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responses was performed in C.  sinensis leaves infiltrated 
with the disaccharides maltose and sucrose at 0.025 mg ml–1. 
Maltose did not induce the expression of any of these genes 
compared with the water control (P<0.05) (data not shown). 
However, the expression of PrxA, MAPK3, MKK4, and 
WRKY30 was significantly induced by sucrose but to a lesser 
extent than with trehalose (Supplementary Fig. S2 at JXB 
online). Defence gene induction with sucrose, a recognized 
plant defence signal in response to pathogens (Moghaddam 
and Van den Ende, 2012), did occur; however, the citrus 
defence responses were more pronounced in the presence of 
trehalose than sucrose, suggesting that plant responses to tre-
halose are different and are independent of sucrose responses.

Discussion

There are currently five known pathways for trehalose bio-
synthesis described in the three domains of the tree of life 
(Iturriaga et al., 2009). The Xcc genome (da Silva et al., 2002) 
contains genes encoding enzymes of three of these biosyn-
thetic pathways: the otsA–otsB (TPS–TPP), glgY–glgZ, and 
treS pathways. Gene expression analysis (Fig.  1) indicated 
that the otsA–otsB pathway is the main route for trehalose 
biosynthesis in cells grown in XVM2 medium, confirming a 

previous observation (Astua-Monge et  al., 2005), and that 
this pathway is induced during plant infection. Expression of 
otsB was also upregulated in a different pathovar, X. campes-
tris pv. campestris, when grown in a medium used in patho-
genicity studies (Liu et al., 2013). These findings suggest that 
trehalose biosynthesis via the otsA–otsB pathway is function-
ally significant in Xanthomonas–plant interactions. To under-
stand better the role of this pathway in Xcc pathogenicity, 
we generated an otsA deletion mutant of Xcc, which lacked 
the capacity to synthesize trehalose via this route, and this 
resulted in a lower trehalose content when grown in XVM2 
medium (Fig. 2A). This mutant still produced trehalose, as 
the glgY–glgZ and treS pathways may be active under these 
growth conditions; however, the lower levels of trehalose due 
to the absence of the otsA–otsB pathways have detrimental 
effects on bacteria. In comparison with the WT and comple-
mented strains, the XccΔotsA mutant: (i) grew less well in 
culture when exposed to salt or oxidative stress (Fig. 2B); (ii) 
survived less well on the surface of C. sinensis leaves (Fig. 3A); 
and (iii) did not cause canker lesions in leaves infected using 
a natural method of infection (Fig. 3B). This indicated that 
trehalose synthesized via the otsA–otsB pathway helps to 
maintain cell viability during the pre-infection phase, when 
the bacteria are exposed to high light, UV, and water stress 
in the inhospitable environment of the leaf surface. This 

Fig. 7.  Photosynthetic parameters measurements in leaves infected with the XccWT, Xcc∆otsA, and Xcc∆otsAc strains. Quantification of the 
maximum quantum efficiency of PSII (Fv/Fm) (A), the effective quantum efficiency of PSII (F’v/F’m) (B), the PSII operating efficiency (ΦPSII) (C),and non-
photochemical quenching (NPQ) (D) at different dpi in leaves infiltrated with the strains and with MgCl2 as a control. Values are the mean of five replicates 
and error bars represent the standard deviation. Data were statically analysed by one-way ANOVA (P<0.05).
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finding corroborates a previous study showing that treha-
lose is important for the survival and fitness of Pseudomonas 
syringae in the phylloplane (Freeman et al., 2010).

When the Xcc strains were infiltrated directly into leaves, 
eliminating any differences in the pre-infection phase, at 
lower bacterial concentrations the Xcc∆otsA mutant was less 
able to infect the plant cells and caused fewer canker lesions 
(Fig. 4). In leaves infiltrated with higher bacterial concentra-
tions, the Xcc∆ostA mutant produced lesions with fewer and 
smaller necrotic areas, while bacterial growth was similar for 
all the strains (Fig.4). The presence of larger necrotic areas in 

infections with XccWT may be due to the fact that trehalose 
induces defence responses in citrus leaves, enhancing bacte-
rial-induced tissue necrosis. The similarity in growth observed 
for both XccWT and the Xcc∆ostA mutant under the latter 
infection conditions may be related to the presence of a larger 
amount of healthy tissue at the mutant infection site, and this 
may enhance the survival of the mutant. Accordingly, we 
previously described that citrus tissue necrosis impairs Xcc 
growth (Gottig et al., 2008). The co-infiltration of exogenous 
trehalose with lower bacterial concentrations impairs canker 
formation, suggesting that, for bacteria, it is more difficult 

Fig. 8.  Analysis of ROS production, RT-qPCR of citrus genes related to defence responses, and trehalase activity in citrus leaves infected with the 
XccWT, Xcc∆otsA, and Xcc∆otsAc strains. (A) DAB detection of H2O2 accumulation in citrus leaves infected with the strains at 3 dpi. Representative 
photographs of DAB stained leaves are shown in the upper panels and microscopic observations in the lower panels. Bars, 10 mm (upper panel); 1 mm 
(lower panel). (B) Quantification of DAB staining from the microscopic imagines. The means were calculated from 25 photographs from three independent 
experiments for each strain. Error bars indicate standard deviation. N.D., not detected. (C) RT-qPCR of citrus genes related to defence responses. Bars 
indicate the expression levels of the genes from RNA extracted from leaves infected with the different strains and MgCl2-infiltrated leaves at 1 dpi. Values 
are the means of four biological replicates with three technical replicates each. Error bars indicate standard deviation. (D) Quantification of trehalase 
activity [μmol of glucose (Gluc) mg–1 of total protein (TP) min–1] in leaves infiltrated with the strains at 3 dpi. Bars are the means of five infected leaves. 
Error bars indicate standard deviation. Results were analysed by Student’s t-test (P<0.05) and one-way ANOVA (P<0.05).(This figure is available in colour 
at JXB online.)
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to counteract plant defence responses when they are at a 
lower population density (Fig. 4). Leaf tissue infected with 
XccΔotsA contained less trehalose than tissue infected with 
the WT or complemented strain but more than mock-inocu-
lated leaves (Fig. 6A). Most of the trehalose in the XccΔotsA-
infected tissue is likely to be derived from the bacteria 
themselves, as these still contain trehalose despite the loss 
of the otsA–tsB pathway (Fig. 2A). However, a contribution 
from the plant is also a possibility. Conceptually, infection 
with Xcc might increase the level of trehalose by inducing the 
plant’s own trehalose biosynthetic pathway or repressing its 

trehalase activity. However, we can exclude the latter possibil-
ity, as trehalase activity was not affected in plants infected 
with XccΔotsA, and actually increased in plants infected with 
the WT or complemented strain (Fig. 8D).

The T6P detected in XccΔotsA-infected tissues (Fig. 6B) 
must have come from the plant cells as the bacteria lack the 
capacity to synthesize this intermediate. At 3 dpi, similar T6P 
levels were observed in mock-inoculated leaves, where the 
plant was also the only possible source, as well as in leaves 
infected with the WT or complemented strain (Fig.  6B). 
This suggests that either the XccWT and XccΔotsAc cells 

Fig. 9.  Analysis of ROS production, RT-qPCR of citrus genes related to defence responses, trehalase activity, and induction of the citrus response to 
XccWT in citrus leaves infiltrated with pure trehalose. (A) Representative microscopic photographs showing DAB staining of leaves infiltrated with 0.025 
and 0.25 mg ml–1 trehalose (T) and H2O as a control. Bar, 1 mm. (B) Quantification of DAB staining from the microscopic images. Results are the means 
of 25 photographs from three independent experiments for each treatment. Error bars indicate standard deviation. N.D., not detected. (C) RT-qPCR of 
citrus genes related to defence responses. Results indicate the expression levels of the genes from RNA extracted from leaves infiltrated with 0.025 mg 
ml–1 of trehalose at 1 h post-infiltration relative to the expression levels found in H2O-infiltrated leaves. Values are the means of four biological replicates 
with three technical replicates each. Error bars indicate standard deviation. (D) Quantification of trehalase activity [μmol of glucose (Gluc) mg–1 of total 
protein (TP) min–1] in leaves infiltrated with 0.025 and 0.25 mg ml–1 of trehalose or H2O as a control at 1 h trehalose at 1 h post-infiltration. Bars are the 
means of five infiltrated leaves. Error bars indicate standard deviation. (E) Quantification of XccWT growth in citrus leaves pre-infiltrated with 0.025 mg 
ml–1 of trehalose, or with H2O or the XcchrpB– strain as controls. Values are the means obtained from 10 infiltrated citrus leaves at different dpi. Error bars 
show the standard deviation. Results were analysed by Student’s t-test (P<0.05) and one-way ANOVA (P<0.05). (This figure is available in colour at JXB 
online.)
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contributed little of the T6P detected in the infected tissue, 
or that any contribution from the bacterial cells was exactly 
matched by a decrease in plant-derived T6P, which seems 
unlikely. However, at 6 dpi, there was twice as much T6P in 
the XccWT- and XccΔotsAc-infected leaves, which might 
reflect the decreased expression of otsB (Fig.  1C), leading 
to accumulation of T6P in the bacterial cells. Another pos-
sibility is that the increase reflects a rise in T6P levels in the 
plant cells in response to successful infection by the virulent 
WT and complemented strains. Consumption of apoplastic 
sucrose by the bacteria as they proliferate throughout the 
plant tissue is likely to perturb sucrose levels within the cells, 
and this in turn would be expected to affect T6P, which acts 
as a signal of sucrose status in plant cells (Lunn et al., 2006; 
Yadav et al., 2014).

The differences in trehalose content between mock-inoc-
ulated and Xcc-infected leaves were almost exactly mirrored 
by those in α-M1P (Fig. 6 and Supplementary Fig. S1C, D). 
Spinach chloroplasts were reported to contain an unspeci-
fied isomer of maltose phosphate (Schilling et al., 1976), but 
LC-MS/MS analysis of axenic Arabidopsis thaliana seedlings 
found no evidence of α-M1P (R. Feil and J.E. Lunn, unpub-
lished data). In C. sinensis, no α-M1P was detected in non-
infected leaves. As α-M1P is an intermediate in a recently 
described bacterial pathway of glucan synthesis from tre-
halose (Miah et al., 2013), it seems likely that the α-M1P in 
infected leaves had a bacterial origin. In the bacterial glucan 
synthesis pathway, trehalose is reversibly converted by treS to 
maltose, which is then phosphorylated to α-M1P by maltoki-
nase (Drepper et al., 1996). In Xcc, these two activities reside 
in the same bifunctional enzyme encoded by XAC0155, with 
an N-terminal treS domain and C-terminal maltokinase 
domain. The resulting α-M1P is the substrate for synthe-
sis of linear α-1,4-glucan chains by glucan synthase (glgE; 
XAC0154), which are then branched by a branching enzyme 
(glgB; XAC0156) to form an α-1,6-branched α-1,4 glucan 
similar to glycogen, which is used as a storage carbohydrate. 
The presence of genes encoding all the necessary enzymes in 
the Xcc genome, and the detection of the diagnostic interme-
diate, α-M1P, in Xcc-infected leaves, which otherwise lack the 
metabolite, shows that the pathway is likely to be operating 
in Xcc cells. To date, the role of this pathway in plant-patho-
genic bacteria has not been elucidated.

The proteomic analysis performed with Xcc-infiltrated 
leaves suggests that pathogen trehalose modulates enzymes 
involved in host carbon metabolism including photosynthesis 
(Table 1). Trehalose produced by P. aeruginosa strain PA14 
is a strong virulence factor necessary for the acquisition of 
nitrogen-containing nutrients, and thus for pathogen growth 
in the intercellular environment of Arabidopsis thaliana leaves 
(Djonovic et al., 2013). Likewise, a study of the interaction 
of Arabidopsis thaliana with Plasmodiophora brassicae sug-
gested that trehalose released into the plant by the pathogen 
is able to exploit the plant’s trehalose-sensing system and 
alter carbohydrate metabolism to the benefit of the patho-
gen (Brodmann et al., 2002). In legumes, trehalose produced 
by symbiotic microorganisms induces sucrose synthase and 
alkaline invertase activities, suggesting that trehalose could 

have a role in providing sugars to the rhizobial symbiont 
(Müller et al., 1998). Moreover, in ectomycorrhizal symbio-
sis, it has been suggested that trehalose could create a carbon 
sink for the symbiont, thereby attracting photoassimilates 
(Lopez et al., 2007).

Through gene expression and proteomic analyses, we 
showed that several antioxidant enzymes were downregu-
lated in tissues infected with Xcc∆otsA compared with 
XccWT (Fig. 8C, Table 1). This was supported by the results 
of the DAB staining, which showed that XccWT triggered 
a larger accumulation of H2O2 than the Xcc∆otsA mutant 
(Fig. 8A, B). Furthermore, several defence-related genes were 
expressed at a lower level in citrus leaves infected with the 
Xcc∆otsA mutant relative to XccWT (Fig.  8C). The differ-
ences at the transcript level were also reflected in the differ-
ential abundance of several proteins related to plant defence 
responses, which were also downregulated in leaves infected 
with the Xcc∆otsA mutant compared with XccWT (Table 1). 
To our knowledge, this is the first time that a differential plant 
defence response towards a pathogen impaired in trehalose 
production was observed.

In addition, we analysed citrus responses to the presence 
of  exogenous trehalose. The expression levels of  genes that 
encode antioxidant enzymes and also ROS accumulation 
were induced in citrus leaves treated with pure trehalose 
(Fig.  9C). Some previous studies have shown that several 
genes of  Arabidopsis thaliana that respond to exogenous 
trehalose treatments are related to ROS and secondary 
metabolism activation, suggesting that trehalose triggers 
an induction of  ROS signalling (Bae et al., 2005a; Aghdasi 
et al., 2008). Furthermore, a transcriptome analysis revealed 
that potato transgenic lines that overproduce T6P have 
higher levels of  gene transcripts that encode antioxidant 
enzymes (Kondrak et  al., 2011). Moreover, infiltration of 
trehalose by itself  was sufficient to induce expression of 
citrus defence genes (Fig.  9C), supporting a role for tre-
halose as an enhancer of  defence responses in Citrus spp. 
Accordingly, some genes that were induced in response to 
trehalose in Arabidopsis thaliana seedlings exposed to this 
disaccharide are known to be involved in biotic interac-
tions, providing yet further evidence that trehalose triggers 
plant defence responses (Aghdasi et al., 2008). In addition, 
we observed that the pre-infiltration of  citrus leaves with 
this disaccharide impaired Xcc growth after inoculation 
(Fig.  9E). In a similar study, it was shown that trehalose 
application on wheat plants induced resistance to Blumeria 
graminis (Reignault et al., 2001; Renard-Merlier et al., 2007; 
Tayeh et al., 2014).

Citrus trehalase might also serve to counteract the detri-
mental effects of excess trehalose derived from the Xcc patho-
gen, since trehalase activity was higher in leaves infected with 
the virulent XccWT strain than the non-virulent Xcc∆otsA 
(Fig. 8C). In a previous report of Plasmodiophora brassicae–
Arabidopsis thaliana interaction, it has been proposed that 
trehalose is secreted by the pathogen and that Arabidopsis 
thaliana trehalase (AtTRE1) may sense trehalose, and induc-
tion of trehalase activity might serve as a defence against 
excessive accumulation of trehalose (Brodmann et al., 2002).
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This study revealed a dual role for trehalose and the bac-
terial otsA–otsB pathway during infection of Citrus spp. by 
Xcc. Before infection, trehalose protects the bacterial cells 
from oxidative and water stress while they are on the leaf sur-
face and exposed to direct sunlight. While trehalose could be 
important for manipulating host carbohydrate metabolism 
in favour of the bacteria, perhaps by perturbing the plant’s 
endogenous trehalose metabolism and T6P levels, there is 
also evidence that the plant senses extracellular trehalose 
from the bacteria as a signal of pathogen attack, triggering 
defence responses to counteract infection by the pathogen. 
Thus, trehalose is a double-edged sword for both partners 
in the citrus–Xcc interaction, and our results add weight to 
the evidence that trehalose is a key factor in the never-ending 
struggle between plant pathogens and their host plants.

Supplementary data

Supplementary data are available at JXB online.
Supplementary Fig. S1. Relationships between trehalose, 

T6P and α-Mal1P in leaves infected with XccWT.
Supplementary Fig. S2. RT-qPCR of citrus genes related 

to defence responses in citrus leaves infiltrated with pure tre-
halose and sucrose.

Supplementary Table S1. Quantification of metabolite lev-
els in infected citrus leaves.

Supplementary Table S2. Oligonucleotides used in qRT-
PCR assays.
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