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Abstract In wireless sensor networks, data transmis-
sion reliability is a fundamental challenge due to several
physical constraints such as interference, power con-
sumption, and environmental effects. In current wire-
less sensor implementations, a single bit error requires
retransmitting the entire frame. This incurs extra pro-
cessing overhead and power consumption, especially for
large frames. Frame fragmentation into small blocks
with individual error detection codes can reduce the un-
necessary retransmission of the correctly received blocks.
The optimal block size, however, varies based on the
wireless channel conditions. In this paper, we propose
an interference-aware frame fragmentation scheme called
iFrag. iFrag effectively addresses the challenges asso-
ciated with dynamic partitioning of blocks. We show
through analytical and experimental results that iFrag
achieves up to 3× improvement in throughput when the
channel condition is noisy, while reduces the delay to
12% compared to other static fragmentation approach.
On average, it shows 13% gain in throughput across all
channel conditions used in our experiments. This sig-
nificant improvement is due to dynamic nature of iFrag
that minimizes the retransmission overhead by selecting
the appropriate number of blocks in each data frame.

Keywords Wireless sensor networks; partial packet
recovery; interference

1 Introduction

One fundamental challenge in wireless networks is the
trade-off between large and small data frames. Large
frames result in better channel capacity utilization, while
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small frames provide efficient error recovery (i.e., only
small fragments have to be retransmitted). Wired trans-
mission mediums have low bit-error rates (BER), typ-
ically 10−15 to 10−12, and thus embrace strategies uti-
lizing large packet sizes to increase overall throughput.
In contrast, the BER in a wireless network is orders of
magnitude higher, typically 10−5 to 10−3. Additionally,
this BER may vary dramatically over short time inter-
vals [1,6,13,19]. This makes it necessary to optimize
the trade-off between throughput and error recovery in
resource-constrained wireless sensor networks (WSNs).

WSNs typically use small data payloads. A frame
transmission incurs additional overhead due to PHY
and MAC layer headers. These headers include sender
and receiver IDs, CRC for error detection, and other
bytes for synchronization. The data link layer is respon-
sible for partitioning the original payload into frames.
If channel BER is low, frames with a large payload size
can be used to better amortize the PHY and MAC layer
overhead, thus improving network throughput. How-
ever, if BER is high, large frames are more likely to
be corrupted, invoking a retransmission of the entire
frame, and thus reducing network throughput. Gener-
ally, there is no unique optimal frame size proposed due
to unpredictable channel quality [20,4]. In particular,
TinyOS data link frames have been standardized to 29
bytes excluding the PHY and MAC layer headers.

As frame retransmission is inefficient, researchers in
[8] came up with the concept of frame fragmentation for
wireless sensors. The main idea is to divide the frame
into several blocks, that are fixed in size, each of which
is equipped with its own error detection code and block
number. The number of fragments is predetermined and
fixed regardless of the channel condition. We show that
the overhead of the additional bytes reduces the net-
work throughput when the channel condition is good.
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Moreover, this approach does not differentiate between
loosing data frames and loosing the acknowledgement
frame sent by the receiver.

In this paper we are proposing an interference-aware
frame fragmentation approach for sensor networks called
iFrag. iFrag introduces dynamism to decrease the over-
head of retransmissions under normal channel condi-
tions. It dynamically chooses the block size that suits
the channel condition observed in a specified time win-
dow. At fixed percentage of frame reception, the re-
ceiver sends a recovery frame which contains the num-
ber of correctly received blocks. Based on this informa-
tion, the sender selects the optimal block size. As a re-
sult, the data link layer works with the optimum block
sizes for the current channel condition. Additionally,
iFrag solves the issue of unnecessary retransmissions
due to the loss of the recovery frame by introducing a
timeout at the receiver side. As we show in Section 5,
iFrag achieves 3× more throughput and 12% less delay
than the static fragmentation approach when the chan-
nel condition is noisy. On average, it achieves 13% gain
in throughput across all channel conditions used in our
experiments.

The idea of dynamic block size selection introduces
several unique challenges. First, deciding when to switch
between block sizes is challenging. Second, since there
is no synchronization between the sender and the re-
ceiver, this switching mechanism must satisfy two re-
quirements: mode discovery and data integrity. By mode
discovery we mean that the receiver must have a mech-
anism to discover the change in the block size which is
decided by the sender. Moreover, the data sent over var-
ious block sizes must be distinguishable for the receiver
to preserve data integrity. Third, minimizing the ex-
pected overhead of implementing such dynamic mecha-
nism. For iFrag to operate efficiently, its overhead must
be less than its actual gain. Having these challenges
in mind, iFrag was designed to be able to identify er-
ror patterns, identify best mode to choose, enable the
receiver to know the received mode, minimize the over-
head of dynamism, and preserve data integrity.

iFrag is implemented using TelosB [23] motes. Our
experiments show that iFrag significantly boosts net-
work throughput under both normal and high interfer-
ence conditions. Moreover, iFrag improved the network
end-to-end delay significantly especially under noisy chan-
nel. The performance of iFrag was evaluated under a
realistic interference caused by nearby WiFi devices op-
erating at the same frequency. Furthermore, we believe
that iFrag has wider applicability beyond wireless sen-
sor systems, as it could be applied to any other wireless
standard.

To summarize, the main contributions of this work
are as follows:

1. Introduce an accurate throughput model for iFrag
2. Introduce a multiple data frame retransmission avoid-

ance method, harnessing data frame retransmission
by retransmitting the recovery frame.

3. Design, implement, and evaluate a dynamic fine-
grained error recovery mechanism that captures the
channel condition and adapts the block sizes accord-
ingly.

This paper is organized as follows. In Section 2,
we present an executive summary of the related work.
In Section 3, iFrag design is introduced. This includes
frame structures as well as operation. The proposed
model for the system is described in Section 4. In Sec-
tion 5, the results of the experimental work are pre-
sented and thoroughly discussed. Finally the paper is
concluded and future work is discussed in Section 6.

2 Related Work

Partial Packet Recovery techniques can be broadly clas-
sified into two categories based on the use of physical
layer information in the recovery process. In fact, most
of the techniques that use physical layer information
for packet recovery [29,12,14,27] are both efficient and
accurate. However, these require hardware modification
to modify the PHY layer which makes them impracti-
cal. On the other hand, the other set of techniques do
not require modifying the physical layer and hence eas-
ier to implement ı.e. changes are made only at the MAC
layer. However, many of these techniques face two chal-
lenges, namely: high computational cost and low pre-
diction probability. We limit our discussion to methods
with no physical layer support since these are the ones
similar to our proposed work.

Partial Packet Recovery has been thoroughly stud-
ied in [25,2,9,22,8,15]. The proposed schemes were based
on hard decision channel output that resolve some of
the issues of data link layer protocols. In [22], the author
proposed ARQ-With-Memory (MRQ) scheme. In this
scheme, the receiver XORs erroneous packets to identify
any existing errors. Then, the correct packet is retrieved
by an exhaustive search to pass the checksum. This
scheme is easy to implement, however it suffers from
high computational intensity of packet recovery that
is exponential with respect to BER and unnecessary
retransmission of the entire packet which wastes the
bandwidth. The authors in [8] target data link stream-
ing in WSNs through Seda. The goal of Seda was to
enhance the robustness and throughput of WSNs. In
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Seda, the transmitter divides the packet from the net-
work layer into four small sequenced data blocks which
are then combined at the receiver side. For error de-
tection, a 1 byte CRC is appended to each block. If
erroneous blocks are received, the receiver initiates a
recovery frame, which contains the sequence of the first
incorrect block received and a binary block map for the
consecutive blocks to request their retransmission. Once
all the blocks are received correctly, they are reassem-
bled for higher layers. One of Seda’s limitations is the
loss of feedback problem i.e. when the recovery block is
lost. As a reaction, the sender periodically re-sends all
the frames after the specified timeout. iFrag solves this
issue by periodic sending of the recovery frame which
is smaller in size than the data frame and has higher
chance of being received correctly. the other limitation
of Seda is the static assignment of the block size re-
gardless of the channel condition. The authors of [15]
proposed a similar static fragmentation approach for
wireless local networks called fragment-based retrans-
mission (FBR). In FBR, corrupted fragments will be
given a secondary chance to be transmitted within the
same channel access. Although the fact the authors
mentioned that either 2 or 4 blocks could be used, there
is no clue in the paper on how to favour one of these two
schemes over the other. Moreover, it is not clear how
the receiver will know the number of fragments sent by
the sender to be able to correctly decode the frame. Fi-
nally, the extension of the sender transmission chance
could degrade the network fairness significantly.

The concept of adaptively changing the size of frame
fragments have been proposed in the literature. In [30],
an adaptive subpacket scheme that optimizes the block
size to maximize throughput is proposed. The size of
each block is determined based on the SNR of the chan-
nel. However, the authors never mentioned how to in-
form the receiver about the newly assigned block size.
Similar to iFrag, this approach is using block combin-
ing, i.e. transmitting new blocks along with the retrans-
mission of the corrupted blocks. However, it is not pos-
sible to preserve data integrity without having a block
number for each one of the blocks. The author of [26]
proposed a segment-based retransmission scheme that
use Luby-type erasure code to recover missing symbols.
This work is based on the assumption that the trans-
mitter has a precise knowledge of the channel BER and
hence will select the segment size accordingly. However,
this assumption is not feasible. Moreover, the feedback
channel is assumed to be error-free and has no delay
which is also not realistic. iFrag chooses the size of the
block adaptively based on the transmission history. It
deals with errors in the feedback channel by periodic
sending of the recovery frame. Recently, the authors of

[10] suggested to have an adaptive frame fragmentation
scheme for wireless local networks (WLANs) named
GEB which stands for gathering error-free blocks. The
main purpose of GEB is to allow the sender to differ-
entiate frame dropping due to collision from transmis-
sion losses due to noise and interference. In the case of
the former, the contention window should be doubled
where as it should not be affected by the bit errors in
the frame. So if any block is received correctly a NAK
will be sent to the receiver to inform it not to increase
the contention window. In fact, this approach has two
limitations. First, the error detection code is duplicated
in both the frame level and block level which is an un-
necessary overhead. Second, since GEB is not attach-
ing a block number to every block, a partial retrans-
mission would not be possible. Hence, the corrupted
frame will be sent repeatedly until it gets received cor-
rectly. To the best of our knowledge, iFrag is the first
work that implements adaptive partial packet recovery
in real hardware and analyzes its performance through
experimental evaluation.

Several papers have been studying the feasibility of
WiFi-ZigBee coexistence. In [16], the authors proposed
a bit level granularity scheme for sensor motes to sur-
vive WiFi interference through header and payload re-
dundancy. Basically, the idea is to insert multiple head-
ers at different places in the frame so as to increase the
possibility of the header to be correctly received. On
similar efforts, researchers in [11] proposed a scheme
called WISE that predicts the length of WiFi white
space and adjust the size of ZigBee frames accordingly.
Other efforts are directed towards optimizing packet
size in wireless sensor networks [20] [21] [5] [24]. The
main idea is to change the frame size as the physical
channel condition changes. We envision that iFrag can
be easily integrated with these schemes since all of them
do not apply the concept of partial packet recovery.

The idea of packet combining in wireless networks
remains an interesting challenge. For example, SPaC [6]
uses packet combining on the frame level. However,
Seda is different from SpaC in the fact that the lat-
ter does not partition the frame into blocks. MRD [19]
utilizes multiple access points to achieve packet combin-
ing. Basically, it combines the bits received at different
motes to correct wireless errors. This work is similar to
Seda in the fact that packets from the transmitter is
divided into different blocks. Similarly, MRD also uses
an error detection mechanism at the block level. Hence,
exponential block combining trials might be possible.
Moreover, a full retransmission of the whole frame will
be the only solution if the combining efforts fail, which
is very expensive. In reality, this scheme has less com-
putational cost compared to [8], yet costly to be im-
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plemented in the sensor motes with limited resources.
Moreover, MRD requires an efficient access point se-
lection which is considered a waste of bandwidth when
there is data exchange between all the available access
points.

Many other techniques are based on Forward Er-
ror Correction (FEC) [18,17,28]. It is well known that
the knowledge of the channel BER is required for FEC
methods to function. It has been shown in [13,1,19,6]
that channels of any asynchronous wireless network suf-
fers from unpredictable and frequent changes in channel
condition. In addition, the high overhead of the required
computation for FEC makes it impractical for resource
constrained sensor motes. Alternatively, iFrag proposes
a low computation technique that reduces packet re-
transmissions while improving network throughput and
delay.

3 iFrag Protocol Design

In this section, we introduce the protocol design of
iFrag. This includes frame structures, operation, and
a discussion of the main challenges addressed in the
proposed protocol design.

3.1 Overview

iFrag is a dynamic block size allocation protocol that
adapts the block size based on varying channel con-
ditions, leading to lower block loss rates and a sig-
nificant reduction in block retransmissions. This im-
proves data transmission reliability, resulting in high
network throughput. Consider x bits of data to be trans-
mitted between sender and receiver. The bit stream
is grouped into one or more frames at the data link
layer. Since iFrag was implemented on top of TelosB
motes [23] which are equipped with 250 Kbps CC2420
radio [3], the overall frame size is limited by the wireless
transceiver firmware to 128 bytes.

3.2 Motivation

Prior work in [8] highlighted the problem of wireless
channel conditions variability through a BER measure-
ment study. It proposed a streaming data link layer
protocol named Seda, which focuses into de-coupling
the trade-off between using large frame sizes to increase
throughput and using small frame sizes to achieve ef-
fective error recovery. The basic idea is as follows: Seda
divides the frame in four equal blocks, where each block

Fig. 1: Throughput of Seda and FARQ under various
channel loss models

Fig. 2: Throughput of Seda with various block sizes
under different channel loss models

has its own sequence number and CRC for error detec-
tion. This protocol transmits frames with the maximum
size (100 bytes), which is limited by the buffer space
of MicaZ platform [23]. Seda overcomes the large frame
size problem and prevents retransmitting the whole frame
by sending delayed automatic retransmission request
frames called recovery frames. These recovery frames
indicate the erroneous blocks that need to be retrans-
mitted. However, Seda has several limitations when im-
plemented. First, it has fixed block size of 27 bytes
regardless of the channel condition. Second, Seda re-
transmits all data frames as a reaction to the loss of
the recovery frame, which results in high redundancy
overhead. Finally, Seda was only tested under situations
where sensor motes were interfering with each other and
never experimented under conditions where interference
is caused by higher-power wireless devices.

In Fig. 1, we show a comparison between Seda and
frame-based ARQ (FARQ) under various channel loss
models proposed in [8] using MATLAB simulations.
The channel BER decreases progressively from loss model
1 to 6, i.e., loss model 1 represents the worst channel
conditions, while loss model 6 represents an ideal chan-
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nel. Specific channel attributes are described in Sec-
tion 4. When the channel quality is good, FARQ out-
performs Seda in loss models 5 and 6 since it has less
overhead per frame, while Seda shows better perfor-
mance in other loss models. However, in Fig. 2 we em-
pirically evaluate four different Seda implementations,
each with its own fixed block size, e.g., Seda 8 uses
8 small blocks within a frame. We observe that Seda
8 outperforms all other Seda implementations (includ-
ing traditional frame transmission with a block size of
1) under noisy channel conditions (loss models 1 and
2). As the channel conditions improve (loss models 3
to 6), Seda schemes using fewer blocks perform better.
This shows that varying block sizes results in better
channel utilization under different channel conditions.
In the light of these observations, we propose iFrag,
a scheme for dynamic partitioning of blocks based on
current channel conditions.

Fig. 3: iFrag frame formats

3.3 Frame Structure

iFrag defines data and recovery frames. The structure
of these frames is illustrated in Fig. 3. Depending on
the iFrag mode, data frames are composed of one or
more blocks. Each block has two additional bytes, one
each for sequence number and block CRC. A 1 byte
block sequence number can represent values from 0 to
255. Our experiments show that this range of sequence
numbers is sufficient and is unlikely to overlap in the
block numbers even at extremely noisy channel con-
ditions. It is worth noting that sequence number step
increment depends on iFrag mode (e.g., in iFrag 1 the
sequence number increases by 8 while in iFrag 8 it in-

(a) Sender side (b) Receiver side

Fig. 4: iFrag operation flow chart

creases by one). This is further described in Section 3.5.
As a proof of concept, iFrag was implemented with four
different modes, namely iFrag 1, iFrag 2, iFrag 4 and
iFrag 8, where 1, 2, 4 and 8 represent the number of
data blocks in the frame. For example, if iFrag 4 is
used, then the data frame will contain four different
data blocks. These blocks may not be consecutive as
explained later in Section 3.4. Although the fact that
our implementation of iFrag uses only 4 modes, we en-
visioned that more modes could be supported. It is also
important to note that the amount of data sent in each
frame is fixed to 96 bytes. This size was chosen because
iFrag 8 appends 16 extra bytes in noisy channel condi-
tions (1 byte sequence number and 1 byte CRC for each
block). The maximum frame size is 128 bytes in which
16 bytes are reserved as PHY and MAC headers. iFrag
uses the remaining 96 bytes for data. If header CRC
is to be inserted, then the amount of data will be 95
bytes instead. We decided not to include header CRC
to save this overhead. Note that padding will be added
to the last block when the transmitted data size is not
a multiple of the block size. A special block sequence
number is reserved to indicate the frame last block. The
byte that is next to this special block sequence number
specifies the length of the data in that last block.

iFrag uses recovery frames which are sent from the
receiver to the sender to acknowledge the received blocks
and report missing or corrupted blocks. The recovery
frames consist of four fields: Start Block Number (SBN),
Block Map, Block Count, and CRC. SBN field is of 1
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byte size and is used to flag the first missing or cor-
rupted block. In case that all blocks are received cor-
rectly, SBN points to the next expected block. The
Block Map field is of 4 bytes size and is used to indicate
the status of the consecutive blocks following the SBN.
Each bit represents a single block. After each session
(i.e., consists of sending 4 frames as in[8]), the receiver
reports the number of correctly received blocks to the
sender. The sender uses the Block Count field to calcu-
late the Packet Reception Ratio (PRR) which is used
by iFrag to decide on which mode it should operate on.
The CRC component is used to check the correctness
of the recovery frame. Both Block Count and CRC are
of 1 byte each.

3.4 iFrag operation

iFrag sender and receiver sides operation are illustrated
in Fig. 4. The sender and the receiver agree on the sup-
ported iFrag modes during the neighborhood discovery
phase. The sender transmits a specific number of con-
secutive frames each session (4 frames in our implemen-
tation), and waits for the recovery frame from the re-
ceiver. At the end of this session, the receiver sends the
recovery frame to acknowledge the received blocks and
request the missing ones. The loss of the recovery frame
is not sufficient to give reasonable measure of channel
condition due to the bursty nature of error patterns in
wireless channels. As a result, no data will be sent until
the recovery frame is received. This design was inspired
by the fact that the frames will be lost or corrupted if
the channel is noisy. Hence, instead of re-sending the
data frames again, that are often large, we limit our re-
transmission to the smaller recovery frame, which has
higher chances to be delivered correctly. Moreover, re-
sending the data frames before obtaining the recovery
frame may result in re-sending some of the correctly re-
ceived blocks which is considered as an additional over-
head and will affect the network goodput.

In the case of corrupted or lost recovery frame a new
one will be sent after timeoutrecovery period. This pe-
riod is set to a value greater than one RTT added to the
transmission delay for the whole session. timeoutrecovery

should be long enough to allow the recovery frame to
be delivered and processed in the sender side, allow the
sender to send all the frames required, and to give a
chance for the last frame to make it to the receiver. If all
frames were lost, then the receiver needs to re-send the
recovery frame. A small margin is added to the timer to
insure the consideration of processing and queuing time
in the sender and receiver side. After sending all of the
required blocks, the sender then sends an end message.
If the end message is lost or corrupted, the receiver ends

the connection if it does not receive any new data for a
predetermined period of time timeoutend. iFrag sender
and receiver sides operation are described in Algorithm
1 and Algorithm 2 respectively.

3.5 Discussion

The idea of dynamic block size selection introduces
a number of challenges. One of these challenges is to
know when to switch between iFrag modes without syn-
chronization between the sender and the receiver. This
switching mechanism must satisfy three requirements:
mode discovery, data integrity, and minimum overhead.
In the first requirement, the receiver must have a mech-
anism to discover the change in the mode which is de-
cided by the sender. In second requirement, the sent
data over various modes must be distinguishable for the
receiver. In final requirement, minimize the expected
overhead of implementing such dynamic mechanism,
which is a logical consequence of having iFrag. For iFrag
to operate efficiently, its overhead must be less than
its actual gain (i.e., the overall performance of iFrag
should outperform all other static Seda modes). Hav-
ing these challenges in mind, iFrag was designed to be
able to identify error patterns, identify best mode to
choose, enable the receiver to know the received mode,
minimize the overhead of dynamism, and preserve data
integrity. Each of these challenges is solved by imple-
menting a specific technique as detailed below.

iFrag uses the percentage between the number of
sent and correctly received blocks within 5 sessions (i.e.,
20 frames) to correctly identify the channel error pat-
tern. The sender knows how many blocks of each type
have been sent. In addition, the receiver knows how
many blocks have been correctly received. The receiver
reports the number of correctly received blocks to the
sender in every recovery frame. The sender infers the
channel condition based on this PRR. If the channel
is noisy, iFrag reduces the block size to provide in-
creased reliability. On the other hand, if the channel
is good, iFrag increases the block size to reduce over-
head. Finally, when the channel quality falls between
these extremes, iFrag simply continues using the cur-
rent mode. Our implementation supports transitioning
from one mode to the next in a gradual manner. Since
interference conditions may be transient, we do not im-
mediately jump across multiple iFrag modes. Such fast
transitions may produce system instability, and lead to
increase in header overhead per block, resulting in per-
formance degradation in the next session.

iFrag relies on PRR to decide whether the channel
is good or noisy using two thresholds for each operating
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Operational Mode Channel Condition
iFrag 1 PRR=100%
iFrag 2 80%≤PRR<100%
iFrag 4 50%≤PRR < 80%
iFrag 8 PRR<50%

Table 1: Thresholds for switching from one iFrag mode to the
other

mode, namely thresholdgood and thresholdbad. There-
fore, iFrag has 6 thresholds in total. These thresholds
are based on PRR of the previous session and could
be chosen based on statistical channel condition anal-
ysis at the early stage of the connection (initialization
phase). In our implementation, the thresholds are fixed
to the values shown in Table 1 such that the transi-
tion between one iFrag block size to the other can pro-
duce less overall overhead based on the mathematical
model discussed in Section 4. The choice of these thresh-
olds is experimentally verified as shown in Section 5. In
fact, the thresholds could be fine tuned through a dy-
namic learning component. However, this was not used
because of the implementation overhead with minimal
expected improvements.

iFrag allows switching between modes on the fly.
The receiver determines iFrag mode based on the re-
ceived frame size. This is feasible because each mode
has different number of blocks, hence different frame
size. For example, in iFrag 1 the frame is composed of
only 1 block (i.e., only two additional bytes, one for
block sequence number and the other for block CRC).
On the other hand, iFrag 8 will consist of 8 blocks and
hence 16 additional bytes. As a result, the receiver in-
fers the mode based on the size of the received frame.
This in turn minimizes the need for a control frame that
may be exchanged between the sender and the receiver
each time the sender decides to change iFrag mode.

Additionally, iFrag design preserves data integrity.
Whenever the mode of transmission is being changed to
different block size, the data sent by the sender should
be correctly identified by the receiver. The following ex-
ample shows how data integrity can be lost. iFrag sends
blocks 77 and 78 in iFrag 2 mode and block 77 is lost. If
iFrag switches to iFrag 1 mode because of higher PRR
then block 77 will be sent as a 96 bytes instead of 48
bytes which affects data integrity. Similar situation will
occur if the transition was in the opposite direction,
i.e., switching from larger block sizes to smaller block
sizes. The problem worsens if iFrag is going on multiple
consecutive transitions while some blocks are not yet
received correctly. It can be seen that not having con-
sistent numbering scheme for block numbers may lead
to incorrect behavior. In order to solve this problem,
several design choices were made. First, is to standard-

Algorithm 1: iFrag Sender

Initiate connection and inform receiver of1

supported modes
Divide network layer packet into blocks2

Add block sequence number and CRC, reframe3

and handoff packet to MAC layer for
transmission
if recovery frame received then4

Update PRR5

if Session is starting then6

Select iFrag mode:7

if PRR > thresholdgood then8

Switch to the next mode with bigger9

block size
else if PRR < thresholdbad then10

Switch to the next mode with smaller11

block size
Reset PRR12

else13

Keep using the same mode14

Retransmit requested blocks (with new15

blocks if any) as determined from the
BlockMap field of the recovery frame

Algorithm 2: iFrag Receiver

Connection establishment (know Sender1

supported modes)
Send recovery frame that includes BlockMap2

and SBN to request for frames from the Sender
if data frame received then3

Identify iFrag mode using frame size4

Identify correct blocks through CRC (each5

block contains consecutive bytes)
if all blocks are correctly received then6

Re-assemble blocks into a network layer7

packet and hand-off to network layer
else if some blocks are corrupted then8

reconstruct recovery frame accordingly9

Buffer correctly received blocks10

Send recovery frame after each session or after11

timeoutrecovery period, whichever earlier
Stop sending recovery frame when End12

Message received or when no new data has been
received for the period of timeoutend

ize the block sizes and the block numbering convention.
In other words, all block numbers refer to the first small
iFrag 8 block that contains the data in the beginning of
the block. The remaining part of the block contains the
next consecutive iFrag 8 blocks without appending ad-
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ditional bytes for block number and CRC (recall, block
of type iFrag 2 numbered with block number 77). This
means that this block contains data of iFrag 8 block
77 in the beginning of the iFrag 2 block. Because iFrag
2 block size is 4 times larger than iFrag 8, three con-
secutive iFrag 8 blocks, namely block 78, 79 and 80,
are added. Consequently, if the data for next blocks
have not yet been sent, the next iFrag 2 block will be
numbered 81 and contains 81, 82, 83, 84 data. In this
approach, changing the mode will not affect data in-
tegrity because iFrag will be sending consecutive data
blocks within every block number and CRC. The idea
of having the smallest block as the actual indicator is
similar to saying that data are represented in chunks of
12 bytes where each has its own number.

In case where the transition happens from smaller to
bigger blocks, the proposed solution may impose some
overhead since iFrag might be sending some additional
blocks that were previously received correctly. For ex-
ample, consider having iFrag operating in iFrag 4 mode.
Each block now contains 2 consecutive blocks of data.
Suppose that blocks 0 up to 30 were sent (block 30
contains both 30 and 31 block numbers) and that block
20 and block 30 were lost (i.e., iFrag 8 block numbers
20, 21, 30, 31 were lost). The receiver sends the corre-
sponding block map. If the sender continues to operate
on the same mode, then the first two iFrag 4 blocks
sent would be 20 and 30, containing the correspond-
ing data without problems. Even if the decision was
made to reduce the size to iFrag 8, then the next 4
blocks to be sent would be 20, 21, 30, 31. However, if
the mode was changed to iFrag 2, then an overhead is
introduced, since iFrag is now forced to send consecu-
tive bytes within the block itself. This means that the
first two iFrag 2 blocks to be sent would be 20, 30 and
then continuing with 34. This is because now block 20
contains 20, 21, 22, 23 where two are needed and two
are overhead. The other block which is 30 contains also
4 consecutive blocks 30, 31, 32, 33. It is worth noting
that blocks 32, 33 are actually not an overhead since
they are correctly received for the first time. This will
make the next block to be sent to start from the next
unsent block which is 34 instead of 32 as 32, 33 were
already sent. In fact, the overhead for such rare cases
is around 50% or less on average.

iFrag suffers from certain overhead while being in
transition between different modes with lost blocks pend-
ing retransmission. For example, consider the following
case: iFrag sends blocks in iFrag 8 mode and just sent
blocks 0 to 7 in the last frame. By assuming that block
6 was lost and iFrag decided to switch to iFrag 4, two
consecutive blocks with a single block sequence num-
ber will be sent (i.e., block number 6 and 7 will be

m Number of blocks in a frame
Pg Probability of being in good state
Pb Probability of being in bad state
Pbb Transition probability from the bad

state to the bad state
Pbg Transition probability from the bad

state to the good state
Pgb Transition probability from the good

state to the bad state
Pgg Transition probability from the good

state to the good state
Nb The mean size of error cluster which

starts and ends with corrupted bits fol-
lowed by more than or equal to 200 con-
secutive error-free bits

Ng The mean size of inter cluster that is
nothing but the number of error-free bits
between two consecutive error clusters

P (B) Probability of having sequence of B bits
without errors

Ps(n, B, i) Probability of having sequence of B bits
without errors given that the chain
started
at state s and will visit this state n times
through i transitions between states

eb Bit error probability in bad state
H Frame header size (bits)
F Frame size (bits)
K Block size (bits)
R Recovery frame size (bits)
HAR Header acceptance rate
FAR Frame acceptance rate
KAR Block acceptance rate
RAR Recovery acceptance rate

Table 2: Terms used in the system model

sent again). As block 7 was correctly received from the
previous session, it is considered as an overhead and
eventually discarded. In practice, this overhead is very
small as shown in our experimental results presented in
section 5.

4 System Model

In this section, we present an analytical model for iFrag.
We use Gilbert-Elliot hidden Markov model [7], as shown
in Fig. 5, to derive an expression for having error-free
chunks of bits, then we use these probabilities to esti-
mate the throughput. We show that iFrag outperforms
Seda analytically and using MATLAB simulations. Ta-
ble 2 summarizes the terms used in our model.
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Good Bad

Pgb

Pgg

Pbg
Error

eb

Pbb

Fig. 5: Gilbert-Elliot wireless channel model

In [8], the authors defined the channel model prob-
abilities as,

Pg =
Ng

Ng + Nb

Pb =
Nb

Ng + Nb

Pbg =
1

Nb
= 1− Pbb

Pgb =
1

Ng
= 1− Pgg

The probability that a sequence of B bits is received
correctly, P (B), is given by:

P (B) =PgP
B−1
gg + PbP

B−1
bb (1− eb)B−1

+
B−1∑
i=1

k2∑
n=k1

Pg(n, B, i) +
B−1∑
i=1

k2∑
n=k1

Pb(n, B, i)

(1)

where k1 = 1 + i− d i
2e, and k2 = B − d i

2e.
As per the definition of Pg(n, B, i) in Table 2, there

are d i
2e transitions from good to bad states and i−d i

2e
transitions from bad to good states. Also, there are k1

segments (sequences) of bits in good states and d i
2e in

bad states. This leads to n − k1 transitions from good
state to good state and B−n−d i

2e transitions from bad
state to bad state. The good state segments’ lengths
must sum to n, so there are

(
n−1
k1−1

)
different combi-

nations. Similarly there are
(
B−n−1
d i

2 e−1

)
combinations of

segments of bad states. As a result, Pg(n, B, i) can be
derived as:

Pg(n, B, i) =
(

n− 1
k1 − 1

)(
B − n− 1
d i

2e − 1

)
PgP

n−k1
gg P

d i
2 e

gb

P
i−d i

2 e
bg P

B−n−d i
2 e

bb (1− eb)B−n (2)

Similarly, we derive Pb(n, B, i) as:

Pb(n, B, i) =
(

n− 1
k1 − 1

)(
B − n− 1
d i

2e − 1

)
PbP

n−k1
bb P

d i
2 e

bg

P
i−d i

2 e
gb P

B−n−d i
2 e

gg (1− eb)n (3)

Using this approach we derive the header, the frame,
the block, and the recovery acceptance rates as follows,

HAR = P (H) (4)

FAR = P (F ) (5)

KAR = P (K) (6)

RAR = P (R) (7)

Using the above equations, we calculate the overall
throughput of FARQ, Seda, and iFrag as follows,

ThroughputFARQ =
F −H
F

FAR∗RAR + R
4

(8)

ThroughputSeda m =
m ∗ (K − 16)

m∗K
HAR∗KAR∗RAR + H

HAR∗RAR + R
4

(9)

ThroughputiFrag m =
m ∗ (K − 16)

m∗K
HAR∗KAR + H

HAR + R
4∗RAR

(10)

The last equation is for iFrag during m mode. To
evaluate the average throughput for iFrag, we will as-
sume that the channel alternates between different L

loss models and the victor T = [T1, T2, ...., TL] repre-
sents the time percentage the channel stays in each loss
model. Per Section 3, our design is capable of choosing
the iFrag mode, m, that maximizes the throughput,
neglecting the time period needed to switch between
modes, we can evaluate the average iFrag throughput
as:

ThroughputiFrag =
L∑

l=1

max{ThroughputiFrag 1, ...,

ThroughputiFrag m}Tl
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Loss
Model

Mean Error
Cluster Size
(bits)

Mean Inter-
Cluster Size
(bits)

eb Overall
BER

1 250 1000 0.4 0.08
2 100 1000 0.4 0.036
3 386 3234 0.43 0.045
4 120 3234 0.36 0.013
5 386 9690 0.4 0.015
6 0 ∞ 0 0

Table 3: Loss models

Fig. 6: FARQ, Seda, and iFrag analytical results, m=4

Fig. 7: FARQ, Seda, and iFrag simulation results, m=4

(11)

One of the main performance measures that was not
taken into consideration in [8] is the delay from both
the frame and the block perspective. We will present
an analytical approach aiming to estimate the average
number of transmission trials to receive a correct frame
via FARQ, Seda, and iFrag. For FARQ, the average
transmission trials is the mean of a geometric random
variable with success probability, pFARQ, given by:

pFARQ = FAR ∗RAR (12)

Consequently, the average transmission trials, ATTFARQ,
equals

ATTFARQ =
1

pFARQ
(13)

The average transmission trials of ATTSeda of m blocks
can be obtained with a modified approach. The trans-
mission trials needed to have a complete correct frame
are the maximum transmission trials of each block, as-
suming that all of the m blocks start within the same
transmission trial. The transmission trials of each block
is also a geometric random variable, Xblock, with suc-
cess probability, pblock, given by:

pblock = HAR ∗KAR ∗RAR (14)

The cumulative distribution function (CDF) of Xblock,
FXblock

(n) is

FXblock
(n) = 1− (1− pblock)n, n = 1, 2, 3, ... (15)

The transmission trials needed to have a correct frame
via Seda is a random variable, XSeda, given by the max-
imum of m independent random variables,Xblock as fol-
lows

XSeda m = max{Xblock1, Xblock2, ...., Xblockm} (16)

The CDF of XSeda will be

FXSeda m
(n) = (FXblock

(n))m (17)

Knowing the CDF of XSeda, we can estimate ATTSeda

as

ATTSeda m = E(XSeda m) =
∞∑

n=0

1− FXSeda m
(n) (18)

A similar approach can be used for iFrag as follows

pblock+ = HAR ∗KAR (19)

FXblock+(n) = 1− (1− pblock+)n, n = 1, 2, 3, ... (20)

XiFrag m = max{Xblock+1, Xblock+2, ...., Xblock+m}
(21)

FXiF rag m
(n) = (FXblock+(n))m (22)

ATTiFrag m = E(XiFrag m) =
∞∑

n=0

1− FXiF rag m
(n)

(23)
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Fig. 8: Average Transmission Trials (ATT ): (a) Seda (b) iFrag

In order to give a fair comparison between Seda de-
sign and iFrag, we use the same loss models chosen by
the authors in [8]. These models, presented in Table 3,
were obtained experimentally to identify the main pa-
rameters of the loss model, namely mean error cluster
size, mean inter-cluster size, and BER. We added a loss
model 6 to represent the ideal channel case.

The throughput results for the analytical model are
shown in Fig. 6. It can be seen that iFrag outperforms
both Seda and FARQ in all of the loss models, except
for loss model 6 which represents the ideal channel. In
such conditions, FARQ reduces the transmission over-
head compared to Seda and iFrag and achieves the high-
est throughput. The reason behind iFrag lead is that it
harness sending the recovery frame till it is received cor-
rectly. Although one might think that harnessing means
more overhead and consequently less throughput, but
in fact the opposite is true as a whole correct frame
might be sent again due to loss of a recovery frame.

Simulations were done via MATLAB and the re-
sults are shown in Fig. 7, in which we simulated iFrag in
static mode. We assumed that the channel variability is
the main controller for both throughput and delay. We
also assumed that choosing some parameters for chan-
nel variability will be not comprehensive to compare
our simulations results to Seda results for two reasons.
First, we do not have accurate measure or a concrete
mathematical model on how channel is changing from
loss model to another. Second, Seda were tested un-
der fixed channel model. The results shows that static
iFrag is better than Seda in all loss models. In order to
be fair, we limit our iFrag to be static in both analy-
sis and simulations. Note that we compare the dynamic

iFrag to Seda in the implementation section, where we
implemented both schemes and test over various chan-
nel conditions.

Through simulation, Fig. 8 gives us insight about
how ATT behaves versus both loss model and iFrag
mode. For all loss models and iFrag modes, iFrag has
less ATT than Seda, especially for high BER mod-
els. This means that iFrag encounters less delay than
Seda. It is also more energy efficient for sensor nodes
as it saves energy by reducing the overall transmitted
data and consequently prolonging the battery life of the
motes.

5 Performance Analysis

In this section we present iFrag experimental results
under varying channel conditions. We also show the ef-
fect of high power interference on the efficiency of iFrag
packet recovery.

5.1 Experimental Setup

iFrag was examined using TelosB [23] motes in an office
environment. TelosB motes are equipped with Chipcon-
CC2420 radio [3] which is compatible with IEEE 802.15.4
(ZigBee) standard and are capable of sending/receiving
250 Kbps. The implementation was carried out using
TinyOS 2.1.1. TelosB motes operate in the 2.4 GHz
ISM band and interfere with WiFi devices. To limit the
impact of this interference, our experiments were per-
formed at night when the wireless traffic is minimal.
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Fig. 9: Throughput of iFrag vs. Seda vs. FARQ without
interference

Fig. 10: Throughput of iFrag vs. Seda vs. FARQ with
interference

The motes were 1m apart from each other and con-
stantly powered through USB connections to avoid low
power issues. We disabled MAC-layer automatic CRC
to allow corrupted packets to be passed to iFrag im-
plementation. To evaluate iFrag under various channel
conditions, every experiment was repeated under two
interference settings. The first set of experiments did
not impose any interference. The second set of experi-
ments were done while transferring a large file between
two Linux boxes equipped with IEEE 802.11g wireless
cards. These boxes were placed 15m apart and used a
transmit power of 20 dBm. We used WiFi as a source
of interference because of this high transmit power. We
anticipate that our results will also hold in environ-
ments with lower level of interference. Further, WiFi
interference already exists in many WSN deployments
such as smart buildings and traffic control applications.

5.2 Experimental Results

In all experiments, throughput was calculated under
various channel conditions. A sender mote sends 1000

Fig. 11: Average delay per frame of iFrag vs. Seda. The
y-axis shows the normalized iFrag delay with respect to
Seda

frames to a receiver mote in each run of the experiment.
Results are then averaged over five runs. As described
earlier, each data frame consists of 96 bytes of data, one
byte per block for the block sequence number, one byte
per block for CRC and 16 bytes of physical and MAC
layer headers. In our iFrag implementation, each frame
may have one, two, four, or eight blocks.

In Fig. 9, iFrag is compared with FARQ and Seda
in terms of throughput under normal channel condi-
tions. To make a fair comparison, the implementation of
FARQ is similar to Seda except for the fact that it uses
a single block per frame. iFrag maintains constantly
higher throughput compared to Seda, showing an aver-
age of 13% throughput improvement across all channel
conditions. As expected, FARQ performs slightly bet-
ter than iFrag when using the highest transmit power
only. This happens due to the fact that FARQ imposes
less overhead than iFrag as the latter starts initially
with several blocks per frame and adjusts itself after
the first session. In Fig. 10 the experiments were re-
peated while imposing interference from WiFi nodes.
Similarly, iFrag maintains higher throughput compared
to Seda. FARQ is always performing worse than both
iFrag and Seda due to retransmissions caused by the
interference. iFrag shows a 3× increase in throughput
compared to Seda in bad channel condition. iFrag and
Seda throughput performance remains almost the same
when the transmission power is high. This is because
the imposed interference is not affecting the motes while
they are using high transmission powers. As the power
of the motes is reduced, iFrag outperforms Seda. This
improvement is attributed to the dynamic nature of
iFrag that smartly minimizes the overhead by selecting
the appropriate number of blocks in each data frame.

One of the major improvements that allows iFrag
to outperform Seda is the choice of re-sending recovery
frame when it is lost or corrupted instead of re-sending
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Fig. 12: Throughput of iFrag vs. static iFrag without
interference

Fig. 13: Percentage of time iFrag is spending in each
mode without interference

the same data. The recovery frame is about five times
smaller than a data frame, and thus has a higher prob-
ability of being received correctly. The recovery frame
prevents the sender from retransmitting data that has
already have been received correctly. This limits re-
transmission overhead. It also makes iFrag more en-
ergy efficient by limiting redundant transmissions by
battery-operated sensor nodes. Our experimental re-
sults are in agreement with the analytical and simu-
lation results in the case of ideal channel condition pre-
sented in Section 4. It is challenging to compare other
simulation loss models with the experimental results
because it is difficult to generate the same simulated
loss models, as interference is unpredictable.

Fig. 11 compares the network end-to-end delay of
iFrag versus Seda. It shows the normalized network de-
lay under various channel conditions. The quality of
the channel is altered by reducing motes transmission
power. iFrag experiences similar delay to Seda when the
channel quality is very good. However, iFrag starts to
outperform Seda as the interference is increased. The
peak performance happens at -15 dBm in which iFrag

Fig. 14: Throughput of iFrag vs. static iFrag with in-
terference

Fig. 15: Percentage of time iFrag is spending in each
mode with interference

manages to reduce the delay to only 12% compared to
Seda. Although iFrag is not targeting network delay re-
duction, it is interesting to see that it performs better
than Seda when the channel is suffering from interfer-
ence. This improvement is attributed to the fact that
iFrag receiver retransmits the recovery frame in case it
has been lost or corrupted. As discussed earlier, this
recovery frame is smaller in size than the data frame,
and hence easier to be delivered correctly. As a result,
the sender will trigger a new session of data sending as
soon as it receives a recovery frame. Alternatively, the
sender in Seda will wait for a predefined amount of time
before sending the already sent data in case of recovery
frame loss or corruption. In extreme interference con-
ditions, iFrag suffers from frequent losses which result
in performance degradation, increasing the normalized
delay to 25% compared to Seda.

To quantify the advantages of dynamism in iFrag,
the dynamic version was compared to a static version.
Static iFrag means that the number of blocks in iFrag
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Fig. 16: iFrag transitions between modes over time

is fixed to either 1, 2, 4 or 8 blocks. Initially, the exper-
iments were done without interference. Fig. 12 shows
that iFrag outperforms all other static ones. The only
exception is in iFrag 1, which is performing slightly bet-
ter than iFrag under perfect channel (i.e., no loss due
to high transmission power and no interference). The
reason for this behavior is the initial mode of iFrag. It
always starts with 8 blocks in each frame and it requires
at least one session to discover that the channel is good
and adjust its mode. Another reason comes from envi-
ronment interference. Fig. 13 represents the percentage
of time iFrag is spending on each mode. Even with the
motes at the best transmission power, iFrag still spends
around 10% of its time in iFrag 2. The main reason for
this observation is the selection mechanism of thresh-
old for switching between iFrag 1 and iFrag 2. In cur-
rent implementation, 100% PRR is required to switch
to iFrag 1, forcing iFrag to switch to iFrag 2 after each
session with one or more lost packets.

The dynamic vs. static experiment was repeated un-
der bad channel condition. As shown in Fig. 14, iFrag
results in higher throughput than all other schemes.
Fig. 15 shows that iFrag is spending more than 80% of
the time in iFrag 1 when the channel is good. On the
other hand, iFrag never switches back to iFrag 1 when
the transmission power is -25 dBm or -15 dBm since
the channel is considered noisy.

We studied the dynamic behavior of iFrag over time.
Fig.16 shows the transitions between different iFrag
modes according to the PRR. In this experiment, we set
the transmission power to -7 dbm and set the distance
between the motes to 1.5m. The results show that the
transitions occur gradually one-step at a time. In each
step, the protocol stabilizes for a minimum of one ses-
sion (i.e., reception of five distinct acknowledgements).
The protocol always starts with 8 blocks per frame until
the block loss ratio reaches the specified threshold. It
then switches to iFrag 4 i.e. four blocks per frame, and
then to iFrag 2 and so on, one step at a time. When the

channel quality deteriorates, iFrag attempts to operate
on larger number of blocks one step at a time as well.

6 Conclusion and Future Work

In this paper, we presented iFrag, a dynamic data stream-
ing approach that is suitable for resource constrained
wireless sensor networks. iFrag works mainly by divid-
ing the frame into several blocks, each with its own CRC
check. At the receiver side, if any block is found to be
corrupted, then that block will be retransmitted along
with new blocks, if any. Basically, iFrag features two
enhancements over the static partial packet recovery
approaches. First, it limits unnecessary data retrans-
missions by allowing the receiver to periodically send
the recovery frame. Second, it dynamically selects the
number of blocks in each frame based on the channel
condition observed during previous session. We show
through analytical, simulation, and experimental eval-
uation that iFrag can increase the throughput by 13%
on average while reducing the delay to 12% compared
to other static fragmentation approach.

There are interesting avenues for further work in
this area. Sending a frame with blocks of variable length
instead of fixed, identical length brings additional chal-
lenges that need to be addressed. Also, machine learn-
ing techniques may be used to dynamically select thresh-
olds for switching between modes based on current chan-
nel conditions. Finally, the concepts behind iFrag may
be extended to IEEE 802.11/b/g/n networks for en-
hancing their performance.
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