and consistency yields the xEEE solution concept.
Definition 7 (Equilibrium). The pair (µ, σ) is an xEEE for
the game (u, δ) with models m if the following two conditions
hold for each agent i:
• The strategy σi is optimal for (ui, δi) with respect to mi

and µi.
• The predictor µi is consistent with m and σ.
This definition works with either notion of consistency. In

what follows, we use consistency and mention the appropri-
ate changes to accommodate eventual consistency.

From this definition, it is also possible to define ap-
proximate equilibria. In an approximate equilibrium, the
strategies are approximately optimal with respect to their
mockup. [1] proved that approximate equilibria always exist.
This result carries over seamlessly to eventual consistency.
The proof uses [8, Theorem 4.1] which works on unichain
Markov chains as well as ergodic ones.

IV. XEEES YIELD CORRELATED EQUILIBRIA

Theorem 1. Let the pair (µ, σ) be an xEEE for the
game (u, δ) with models m. Suppose that σ and m induce
a Markov chain over the model states z having a single
stationary distribution π.

The pair (π, σ) is a correlated equilibrium for the one-shot
game described by u.

In particular, when all the agents use a memoryless model,
the pair (π, σ) is a Nash equilibrium for u.

The careful choice of definitions in the previous sections
makes the proof of this theorem straightforward. The key
insight of the proof is to interpret the model state zi as the
type of agent i. The proof is given in term of consistency and
the eventual consistency counterpart is discussed afterwards.

Proof. Fix an agent i. Let us prove that the inequality
condition of Proposition 1 holds. To do so, express the
consistency condition in terms of expectations and use the
optimality condition to obtain the appropriate inequality.

Pick a state zi ∈ Zi and a signal s+
i = a−i ∈ Si. By

definition of an xEEE, the predictor µi is consistent with m
and σ. The consistency condition for state zi and signal a−i
can be rewritten as follows:

µi(zi)[a−i] = Pπ[a−i | zi]

=
∑

z−i∈Z−i

Pπ[a−i | zi, z−i]Pπ[z−i | zi]

=
∑

z−i∈Z−i

σ−i(z−i)[a−i]Pπ[z−i | zi]

= EZ∼π[σ−i(Z−i)[a−i] |Zi = zi],



where σ−i(z−i)[a−i] denotes
∏
j∈−i σj(zj)[aj ]. This equal-

ity holds for any a−i, therefore,

µi(zi) = EZ∼π[σ−i(Z−i) |Zi = zi].

Pick an action a′i ∈ Ai. By definition of an xEEE, the
strategy σi is optimal with respect to µi and mi. Substi-
tuting the expression for µi(zi) in the optimality condition
of Proposition 2 gives the following inequality:

EZ∼π[ui(σi(zi), σ−i(z−i)) |Zi = zi] ≥
EZ∼π[ui(a

′
i, σ−i(z−i)) |Zi = zi].

Interpreting zi as the type of agent i in Proposition 1
guarantees that the pair (π, σ) is a correlated equilibrium
for u.

The proof for eventual consistency is almost identical. The
inequality in Proposition 1 only has to hold on types θi
such that PΘ∼π[Θi = θi] > 0. The definition of eventual
consistency guarantees exactly this fact.

V. EXAMPLE

In the hawk-dove game, two agents compete for a prize
of value 6. The actions of each agent are to be aggressive
or passive. In a biological analogy, the aggressive action is
called hawk and the passive action is called dove. If only
one agent is aggressive, this agent gets the prize. If both
agents are aggressive, a fight ensues and both agents are
hurt. Finally, if both agents are passive, they split the prize
equally. This story is encoded in the following normal-form
game: h d

H −1,−1 6, 0
D 0, 6 3, 3 .

The actions of agent 1 are represented by the uppercase
letters H and D. Those of agent 2 by their lowercase
counterparts h and d.

The hawk-dove game has two pure Nash equilibria (H,d)
and (D,h), and one mixed Nash equilibrium where the
agents play 3

4H + 1
4D and 3

4h + 1
4d respectively.

Let us construct an xEEE implementing a correlated-
equilibrium distribution. The correlated-equilibrium distribu-
tion chosen is the average of the two pure Nash equilib-
ria α = 1

2 (H,d)+ 1
2 (D,h). The set of correlated-equilibrium

distributions is a non-empty convex set containing all the
Nash equilibria. Therefore, α is a correlated-equilibrium
distribution, even though it is not a Nash equilibrium. Given
the symmetric nature of the game, we chose to implement
a symmetric equilibrium, meaning that the strategies of the
two agents are identical. As a consequence, their predictors
are also identical. Both agents use the previously-mentioned
depth-2 model.

Let us describe what the solution looks like from agent 1’s
perspective. Agent 1’s state is z1 =

(
a−2 , a2

)
, where a2 is

the latest observed action of agent 2 and a−2 the one before
that. If agent 1 sees that agent 2 alternates its actions, it
supposes that agent 2 acts according to the plan and that
this alternation will continue. If agent 2 uses the same action

twice in a row, agent 1 is unsure about agent 2’s behavior.
According to these predictions, agent 1 builds optimal or
approximately optimal strategies.

Let us now fill in the details. We provide two variations
associated with eventual consistency and consistency.

A. Eventual Consistency

The first variation is closest to the story previously de-
scribed. Agent 1 uses the following predictor associated with
its depth-2 model:

µ1(d,h) = d,

µ1(h,d) = h,

µ1(h,h) = 3
4h + 1

4d,

µ1(d,d) = 3
4h + 1

4d.

An associated optimal strategy is

σ1(d,h) = H,

σ1(h,d) = D,

σ1(h,h) = 1
2H + 1

2D,

σ1(d,d) = 1
2H + 1

2D.

Agent 2’s predictor and strategy are obtained by inverting the
case, e.g. µ2(D,H) = D and σ2(D,H) = h. These strategies
induce a Markov chain over the state space Z1×Z2 = A2

2×
A2

1. By computing the transition matrix, one verifies that
this Markov chain is unichain and periodic with period two.
Its communication class is {(h,d,D,H), (d,h,H,D)}. In the
limit, the chain alternates between these two states and the
following relations hold:

lim
t→∞

PR,σ

[
st+1

1 = d
∣∣ zt1 = (d,h)

]
= 1,

lim
t→∞

PR,σ

[
st+1

1 = h
∣∣ zt1 = (h,d)

]
= 1.

(1)

In the limit, 14 out of the 16 states do not appear. In
particular, any state in which an agent used the same action
twice in a row is transient. Therefore,

lim
t→∞

PR,σ

[
zt1 ∈ {(d,d), (h,h)}

]
= 0. (2)

Equation (2) guarantees that states (h,h) and (d,d) vanish.
Therefore, the values of µ1(h,h) and µ1(d,d) are arbi-
trary. The values of µ1(d,h) and µ1(h,d) match the values
observed in (1). Therefore, the predictors are eventually
consistent.

Eventual consistency allows for the predictors to take ar-
bitrary values on transient states (h,h) and (d,d). Therefore,
we chose values helping with the optimality condition. The
values chosen correspond to the mixed Nash equilibrium in
which the agents are indifferent between their two actions.
Agent 1 responds optimally in each of the four states z1.

Therefore, we have constructed an exact xEEE with the
notion of eventual consistency which implements the desig-
nated correlated-equilibrium distribution.

B. Consistency

Agent 1 uses strategy

σ̃1(d,h) = 0.999 H + 0.001 D,

σ̃1(h,d) = 0.999 D + 0.001 H,

σ̃1(h,h) = 1
2H + 1

2D,

σ̃1(d,d) = 1
2H + 1

2D.

Define σ̃2 in a symmetrical fashion. The induced Markov
chain over Z1 × Z2 is irreducible and aperiodic. No state



is transient. Therefore, predictors have to be defined for all
states. The consistent predictor for agent 1 is

µ̃1(d,h) = 0.996 d + 0.004 h,

µ̃1(h,d) = 0.996 h + 0.004 d,

µ̃1(h,h) = 0.5 h + 0.5 d,

µ̃1(d,d) = 0.5 h + 0.5 d.

In this setting, consistency is immediate, by definition of
the predictors. Optimality is slightly trickier. Recall that in
an xEEE for a perfect-monitoring repeated game, the opti-
mality condition translates to myopic optimality. Therefore,
σ̃1’s optimality with respect to µ̃1 and m1 is equivalent
to the following condition. For all z1 ∈ Z1, agent 1’s
mixed action σ̃1(z1) is a best response to agent 2’s mixed
action µ̃1(z1). This is not the case for the states (d,d)
and (h,h). Agent 1’s sole best-response to 0.5 h + 0.5 d
is H. However, σ̃1 is approximately optimal with respect
to µ̃1 and m1 for discount factors δ1 close enough to one.
Most of the time is spent in states (d,h) and (h,d) for
which σ̃1 is optimal. By taking δ1 close enough to one,
the effect of acting non-optimally in the other two states
becomes negligible. This example illustrates that optimality
is equivalent to myopic optimality but that approximate
optimality does not require approximate myopic optimality.

The resulting equilibrium is an approximate xEEE. The
associated distribution over actions is the following approx-
imation of the desired correlated-equilibrium distribution:

0.004 (H,h) 0.496 (H,d)
0.496 (D,h) 0.004 (D,d)

.

VI. CONSTRUCTING NASH EQUILIBRIA AVERAGES

The example of the previous section easily extends to
general finite games and yields a large set of correlated-
equilibrium distributions. Most of the work for the proof has
already been done in the example.
Theorem 2. Let u : A → R|I| describe a one-shot game.
Let

(
al
)k
l=1

be k, non-necessarily distinct, pure Nash equi-
libria of u. Let α = 1

k

∑k
l=1 a

l, the average of these Nash
equilibria, which is a correlated-equilibrium distribution.

For large enough discount factors (δi)i∈I , α is imple-
mentable by an approximate xEEE, in which each agent uses
a depth-k eventually consistent model.

Proof. Let i ∈ I be an agent. Define its depth-k predictor
as follows:

µi
(
a1
−i, a

2
−i, · · · , ak−1

−i , a
k
−i
)

= a1
−i,

...
µi
(
ak−i, a

1
−i, · · · , ak−2

−i , a
k−1
−i
)

= ak−i,

and for other states zi, µi(zi) = 1
k

∑k
l=1 a

k
−i.

As opposed to the example, a mixed Nash equilibrium
does not always exist. This reduced flexibility in defining
the predictor on vanishing states, explains why only approx-
imate xEEEs are guaranteed.

Define agent i’s strategy as follows:

σi
(
a1
−i, a

2
−i, · · · , ak−1

−i , a
k
−i
)

= a1
i ,

...
σi
(
ak−i, a

1
−i, · · · , ak−2

−i , a
k−1
−i
)

= aki ,

and for other states zi, σi(zi) = 1
k

∑k
l=1 a

k
i .

The induced Markov chain is unichain and periodic with
period k. Its communication class has k states corresponding
to each of the k Nash equilibria. In the limit, the chain cycles
through these k states in the order imposed by the labeling
of the equilibria. The eventual consistency of the predictors
is proven as in the example.

As previously mentioned, it is not always possible to
guarantee optimality of σi with respect to µi. However, σi is
optimal for all the states visited in the limit. The lack of opti-
mality is only for vanishing states. Therefore, a large enough
discount factor guarantees approximate optimality.

Corollary 1. Let u : A → R|I| describe a one-shot game.
Let

(
al
)k
l=1

be k, non-necessarily distinct, pure Nash equi-
libria of u. Let α = 1

k

∑k
l=1 a

l, the average of these Nash
equilibria, which is a correlated-equilibrium distribution.

For large enough discount factors (δi)i∈I , α can be ap-
proximated by a correlated-equilibrium distribution induced
by an approximate xEEE, in which each agent uses a depth-k
consistent model.

The proof of this corollary is omitted as it is easily derived
from the example.

VII. CONCLUSION

This paper gave the first characterization of the behav-
ior of agents in an EEE. In a perfect-monitoring repeated
game, xEEEs induce correlated equilibria of the underlying
one-shot game. This result was illustrated on the hawk-
dove game. A less constraining notion of consistency was
introduced and illustrated on the same hawk-dove game. A
method to induce correlated-equilibrium distributions in the
convex hull of pure Nash equilibria was presented.

The combined requirements of optimality and exogenous
consistency in the perfect-monitoring repeated game case are
extremely close to Nash equilibrium conditions. As such,
xEEEs seem unable to induce correlated-equilibrium distri-
butions outside the convex hull of Nash equilibria. It is an
open question to determine if all correlated-equilibrium dis-
tributions can be induced by, potentially endogenous, EEEs.
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