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ABSTRACT

Bayesian Inference of Manning’s n coefficient in a Storm Surge

Model Framework: comparison between Kalman filter and

polynomial based method

Adil Siripatana

Conventional coastal ocean models solve the shallow water equations, which de-

scribe the conservation of mass and momentum when the horizontal length scale is

much greater than the vertical length scale. In this case vertical pressure gradients

in the momentum equations are nearly hydrostatic. The outputs of coastal ocean

models are thus sensitive to the bottom stress terms defined through the formulation

of Manning’s n coefficients. this thesis considers the Bayesian inference problem of

the Manning’s n coefficient in the context of storm surge based on the coastal ocean

ADCIRC model.

In the first part if the thesis, we apply an ensemble-based Kalman filter, the

singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant

Manning’s n coefficient and a 2-D parameterized Manning’s coefficient on one ideal

and one of more realistic domain using observation system simulation experiments

(OSSEs). We study the sensitivity of the system to the ensemble size. we also access

the benefits from using an inflation factor on the filter performance.

To study the limitation of the Guassian restricted assumption on the SEIK filter,
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we also implemented in the second part of this thesis a Markov Chain Monte Carlo

(MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the

estimation of the 1-D and 2-D Mannning’s n coefficient. The gPc is used to build a

surrogate model that imitate the ADCIRC model in order to make the computational

cost of implementing the MCMC with the ADCIRC model reasonable.

We evaluate the performance of the MCMC-gPc approach and study its robustness

to different OSSEs scenario. we also compare its estimates with those resulting from

SEIK in term of parameter estimates and full distributions. we present a full analysis

of the solution of these two methods, of the contexts of their algorithms, and make

recommendation for fully realistic application.
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Chapter 1

Introduction

Coastal and estuarine systems are home to more than a half of the human population

[1, 2]. Understanding and forecasting the dynamics of coastal and estuarine systems

is critical for human sustenance around the world both economically and ecologically.

Coastal inundation during extreme events such as hurricanes and tsunamis is a major

cause of destruction to human lives and their habitats. Even in moderate conditions,

accurately forecasting the ocean states (e.g. tides and coastal flows) is crucial for

human’s marine and related activities. Coastal ocean modeling has been extensively

utilized to simulate the main features of the ocean circulation such as water surface

elevation and currents, for the purposes of conservation, contaminant transport, de-

velopment of coastal structures (e.g. bridges, damps and breakwaters) and emergency

and economic planing.

Tidal and coastal flows are very complex phenomena and cannot be easily pre-

dicted with even the most comprehensive mathematical models and computational

facilities available today [1, 2]. Instead of employing complex computational fluid

dynamics, which require prohibitive computational cost, most researchers resort on

model simplifications to develop computationally less intensive techniques. The goal

is to obtain good enough models while balancing the usability and the resources

requirements.

State-of-the-art coastal ocean models are based on the shallow water equations
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(SWEs), which are derived from the depth-integrating Navier−Stokes equations, as-

suming hydrostatic pressure and horizontal length scales that are large in comparison

to the vertical length scales. The result of this derivation is a first−order hyper-

bolic continuity equation for water elevation coupled with the momentum equation

for horizontal depth-averaged velocities. The shallow water equations describe the

flow below a pressure surface in a fluid. Even at this level of simplification, the model

contains many parameters, carrying uncertainties on which the accuracy of model pre-

diction depends [1]. Moreover, many of the parameters cannot be directly measured

or the relevant data to estimate these parameters are difficult to collect [61]. Thus

the values of these parameters must be inferred and estimated using the data from

different, but simpler to observe variables, which are not always be very accurate [3].

Quantifying and reducing the uncertainties in the model outputs associated with the

uncertainties in the parameter is essential for more reliable and robust storm surge

predictions [4]. Of particular importance in tides and storm surge prediction is the

Manning’s n coefficient of roughness, introduced in the SWEs through the bottom

stress as components in the momentum equation [5, 6].

The traditional approach to estimate model parameters in coastal models is the

variational approach. This deterministic approach consists of looking for the param-

eter that best fit the model to the collected data. The disadvantage of variational

methods is that they can be computational intensive and are difficult to implement

because they normally require an adjoint model [67]. In addition, these methods are

not formulated for real-time parameter estimation, in the sense they are not suitable

for applications with highly transient and/or abrupt flow regime changes, eg. as a

hurricane approaches landfall. Consequently recently developed statistical data as-

similation methods became more popular because they are non-intrusive and could be

implemented with reasonable computational cost. They also provide a framework to

quantify the uncertainty associated with the predicted model state. These methods
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were first developed for the estimation of the model state [4]. They have been re-

cently reformulated to include the estimation of the model parameter as well, though

it is not yet widely used in coastal modeling. Moreover, statistical data assimilation

methods are not based on physical principles, and may violate mass and momentum

conservation principles [73].

1.1 Problem descriptions

Statistical data assimilation methods are based on the Bayes rule, which states that

the probability distribution function (pdf) of the unknown parameters given available

data [7, 8], can be written as

π(θ | y) =
p(y | θ)πpr(θ)

πY (y)
(1.1)

with π(θ | y) is the pdf of the unknown parameter θ given the observation y, p(y |

θ) is the likelihood function of obtaining data y if we have parameter value θ, πpr(θ) is

the prior distribution defines the prior knowledge of the parameters and finally, πY (y)

is the scaling factor, which is the density function of all possible measurements.

One popular approximation framework used to compute p(y | θ) is the well-known

Kalman filter (KF). The KF provides the best estimation of a quantity of interests

(QoIs) given the observations arrive sequentially in time for a linear system with

Gaussian noise assumption [9].

The parameter estimation problems is often dealing with nonlinear system. One

popular approach that has been developed in oceanography to cope with the non-

linearity of the ocean modeling problem is the Ensemble Kalman filter (EnKF) and

its variants [10, 11, 12, 13]. The EnKF avoid the linearity of the system by using

an ensemble of realizations of the unknown parameter, which is used to estimate the
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first two moments of the quantity estimated assuming a Gaussian distribution. The

parameter correction step can then be applied every time new observations become

available. EnKF methods can be divided into stochastic EnKF which perturb the

observations in each assimilation cycle and deterministic EnKF which do not require

perturbing the observations [14, 15].

In the last decade, Bayesian framework was established as a preferred method

for uncertainty quantification and calibration of computer simulation. Since then

the interest in the application of Bayesian approach in calibration of parameters in

stochastic models have grown exponentially [16, 17, 18, 19, 20].

One of the appealing features of Bayesian approach is the ability to provide the

complete posterior estimation and statistics. However, this approach requires sta-

tistical sampling techniques to obtain the solutions of the Bayesian calibration and

uncertainty propagation. For this purpose, Markov Chain Monte Carlo (MCMC)

method is one of the most popular sampling technique [16, 21, 22]. However, MCMC

requires a large number of samples for satisfactory approximation (often in the range

103 − 106 ), rendering Bayesian framework computational prohibitive and the de-

velopment of an efficient solution generation is essential. To this end, Polynomial

Chaos (PC) based spectral projection method has been investigated extensively. PC

methods, particularly the generalized polynomial chaos (gPC), have become one of

standard approaches for solving stochastic problems to propagate and quantify un-

certainties in various disciplines including both physical [23, 24, 25] and chemical

systems [26, 27, 28, 29]. These methods approximate the model variables and pa-

rameters in terms of spectral expansion in an orthogonal polynomial basis according

to the their probabilistic distributions. The resulting surrogate models then can be

used to efficiently produce the solutions and the statistical properties of quantities of

interests (QOIs). The current popular trend is the to incorporate Bayesian inference,

gPC, Markov chain Monte Carlo (MCMC) and field measurement in data assimilation
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process which continuously updates the state variables, parameters. Although earlier

attempts at using PC for turbulent fluid flow modeling were not successful [30, 31],

it was found satisfactory to obtain efficient surrogate model for stochastic finite ele-

ment and stochastic fluid flow problems [32, 33]. In recent development, Xiu and his

coworkers [34, 35, 36] have developed a generalized version of polynomial chaos called

generalized polynomial chaos (gPC). Since then gPC has been applied for uncertainty

propagation through computational simulators in many field of engineering.

1.2 Bayesian viewpoint on parameter estimation

problems

The traditional approaches in parameter estimation are concerned with minimizing

cost function, which measured the distance between the model solution and the mea-

surements in addition to the deviation between the estimated prior and its prior, with

respect to the parameters [66]. Alternatively, parameter estimation problems can be

viewed as an attempt to formulate the joint distribution between the model state

and the parameters, given a set measurement and a dynamical model with known

uncertainties.

1.2.1 The dynamic models and measurements

Consider the following equations define the model associates with initial and boundary

conditions on the spatial domain D, boundary ∂D and a set of measurements,

∂ψ(x , t)

∂t
= G(ψ(x , t),α(x )) + q(x , t), (1.2)
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ψ(x 0, t) = Ψ0(x ) + a(x ), (1.3)

ψ(x , t)|∂D = Ψb(ξ, t) + a(ξ, t), (1.4)

α(x ) = α0(x ) +α′(x ), (1.5)

M [ψ,α] = d + ε (1.6)

Here ψ(x , t) ∈ <nψ is the model state vector consists of spatially-time varying

variables (i.g. water elevation computed in ADCIRC model). The dynamic parts of

the system is first defined by the nonlinear operator G(ψ(x , t) ∈ <nψ . The model

state is initialized and evolve from the initial condition Ψ0(x ) ∈ <nψ define in (1.3).

The boundary condition is defined in (1.4) where ξ is the coordinate running over

the domain’s boundary. In addition, the poorly known model parameters is defined

in (1.5). This parameter can either be a vector of spatial fields or a vector of scalar

with is a stationary process i.e. these parameters do not change in time. (1.5) specify

the measurements as a function of the model state and the parameters, this can be a

direct point measurements or a more complex form of function related to the model

state. Finally, the system is closed by the additional terms at the end of each and

every equations (1.2 - 1.6). Without these terms, the system over-determined with

no solution. However, simply adding these errors term will not solve the system.

The statistical assumptions about these errors must be incorporated in order for the

system to be solved, i.g. in many applications these errors is assumed to be Gaussian

which means equal to zero and subjected to specific error covariances.
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1.2.2 Bayesian formulation

Following the problem formulation from equations (1.2 - 1.6), the model variables,

the indisposed parameters, the initial boundary and initial conditions and the mea-

surements are now treated as random variables. The solution of the system, which

is subjected to uncertainties, cannot be described merely by point estimations but

instead can be represented by pdfs.

Suppose the joint pdf of the model state f(ψ,α) and the likelihood function com-

prise of the measurements f(d |ψ,α) are known, Bayes’ theorem for the parameter

estimation dictates

f(ψ,α|d) ∝ f(ψ,α)f(d |ψ,α) (1.7)

In general, the normalized function is used as a denominator on the right-hand-side

of (1.7) to equalized this expression.

We have previously defined the boundary condition ,initial condition and the

parameter prior as random variables f(ψ0), f(ψb) and f(α). The likelihood Bayes’

theorem is now expressed as

f(ψ,α,ψ0,ψb) = f(ψ,α|ψ0,ψb)f(ψ0)f(ψb) (1.8)

= f(ψ|α,ψ0,ψb)f(ψ0)f(ψb)f(α) (1.9)

(1.7) is then written as

f(ψ,α,ψ0,ψb|d) ∝ f(ψ|α,ψ0,ψb)f(ψ0)f(ψb)f(α)f(d |ψ,α) (1.10)
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Here f(ψ|α,ψ0,ψb) is the prior density of the model solution given the parameter,

initial and boundary conditions.

1.2.3 Recursive formulation of Bayes’ rule

In order to see how the sequential data assimilation is derived from Bayes’ rule, it

is convenient to assume the model as the discretization in time. The model state is

represented at the fixed time interval ψi(x ) = ψ(x , ti), i = 0, 1, ..., k.

Assuming the model is a first order Markov process, the pdf for the model inte-

gration from time ti−1 to ti is defined as f(ψi|(ψi−1,α,ψb(ti)). The joint pdf of the

model state and the parameters can now be written as

f(ψ1, ...ψk,α,ψ0,ψb) ∝ f(ψ0)f(ψb)f(α)
k∏

i=1

f(ψi|(ψi−1,α,ψb) (1.11)

Now we can assume that the measurements are divided into subsets of measure-

ment vector dj ∈ <mj , acquired at time ti(j), with j = 1, ..., J and 0 < i(1) < i(2) <

... < i(J). Together with the uncorrelated measurement errors assumption in time,

the likelihood function is rewritten as

f(d |ψ,α) =
J∏

j=1

f(d j|ψi(j),α) (1.12)

Combining the results from (1.11) and (1.12), Bayes’ theorem can now be written

as

f(ψ1, ...ψk,α,ψ0,ψb|d) ∝ f(ψ0)f(ψb)f(α)
k∏

i=1

f(ψi|(ψi−1,α)
J∏

j=1

f(d j|ψi(j),α) (1.13)
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Or the more general form where the model is not assumed to be the first order

Markov process,

f(ψ1, ...ψk,α,ψ0,ψb|d) ∝ f(ψ0)f(ψb)f(α)
k∏

i=1

f(ψi|(ψl6=i,α)
J∏

j=1

f(d j|ψi(j),α) (1.14)

With the assumption of correlated model errors, equation (1.14) establishes the

most general formulation of the state and parameter estimation problem.

In the application of ocean and atmospheric modeling, it is not over-simplifying

to assume the dynamical process as a first order Markov process [67]. A general

smoother and filter could be derived from the Bayesian formulation given in (1.13)

as follows:

f(ψ1, ...ψk,α,ψ0,ψb|d) ∝ f(ψ0)f(ψb)f(α)
i(1)∏
i=1

f(ψi|(ψi−1,α)f(d 1|ψi(1),α)

... (1.15)
i(J)∏

i=i(J−1)+1

f(ψi|(ψi−1,α)f(dJ|ψi(J),α)

k∏
i=i(J)+1

f(ψi|(ψi−1,α)

It is simple to break apart the this expression as the sequential evaluation in time

as follows:
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f(ψ1, ...ψi(1),α,ψ0,ψb|d1) ∝

f(ψ0)f(ψb)f(α)
i(1)∏
i=1

f(ψi|(ψi−1,α)f(d 1|ψi(1),α), (1.16)

f(ψ1, ...ψi(2),α,ψ0,ψb|d1,d2) ∝

f(ψ1, ...ψi(1),α,ψ0,ψb|d1)

i(2)∏
i=i(1)+1

f(ψi|(ψi−1,α)f(d 2|ψi(2),α), (1.17)

...

f(ψ1, ...ψi(J),α,ψ0,ψb|d1, . . . ,dJ) ∝

f(ψ1, ...ψi(J−1),α,ψ0,ψb|d1, . . . ,dJ−1)

i(J)∏
i=i(J−1)+1

f(ψi|(ψi−1,α)f(dJ|ψi(J),α), (1.18)

f(ψ1, ...ψk,α,ψ0,ψb|d1, . . . ,dJ) ∝

f(ψ1, ...ψi(J),α,ψ0,ψb|d1, . . . ,dJ)

k∏
i=i(J)+1

f(ψi|(ψi−1,α). (1.19)

The expressions (1.16-1.19) demonstrate the implementation of the propagation
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rule in discrete form on Bayes’ theorem, on the condition that the dynamical model

in first order Markov process with independent measurement errors in time. In this

case the measurements can be assimilated sequentially at any data-available time.

Overall, these expressions represent filtering approach in data assimilation problem.

(1.16) start off by computing the joint conditional pdf from the product of the

priors f(α), f(ψ0) and f(ψb) with the likelihood function containing measurement

d1. In Kalman filter scheme, this is equivalent to evaluating both forecasting and

analysis steps between [t1, ti−1] interval. The sequence is then proceeded in (1.16)

with the introduction of the new observation d2, but the priors is replaced by the joint

conditional pdf from the previous step and so on. These process is then continue until

the last assimilation cycle where the measurements are available. Then the model

forecasting continue toward the finishing time of the model run from (1.18).

It is worth emphasize that although we have arrived at (1.16-1.19) where the full

inversion scheme is formulated sequentially. The sequential-in-time algorithm, while

intuitive, is not the fundamental the the update. It is convenient in the case where

the model is assume to be the first order Markov process where the posterior pdf of

the present step can be generated if the model state vector form the previous time

step is known so the sequential scheme is well-suited to apply to the online model

forecasting where the data is made available from sensor networks in real-time.

In general the calculation of the posterior distribution can be done by processing

all the measurements simultaneously as is normally done in variational formulation.

In the next section, the approach to sampling the joint conditional pdf from full

inverse formulation: MCMC, will be introduced. The posterior distribution of the

estimated parameters from MCMC is used to compare the pdf from SEIK approach.

The detail derivations of the Ensemble Kalman Smoother (EnKS) and the En-

semble Kalman Filter (EnKF) from Bayes’ theorem can be found in [66] for further

reading.
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1.3 Related studies

Uncertainties in spatially variable parameter can be represented as a particular re-

alization of a random field [37, 38]. We aim to estimate low-dimensional represen-

tations of the Manning’s n field. Since only small number of realizations are needed

to estimate second-order statistics, this representation is thus suitable for low-rank

non-intrusive data assimilation methodologies such as the singular evolutive interpo-

lated Kalman (SEIK) filter [39, 40, 41]. Furthermore, since modeling the uncertainty

propagation of the uncertain the Manning’s n coefficient through the model by SEIK

requires a large number of samplings which in turn affects the time of the simula-

tions, Polynimial chaos projection is implemented to contruct surrogate versions of

the highly complicated original model. The PCs implementation greatly reduces the

time of simulations and at the same time neglect the Gaussion assumption enforced

by Kalman filter yeilding the full distribution of state vectors at forcasting step in

statistical data assimilation scheme.

Among the recent work in the field, the work of Mayo et al. [4, 2] and Alexanderian

et al. [42] are closely related to this work and need special mention here. Mayo et al.

reformulated statistical data assimilation to estimate the bottom stress terms in a

2-D coastal ocean model. A square root Kalman filter was implemented to minimize

the amount of noise due to the data assimilation. Specifically, the authors inverted

synthetic water elevation data by implementing the singular interpolated evolutive

Kalman (SEIK) filter to the Advanced Circulation (ADCIRC) coastal ocean model. In

all cases they studied, true field of Manning’s n coefficients were accurately recovered.

With the methodology, they improved the accuracy of forecasted water elevations in

all experiments. When estimating the values of the Mannings n coefficients directly,

they found smaller values could be recovered from nearly any initial guesses. In

estimating larger values, however, either a relatively accurate initial guess or many

data assimilation cycles (updates using data) were required for the method to converge
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to the true parameter value.

Alexanderian and his co-workers [42] used the polynomial chaos (PC) expansion

to propagate parametric uncertainties in ocean global circulation model (OGCM),

focusing on short-time, high resolution simulations of the Gulf of Mexico (GOM),

using the hybrid coordinate ocean model, with wind stresses corresponding to hur-

ricane Ivan. A sparse spectral projection approach was implemented to propagate

and quantify parametric uncertainty in an OGCM. A non-intrusive spectral projec-

tion scheme, based on a Smolyak sparse quadrature grid, was used to derive the PC

representation of the stochastic response of selected QoIs. The quality of the PC rep-

resentation was examined, refined and utilized to compute distributions of quantities

of interest (QoIs) and to analyze the local and global sensitivity of these QoIs to the

uncertain parameters. Their work provides an essential tool (gPC) and illustrates

the advantage gPC to create a surrogate model used to generate the response in very

a efficient way, facilitating the calculation of various statistics. In this thesis similar

method the surrogate model for Markov chain Monte Carlo (MCMC) is derived to

obtain probability distribution function (pdf) of the responses. The development gPC

in this thesis is described in Chapter 4.

1.4 Thesis objectives and outline

In this work, we exploit a specific coastal ocean model to solve the SWEs and imple-

ment the SEIK filter to estimate the Manning’s n coefficient. By conducting obser-

vation system simulation experiments on coastal ocean model, we attempt to recover

the true Manning’s n coefficient from sets of initial guesses and available data. The

OSSEs is divided into two parts. We first conduct the OSSES using SEIK filter,

which well-suited to the parameter estimation problem with large number of uncer-

tain parameters and for real-time online applications, however, has a limitation on
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the correctness of the posterior distribution of the parameter estimated due to its

Gaussianity. The solution to avoid the Gaussian restriction of Kalman based meth-

ods is to use MCMC sampling based method, which produces full distribution of the

posterior. As the implementation of MCMC becomes too costly for highly sophis-

ticate model, PC is used to reduce the size of the model in order to apply MCMC

efficiently. Our final objective is to compare the posterior distributions produced by

OSSEs from both Kalman based method and PC-MCMC based.

In the remainder of this thesis, we will formally describe all ingredients used

in this research. In Chapter 2 provides the description of shallow water equations

(SWEs) as implemented in advanced circulation model (ADCIRC) and used in this

work. Chapter 3 focuses on the description of Manning’s n coefficients and popular

methods the estimate this important parameters. Since some part of the thesis is to

follow up the work of Mayo [4, 2], it is appropriate to the discuss on the principle

of data assimilation, Kalman filters and its variation, particularly singular evolutive

Kalman filter (SEIK). Similar layout is used for Chapter 4 but their main focuses

are on the development of surrogate model using generalized polynomial chaos (gPC)

and the uncertainty characterization using Markov chain Monte Carlo (MCMC) re-

spectively. The experimental setups and the results for each topic are embedded in

the corresponding Chapters as described. Finally, Chapter 5 is designed to wrap up

the findings, discussions and the concluding remarks.
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Chapter 2

ADCIRC model

The sophisticate coastal ocean model namely ADvanced CIRCulation (ADCIRC)

[43] was selected for this study. The model has been used in many coastal, estuaries

water elevation and currents analysis in many studies [4, 2, 44]. ADCIRC solves the

shallow−water equations on an unstructured, triangular elements discretized in the

physical domain. Instead of solving directly SWEs, the continuity equation is replaced

by the second−order, hyperbolic generalized wave continuity equation (GWCE). This

prevents spurious oscillations that often arise from the numerical solution of the

original form [45]. The coupling between the reformulation of continuity equation

and the momentum equation represents the governing equations of ADCIRC which

solves for the quantities of interest (i.e. water elevation and velocity). This system of

equations are discretized spatially by a first−order continuous Galerkin finite element

scheme. The time derivatives are approximated using centered finite differences in

GWCE and forward differences in the momentum equations.

Variety of physical domain scales and complex bathymetry structures can be in-

corporated by ADCIRC, including the scales range from the deep ocean through

basins and continental shelves to coastal in land [13]. The minimum requirements for

ADCIRC are the description of the finite element mesh and tidal forcing parameter

[46]. ADCIRC has been implemented and validated intensively in many studies us-

ing hindcast studies. The hindcast studies have been conducted on several storms,



29

including Hurricanes Betsy (1965), Ivan (2004), Dennis (2004), Katrina (2005), Rita

(2005) [47, 48, 49], Gustav (2008) [3] and Ike (2008) [5]. The accuracy of the hindcasts

depends significantly upon the the accuracy of model inputs and data. In this study

we focus on the characterization of the bottom friction and we use ADCIRC input

files for uncertainty propagation of the Manning’s n coefficient.

2.1 The Shallow Water Equations

The shallow water model is derived from the Navier-Stokes equations assuming the

incompressibility and hydrostatic pressure approximation. The SWEs is well-suited

to model the flow with large horizontal scales relative to the vertical scales. ADCIRC

in particular implements the depth−integration where the water elevation and depth-

averaged velocities are solved for each node. The SWEs in ADCIRC framework is

given by

∂H

∂t
+

∂

∂x
(Qx) +

∂

∂y
(Qy) = 0 (2.1)

∂Qx

∂t
+
∂UQx

∂x
+
∂V Qx

∂y
− fQy = −gH ∂[ζ + Ps/gρ0 − αη]

∂x

+
τsx
ρ0

− τbx
ρ0

+Mx −Dx −Bx

∂Qy

∂t
+
∂UQy

∂x
+
∂V Qy

∂y
− fQx = −gH ∂[ζ + Ps/gρ0 − αη]

∂y

+
τsy
ρ0

− τby
ρ0

+My −Dy −By.

(2.2)

Here, ζ is free-surface elevation relative to geoid, h is the bathymetry depth rel-

ative to geoid, H = ζ + h is the water depth, Uxi are the depth-avaraged horizontal

velocity components, Qxi = UxiH is the flux per unit width in the xi direction, f
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is the Coriolis parameter, Ps is the atmospheric pressure at the free surface, ρ0 is

the reference density of water, α is the Earth elasticity factor, η in the Newtonian

equailibrium tide potential, τsxi are the applied free surface stresses, τbxi are the bot-

tom friction components, Mxi is the vertically-integrated lateral stress gradient, Dxi

is the momentum dispersion, and Bxi is the vertically-integrated boroclinic pressure

gradient.

To replace the continuity equation with GWCE, a multiple, τ0 ≥ 0, of the con-

tinuity equation is added to the time derivative of the continuity equation. Then

by assumming the constant bathymetric depth,
∂H

∂t
=
∂ζ

∂t
. Finally, subtituting the

momentum equations into this equation completes the derivation:

∂2ζ

∂t2
+ τ0

∂ζ

∂t

+
∂

∂x
(−∂UQx

∂x
− ∂V Qx

∂y
+ fQy − gH

∂[ζ + Ps/gρ0 − αη]

∂x
+
τsx
ρ0

− τbx
ρ0

+Mx −Dx −Bx + τ0Qx)

+
∂

∂y
(−∂UQy

∂x
− ∂V Qy

∂y
+ fQx − gH

∂[ζ + Ps/gρ0 − αη]

∂y
+
τsy
ρ0

− τby
ρ0

+My −Dy −By + τ0Qy)

− UH∂τ0

∂x
− V H∂τ0

∂y
= 0.

(2.3)

The bottom stress components in the momentum equation are defined through

the coefficient Kslip = cf |u| as stated in a quadratic drag law. Then cf is determined

using Manning’s n formulation,

cf =
gn2

H1/3
(2.4)

where n is the Manning’s n coefficient of roughness, which vary spatially depending

on the surface characteristics of the sea floor. The Manning’s n coefficient values
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are obtained from tables of well-defined empirical estimates for land classifications

since there is no method to directly measure it. the Mannning’s n coefficient can be

roughly defined at the nodes of discretized physical domain (e.g. at the seabed) which

in turn construct the piecewise linear representation of bottom friction. Since these

values are often determined from the data sources that are incomplete or with several

missing time periods, the outputs from coastal ocean model is always subjected to

large amounts of uncertainty due to the uncertainty in the Manning’s n coefficient

(Table 2.1).

Open water 0.020 Mixed forest 0.170
Ice/snow 0.022 Shrub land 0.070
Pasture 0.033 Grassland 0.035
Commercial 0.050 Low residential 0.120
Bare rock/sand 0.040 High residential 0.121
Gravel pit water 0.060 Row crops 0.040
Fallow 0.032 Small grains 0.035
Transitional 0.100 Recreational grass 0.030
Deciduous forest 0.160 Woody wetland 0.140
Evergreen forest 0.180 Herbaceous wetland 0.035

Table 2.1: Values of the Manning’s n coefficient for various surfaces. the left columns
in the tables describe the land characteristics and the right columns are the associated
empirically defined Manning’s n coefficients.

Multiple formulations of the bottom stress are accommodated by ADCIRC model.

A linear, quadratic or the hybrid law (i.e. a constant friction coefficient in deep water

and a quadratic friction law elsewhere) can be implemented. A Chezy or Manning’s

n formulation of the bottom stress in supported. ADCIRC allow for the point-wise

parameters specification on each discretized vortex. This can be assigned via the

input file described in the next section. In this work, we adopt the quadratic fiction

coefficient law using the Manning’s n formulation.

The SEIK filter is implemented to the ADCIRC in matlab in order to run the

model and to update the Manning’s n coefficients at each node at every assimilation

step. The ensemble is initialized by sampling on the random distribution around the
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expected value. Then the ensembles are used to create the multiple instance of the

input files. These files then run simultaneously by ADCIRC. When the model run

reach the iteration where the data are available, the matlab script is used to read in

the model state variables. The discrepancy between the model state and the synthetic

data, which considering the truth is then employed to update the parameters expected

value with SEIK filter. New ensembles is then created from this update, and the of

model run/filtering cycle is repeated until the end of the parameter estimation.

2.2 ADCIRC Features and Capabilities

The depth-integration GWCE mode in ADCIRC is designed to solve for water el-

evation and velocity. The model represents the domain by using finite elements to

generate unstructures triangular finite-element mesh. This is a standard and efficient

approach for resolving complex bathymetry, coastline and island boundaries. The

size of unstructured elements can vary as desired.

2.2.1 Model Inputs

The ADCIRC code is written in Frotran. The minimum requirement to run the model

are two input files. The first is fort.14: this file describes the structure of the can be

obtained from several geophysical database. Then formating and refining are required

to generate the desired bathymetry mesh file for ADCIRC. After we acquired fort.14,

the file remains the same from the beginning through the subsequence simulation

until the end. The second mandatory input file is fort.15: this file contains the wide

range of adjustable parameters such as the mode of the run (2D or 3D), the type of

coordinate used, model timestep and the period of model running etc.

Supplementary input files can be incorparted depending on the problems the user

has to solve. The follwing bullets summarize the main forcing used in ADCIRC:
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� Tidal potential due to the gravity pull of both the Earth and the moon. The

phase of the tidal constituent being forced can be defined in fort.15

� Meteorological conditions, mostly used for strom surge prediction. Meteorolog-

ical forcings are represnted through fort.22 file.

� Fleshwater inflows, contains in fort.20 file.

Of particular importance for our experimental setup is fort.13 file, which contains

nodal attribute on each of the element mesh. The Manning’s n coefficient of the

bottom surface can be customized nodally in this file. Nodal Manning’s n coefficient

in fort.13 will be constantly changed during the simulation when data assimilation

for parameter estimation is applied.

2.2.2 Model Outputs

The type of output data is specified in fort.15. There exists many options for output

format. For instance, users can customize the model outputs in fort.61 and fort.62

to obtain the selected points water elevations and velocity respectively. On the other

hand, the water elevations and velocities at all points are provided by fort.63 and

fort.64, respectively. This thesis focus solely on the surface water elevations output.

2.2.3 Parallel implementation

Serial and parallel versions of the ADCIRC are available in researchers and developer

communities. The parallelized version of ADCIRC can run on interconnected pro-

cessors. This specific feature gives the advantage of decreasing the run times. It is

worth emphasizing that parallelrized ADCIRC mode is the most appropriate to the

problem encountered in our research. The data assimilations scheme we adopt in this

research requires a large amount of parameter sample and therefore model runs. the

parallel code may significantly reduces the amount of running time for each sample.
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2.3 Experimental setups

In this chapter, we implement the SEIK to estimate the Manning’s n coefficients

defined in the bottom stress terms within the shallow water equations of the ADCIRC

model. We conduct observation simulation system experiments (OSSEs), where the

synthetic water elevation data generated by ADCIRC in the moderate conditions are

assimilated into a perturbed model, in order to recover the true parameters defining

various values of Manning’s n coefficient.

In this thesis, we adopt the same experiment setup as in [4], i.e. with the similar

domains and forcing. we estimate both constant fields and parametrically defined

2-D field of Manning’s n coefficients. We are interested in estimating the parameters

in two different domain configurations, the first domain is the idealized inlet with an

ebb shoal, and the more realistic domain representation of the Galveston Bay as the

second domain. Here only the parameters are estimated with the SEIK, while the

state is assumed known.

2.3.1 Observation Simulation System Experiments

Observation simulation system experiments (OSSEs) is conducted in this study. The

synthetic data obtained from running ADCIRC model with specific initial condition

are considered as the true observations. The Manning’s n coefficients, which generate

these data are considered the truth and we attempt to recover it based on the data and

ADCIRC. SEIK uses the synthetic data to update the parameters at each assimilation

cycle. We initiate the model simulation with an incorrect estimated field of Manning’s

n coefficients, then apply the data assimilation scheme for the parameters to converge

to the truths in later iterations. Performing the OSSEs enable the effect of the data

assimilation to be quantified.
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2.3.2 Computational Domains

Idealized Inlet with Ebb Shoal

The first computational domain in our OSSEs is the idealized inlet with ebb shoal.

The structure of the domain includes a bay that is connected to the open ocean on

the west side through an inlet with twin jetties. An ebb shoal is located right to the

west of the inlet. This domain structure is the simplified version of the real ebb shoal,

which is a common natural occurrence at coastal inlets. An ebb shoal is formed by

the deceleration of the water while exiting the inlet, which in turn withdraw the large

amount of sediment from the bay [50].

This computational domain contains 1,518 grid nodes and 2,828 elements, covers

the area of 4500 m wide and 3000 m long (Figure 3.1). The bathymetry of the domain

is measured downward from the geoid toward the ocean floor. The depth of the ocean

floor is increase linearly from 3.8 m at the left-most boundary to 1 m at the mouth

of the inlet on the west side of the domain. The landlocked area of the domain has

a constant bathymetry of 1 m. The diameter of the ebb shoal is 750 m and the

maximum height at the center of the ebb shoal is 4 m (Figure 2.1).

Figure 2.1: idealized inlet with ebb shoal domain
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Galveston Bay

A more realistic domain is the coarse representation of Galveston Bay, located on

the upper Texas coast in the Gulf of Mexico. Galveston Bay is economically active

area, with Port of Houston, one of the busiest port in the world. The location of

the Bay make it vulnerable to the effect of hurricane storm surge, which cause a lot

of damages to the U.S. economy and the security of its habitats. There is a record

of the third costliest hurricane in U.S. history, Hurricane Ike, which destroyed many

facilities and households in Galveston Bay area in 2008 [51].

The computational domain representing Galveston Bay contains 2,113 nodes and

3,397 elements. The open ocean boundary located on the southeast side of the domain

and the landlocked area on the remaining sides. There are also island boundaries

surrounding 17 small islands inside the bay area. The bathymetry of the domain

ranges from 0.345 inside the bay to 17.244 m in the Gulf of Mexico (Figure 2.2).

Figure 2.2: Galveston Bay domain
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2.3.3 Parameterizing a field of Manning’s n Coefficient

Instead of estimating Manning’s n coefficient on each and every node on the domains,

we first model the field with low-dimensional parameterizations. Then the parameter

estimation problem reduces to the estimation of small number of parameters. In

this thesis, we primarily focus on the parameter estimation on a field of piecewise

constant Manning’s n Coefficients. In the first case, we assign the same constant

value of Manning’s n coefficient at every node of the domain. This field represents

an invariant field in space, which is often implemented in most of the coastal ocean

models..

The second aim is an attempt to estimate two model parameters, α and β, which

parametrically define 2-D field of Manning’s n coefficients. This is simply the param-

eterization of the field with two piecewise constants. We let α be the Manning’s n

coefficient in the open ocean, and β be the Manning’s n coefficient within the inlet

and the bay. This field is denoted by nα,β. This configuration is enforced to both

computational domain mentioned before.

2.3.4 Parameter estimation methodology

In general, the parameter estimation problem is about solving for the parameters

that produce the model output that best match the observations. However, this

problem can often be ill-posed due to the it’s complexity, since the different sets of

parameters may produce very similar model outputs. The study in [4] shows that a

small perturbation of Manning’s n coefficient only induce small changes in the model

water elevation. So it is sufficient in our OSSE to attempt to recover a value that

approximately produces close enough water elevation to the observations.

In order to evaluate the performance in estimating the Manning’s n coefficient,

we divide the range of Manning’s n coefficients into classes based on the water ele-

vation data they produce. Then we generate the synthetic water elevation data from
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the middle of each class, and finally try to recover these values from initial guesses

initiated at the middle of the other classes.

Classifying Manning’s n coefficients

We divide the Manning’s n coefficients ranging from 0.005 to 0.2 (defined in Table

1.2), incremented value of 0.005, into five classes. These classes are defined by the

level of the water elevation data produced by ADCIRC model. It is worth mentioning

that the smaller Manning’s n coefficients produce the larger water elevations. AD-

CIRC is forced using the principal lunar semi-diurnal (M2) tidal constituent, with the

amplitude of 0.25 m for the idealized inlet case and 0.1 m for Galveston Bay relative

to the geoid. The simulation is run for five 5 days including 12 hours ramp up period,

with a 2 s time step. The largest mean amplitude of the tides at several locations

throughout the whole domain is computed, and the Manning’s n coefficients that

generate tides with mean amplitudes less than 20%, 40%, 60%, 80%, and 100% of

this value are divided in five classes. The more details of this classification framework

can be found in [4]

It is worth emphasizing that for both domains, the tides are more sensitive to the

variation in smaller Manning’s n coefficients than that of the larger values, as the

classes become larger. Thus, the larger classes contain more Mannin’s n coefficients

in comparison to the smaller classes. This will affect the recovering of the parameters

using SEIK in the larger classes from the smaller classes.

Simulating synthetic water elevation data

The result from the previous section is the classification of Manning’s n coefficients

into 5 classes for both idealized inlet and Galveston bay domains. We simulate tides

using the same forcing and setups as prescribed in the previous sections, and set

the constant Manning’s n coefficient to a value from the middle of each prescribed
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classes. For the idealized inlet, the values are 0.015, 0.035, 0.06, 0.105 and 0.17. For

Galveston Bay, the constant values we attempt to estimate are 0.01, 0.02, 0.03, 0.06

and 0.14. We generate the data considering as ”truth” from these values and trying

to recover them from several initial guesses.

Recovering the true class of Manning’s n coefficients

For each constant Manning’s n coefficients, we first generate the synthetic water

elevation data at the predefined location representing the observation stations. There

are 15 stations for the inlet case (represented by red circles in Figure 2.1). We run our

simulation using the values from four remaining classes as the initial guesses. After

the 12 hour ramp up period, the assimilation cycle begins. We assimilate the data

every 5 hour over 5 day. We vary the ensemble size for both domain with 10, 20

and 100 ensembles, with σ = 0.01, where σ2 is the standard deviation in the initial

estimate of the parameter. For the case of Galveston Bay, we use 21 observation

stations (Figure 2.2) with the same ensemble sizes and again we let σ = 0.01.

For the two parameter case, nα,β, we perform OSSEs in the same manner as

described in 1D constant value case. We generate synthetic water elevation data

from prescribed setting of Manning’s n coefficients and consider these data the truth.

Then we try to recover these values from several initial guesses. However in this

case, we cannot divided the Manning’s n coefficients by class as was done in the 1D

case without substantial amount of computation. Thus, we instead define a single

true field n0.005,0.1, where the coefficient is set to 0.005 in the deep water of the open

ocean (highlighted in green in Figure 2.1 and 2.2), and let 0.1 in the shallow bay area

(highlighted in blue). The value of the coefficient increases linearly within the inlet

for the idealized inlet case (highlighted in purple) and the initial guesses selected are

n0.005,0.005,n0.1,0.1,n0.06,0.06 and n0.1,0.1005. Thus we evaluate the results from incorrect

initial guesses of either α, β or α and β. The forcing used in 2D case is similar to



40

that in the 1D case. We however use a total simulation time of 30 days for Galveston

Bay.
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Chapter 3

Manning’s coefficient estimation

with SEIK

In general, there are two directions to reduce the model uncertainties due to uncertain-

ties in the parameters used in the model simulation. The first approach is parameter

estimation attempts to reduce the uncertainty of the parameters themselves. The

second approach called, state estimation, attempts to compensate for errors in the

parameters by adjusting the model input against the observed data.

Traditionally, parameter estimation is done through numerical methods based on

optimal control theory where a cost functional penalizing model-data discrepancies

is minimized over the estimated parameters. This is called the variational approach.

Many parameter estimation methods have been used to estimate the bottom stress

parameters in coastal ocean models [52, 53, 54, 55, 56, 57, 58, 59] with varying com-

plexity and success. Most of the successful cases are limited to a few numbers of

parameters on very simple domains. More complex cases are still an active area of

research although implementing variational methods for these cases is computation-

ally quite expensive. Moreover, variational methods may suffer from instabilities,

non-uniqueness, failing to converge to the optimum parameter values [4, 60].
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3.1 Kalman filtering applications in shallow water

model

In recent years state estimation, particularly statistical data estimation, has been

widely applied to reduce the uncertainties in coastal ocean models due to uncertainty

in various parameters and inputs.

Budgell [61] was the first to use state estimation in storm surge modeling. He

applied the Kalman filter to a linearized 1-D SWEs to reduce the uncertainty in the

boundary conditions and the momentum balances. He was able to recover the true

state of systems with the accuracy of the numerical approximation of the governing

equations. In a subsequent work, Budgell used the extended Kalman filter to estimate

the true state of nonlinear SWEs. He found that the filter performance did not

degrade even when the model and observation error were non-Gaussian. The filter

also improved the estimates of water elevations as well as velocities. Heemink and

Kloosterhuis [12, 62] applied the extended Kalman filter to a 2-D shallow water model

with a continuity equation assumed to be error free in the momentum equation to

predict tides during normal weather and during storm surge. The state estimation

problem was solved on a large and realistic domain with a reduced rank approximation

of the model error covariance in the Kalman filter. In a more complex domain,

Sorensen and Madsen [10] estimated the state variables of a 3-D model of surface

flow in the North Sea and Baltic Sea [63]. A four-week hindcast data including a

storm surge event were used to test the state estimation, concluding that the methods

were suitable for on-line applications. Later [10] assimilated tidal gauge data into a

3-D hydrodynamic model using several variations of the ensamble Kalman filters.

They found that the filters provide robust performance in the experimental range of

Gaussian noise, the rank of the model error covariance and the standard deviation of

the measurement error.
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Other examples of successful applications of statistical data assimilation, partic-

ularly the variants of Kalman filters to hydrodynamic models, can be found in a few

other works [64, 13, 11, 65]. Thus it can be concluded that statistical data assimula-

tion is a promising approach for reducing the uncertainties in applications of shallow

water models with a reasonable computational cost. Moreover the methods also pro-

duce not only the best estimate of the modeled state, but also an estimate of the

corresponding error covariance, which could be used as a measure of uncertainty in

the filter solution.

3.2 Kalman filtering and its variants

The Kalman filter was formulated in 1960 by Rudolf Kalman [66], and has been suc-

cessfully used to assimilate data for linear models. In this method, a model forecast,

generally represented as an n-dimensional state vector, xfk at time tk, is updated by

observed data prior to and at the time, tk, of the forecast. The data at a certain time,

yok, form a p-dimensional vector and the model forecast is updated using a weighted

residual between xfk and yok to form the analyzed state, xak. The weight for updating,

called Kalman gain, is chosen such that the error covariance of the analyzed state is

minimized under certain assumptions.

It is customary for all statistical data assimilation methods to begin with an initial

estimate of true model state, and a numerical forecast model, Mk, which predicts the

state at one time step ahead, tk :

xtk = Mkx
t
k−1 + ηk

The model error, ηk, is unknown but we assume that it has Gaussian pdf with zero

mean and a given error covariance, Qk.

The current model state, xtk, can be projected into the observation space through
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an observation operator, Hk:

yto = Hkx
t
k + εk

Here yto is the observation of the true state, where the error in the observation oper-

ator, εk is assumed Gaussian with and zero-mean and a given error covariance, Rk .

Rk is often assumed diagonal matrix σ2
kI, where I is the identity matrix having di-

mension of the observation space and σ2
k denotes the error variance. These errors are

from data points which are assumed to be independent and identically distributed.

The Kalman filter applies both operators in its two main steps, the forecast step

and the analysis step. The forecast step computes the system state at one future step

ahead from the product of Mk and the current analyzed state,xak−1:

xfk = Mkx
a
k−1

The error covariance of the initial state, Pa
k−1 can be then directly computed as

follows:

Pf
k = (xtk − xfk)(x

t
k − xfk)

T

= M(xtk−1 − xak−1)(xtk−1 − xak−1)TMT + η2
k

+ 2M(xtk−1 − xak−1)ηk

= MPa
k−1M

T + Qk. (3.1)

Using the assumption of independent model and observation noise, in the analysis

step, the observation is used to update the forecast model state and the associated

error covariance. Firstly, the forecast state, xfk , is projected into the observation

space, providing a direct comparison with the current measured data, yok. Then the

Kalman gain matrix Kk is used to weight the residual an updating xfk to obtain the
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analysis state as

xak = xfk + Kk(y
o
k −Hkx

f
k). (3.2)

Let Pa
k be the error covariance of xak which can be computed by expressing xfk , xak,

and yok in terms of their unknown errors, as follows.

xfk = xtk + εfk

yok = Hkx
t
k + εyk

xak = xtk + εak

From these relations, we can define the error in the analyzed state, xak, by the

following expression:

εak = εfk + Kk(ε
y
k −Hkε

f
k).

One can show that the optimal gain that minimize the mean of the error variance is

given by

Kk = Pf
kH

T
k [HkP

f
kH

T
kRk]

−1,

the analysis error covariance is then

Pa
k = εakε

aT
k = (I−KkHk)P

f
k (3.3)

The matrix Kk is the weight that minimizes the error covariance, Pa
k, of xak and is
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called the Kalman gain matrix. For a linear perfect model, the equation for the

analyzed state (3.2) is equivalent to the result of minimizing the cost function in the

variational formulation of the data assimilation problem [67].

There are several assumptions used in the formulation of the Kalman filter, but

the most restrictive one is that the model is linear. Most practical problems are

however non-linear, making the computation of the forecast error covariance not

straightforward. Several methods have been developed totackle this problem including

Extended Kalman Filtering (EKF) [68] and the ensemble Kalman filters (EnKF)

[39, 40, 41].

In practice, the extended Kalman filter requires linearization the system equation

and may be computational prohibitive when implemented with large dimentional

systems [4]. Reduced rank Kalman filters were then formulated to mitigate these

problems. With a good selection of the initial error covariance, the computational

and storage saving of a low rank approximation can be achieved while maintaining

acceptable filter performance. The SEEK is developed based on a similar approach

in the assimilation process with a modified analysis step. However, in the case of

highly non-linear models, EKF based filters have difficulties in accurately computing

the gradient of the model.

Evensen proposed the Ensemble Kalman Filter (EnKF) [69] as a Monte Carlo

approximation of the EKF, reducing its computational requirements and avoiding

the need for linearization. In addition the EnKF is designed to deal with nonlinear

models, allowing the forecast error covariance to be more accurately estimated than

it is in the EKF. One of the problem with EnKF is that it requires perturbing the

measurements used to create the analysis ensemble of and this may introduce noise

in the system [13]. Square root EnKFs have been then developed to avoid this noise.

Among the most popular EnKFs we cite are the ETKF, the EAKF and the SEIK. All

these filters differ in the way the analysis ensemble is generated after every analysis
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step, and are statistically equivalent, SEIK will be discussed more thoroughly in the

next section.

3.3 The SEIK filter for state estimation

The singular evolutive interpolated Kalman (SEIK) filter is a variation of EnKF [40].

It is among the class of square-root ensemble Kalman filters [70], which update the

mean of the ensemble of forecasted state, xtk, along with a square root matrix of the

respective error covariance [71]. This update of the mean eliminates the addition of

Gaussian noise to the observations required in the EnKF. The SEIK filter is generally

implemented in three step: (1) the sampling step, (2) the forecast step, and (3) the

analysis step. The sampling step uses second-order sampling so that the sample mean

and sample covariance computed from the ensemble are exactly the analyzed state

and error covariance xak−1 and Pa
k−1. The forecast step uses the model to evolve the

ensemble members forward in time. The analysis step updates the forecasted mean

and covariance.

In the SEIK filter, the initial error covariance is represented using an ensemble of

states. However, SEIK has a minimal size of the ensemble because of the reduced rank

of this matrix. In this case, the ensemble containd only r + 1 members. Moreover,

an ensemble formulation is used to represent the matrix HkLk used in (??), avoiding

the linearization of Hk if it is nonlinear.

The forecast and analysis steps of the SEIK filter differ from those of the SEEK

filter only slightly. Firstly, we determine an ensemble of initial state vector, xai,k−1,

from an initial estimate of the model state, xak−1 and the factored form of its corre-

sponding error covariance, Pa
k−1 = Lk−1Uk−1L

T
k−1. Here Lk−1 is n × r, and Uk−1 is

and r × r positive definite matrix, where r << n is the rank of Pa
k−1. Then we com-

pute a Cholesky factor of U−1
k−1, Ck−1, is computed and multiply it by an (r + 1)× r
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random matrix, Ωk−1 with orthonormal columns and zero column sum. Thus Pa
k−1

can be written as

Pa
k−1 = Lk−1(C−1

k−1)TΩT
k−1Ωk−1C

−1
k−1L

T
k−1.

The introduction of the random matrix Ωk−1 results in a stochastic sampling of the

initial state:

xai,k−1 = xak−1 +
√
r + 1Lk−1(Ωk−1C

−1
k−1)T , i = 1, ..., r + 1.

Then the nonlinear model is applied to this ensemble of initial state vector, creating

an ensemble of forecasted state vectors, xfi,k. Taking the everage of these, xfi,k, as the

forecasted state, and the sample covariance as the forecast error covariance, which

can be written as

Pf
k = LkUk−1L

T
k + Qk, (3.4)

where

Lk =
[
xf1,k − xfi,k...x

f
r+1,k − xfi,k

]
T

Lk =
[
xf1,k − ...x

f
r+1,k

]
T, (3.5)

and

Uk−1 =
[
(r + 1)TTT

]−1
.

Here, T is an (r+1)×r full rank matrix with zero column sums and (3.4) is the sample

error covariance of the xfi,k. Just like the SEEK filter, Uk−1 is updated through its



49

inverse in analysis step. However, U−1
k−1 has new definition and is no longer recursive:

U−1
k = U−1

k−1(HkLk)
TR−1

k (HkLk).

Here we apply the observation operator Hk to the columns of Lk in (3.5) to compute

HkLk. Then Uk and HkLk are used to compute the Kalman gain matrix,

Kk = LkUk(HkLk)
TR−1

k ,

and the current data are used to update the forecasted state:

xak = xfk + Kk(y
o
k −Hkx

f
k). (3.6)

Finally, the analysis error covariance can be written as

Pa
k = LkUkL

T
k . (3.7)

A few works successfully utilized the SEIK filter for state estimation in the studying

storm surge forecasting [13, 64, 4]. It was found that, in SEIK filter, an ensemble

is used to accurately capture the error statistics of the system without introducing

additional observation noise to the system, the size of the ensemble is minimized

without losing the filter’s effectiveness.

3.4 The SEIK filter for parameter estimation

Anderson [71] suggested that an EnKF could be used for parameter estimation of

nonlinear models through joint estimation [72], also commonly referred to as state

augmentation. In this method model parameters are considered to be part of the

model state and are then appended to the state vector. Thus whenever the state
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variables are forecasted and analyzed, they are also updated.

In this process, an initial guess model parameters, wa
k−1, is appended to the initial

state vector, xak−1, to form the joint state-parameter vector, x̃ak−1:

x̃ak−1 =

 xak−1

wa
k−1

 .
In the ensemble methods, the initial ensemble of state-parameter vectors can be

created by adding the Gaussian noise to x̃ak−1. It is important that the chosen variance

of the Gaussian noise reflects the uncertainty in the model parameters. A procedure

for initializing the parameters is described in [73]

In the process of estimating the true parameter values, it is assumed that the evo-

lution of the models parameters is a stationary process, and so the (state) numerical

forecast model, Mk, can be modified so that the parameters remain constant after

the model is applied:

x̃fk =

 xfk

wf
k

 =

 M̃kx
a
k−1

wa
k−1

 = M̃kx̃
a
k−1,

and so M̃ := [Mk Ik]. The model parameter are not observed, so that the augmented

observation operator can be written as

H̃kx̃
f
k =

 Hkx
f
k

0

 ,
Finally, the initial error covariance matrix is formulated as a cross-covariance matrix,

P̃
a

k−1, which represents the relationship between the error in xak−1 and wa
k−1. After

this modification, the forecast and analysis steps proceed as in any state estimation
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method discussed previously, so one can estimate both model state and unknown

parameters, and the associated error statistics.

Joint estimation has a few desirable characteristics. Its implementation is straight-

forward and the computational cost is modest. In addition, it also provides the

information about the uncertainty of parameter estimates. However, in practice we

should consider the following issues in its implementation. The most implemented one

is when the scales of state variables and parameters differ vastly, the cross-covariance

matrix can be extremely ill-conditioned. There is also the issue related to the station-

ary assumption which may cause the filter to diverge in certain situations. To prevent

this problem, the common practice is to use inflation factor. In this approach, the

posterior standard deviation is inflated by some factor to maintain the variance in

the ensemble members. However, Aksoy et al. [73] found that inflation may not be

always effective, depending on the characteristics of the parameter being estimated.

Another inherent issue in the joint estimation is that the parameters are only

obseverd through the model state. Thus, in most case the model state variables tend

to converge to the true state much more rapidly than the estimated parameters. This

means that more assimilation cycles are required to obtain satisfactory estimates of

the parameters. Furthermore, the effectiveness of joint estimation depends on the size

of the ensembles and observation locations [73]. Regardless of this issues, the joint-

state estimation approach has been successfully implemented and used in a wide range

of problems [72, 74, 40, 75, 73].

3.5 Numerical results and discussion

In this section, we discuss the results of the OSSEs presented in the previous sections.

Since our experiment setup is similar to that conducted in [4], We only briefly discuss

the results of the same experiment in this thesis. However, specifically to this work,
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we are also concerned with the distribution of the parameter estimation with SEIK

filter, while the work in [4] only evaluated the point estimations of the Manning’s n

coefficient. The pdf of the parameter posterior resulting from the SEIK filter shown

in this chapter will be used for the comparison of the results with those of the MCMC

method will be discussed in the later chapters.

3.5.1 Constant Manning’s n coefficient

For the idealized inlet case, the OSSEs show that we are able to accurately recover

the Manning’s n coefficient to the correct class in the case where the truth lie in

of three smallest classes, A, B, and C, regardless of from which classes the initial

guesses were initialized. The final estimate lies in the same class as the truth. In

the case where we try to estimate the truth in class D (i.e. constant field equal

to 0.105), final estimates belong to class D were obtained from all but the smallest

initial guess form class A. Finally, for the estimation of the truth in class E, SEIK

is able to recover this value accurately with the initial guess from one class below

(i.e. class D). The difficulty in recovering the large value of the ”true” Manning’s n

coefficients from a small initial guess arises from the fact that the ADCIRC model is

more sensitive to small variations in the smaller coefficients than that in the larger

coefficients. Thus, in estimating the large coefficients from small guesses, resulting

smaller model/data discrepancies, and thus smaller filter updates in each iteration.

It is then expected to experience more difficulty as the gap between a larger truth

and a smaller initial guess increases. The parameter estimation requires more time to

converge to the truth. Aside from the estimation of the parameters, [4] also mentions

the improvement in the water elevation prediction after the data are assimilated.

However, we will not focus on this topic since our focus remains on the study of the

pdf of the estimated parameters. The point estimations of Manning’s n coefficient for

inlet case are shown in Figure 3.1.
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In SEIK, the initial ensemble is generated by adding Gaussian noise to the initial

state vector. Then the ensemble is updated after every forecast step and analyzed

step. By construction, the filter ensemble represents, approximately and based on

Gaussian assumption, the pdf of the parameter conditional on the available observa-

tion. We can then plot the evolution of the 95% percentile of Manning’s n coefficient

along with their filter estimates, take as the mean of the ensemble member (Fig-

ure 3.2). It is clear from this figure that the uncertainties in the parameters decrease

as the assimilation advance.

For Galvenson Bay, SEIK again accurately estimates almost all of the Manning’s

n coefficients from any initial estimates. Similarly to the inlet case, the only exception

occurs in the estimation of the largest class, where the truth is 0.14. In this case, final

estimates belonging to this class only obtained from all classes but the two smallest

class with the initial guesses 0.1 and 0.2. The underline cause of this phenomena could

be explained in the same manner as the inlet case (i.e. the difference in the sensitivity

of ADCIRC upon the different in Manning’s n coefficient). The point estimations of

Manning’s n coefficient for inlet case are shown in Figure 3.3.

For Galveston Bay, we again plot the point estimations with their 95% percentile

around the estimated parameters (Figure 3.4). The pdf produced by the SEIK filter

will be compared with the posterior pdf computed by the MCMC in chapter 4.

3.5.2 A field of piecewise constant Manning’s n coefficients

In the second set of OSSES we estimate a 2-D parameterized field of Manning’s n

coefficients. For the idealized inlet case, we obtain the accurate estimates of the

parameter for all initial guesses. For each initial estimate, the initial errors with

respect to the truth are reduced by at least 80%. We have found that the estimation

of α = 0.005 is slightly overestimated and β = 0.1 is slightly under estimated. The

inaccuracy of estimating β is greater than α by nearly 33%. However, in the 2-D
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parameterized case, the choice of the initial guess hardly affect the final estimate.

We find no specific correlation between errors in initial guess and errors in the final

estimate. The point estimation of the 2-D parameterized Manning’s n coefficients

plots can be seen in Figure 3.5 and their extended version including uncertainties is

shown in Figure 3.6.

In estimating the 2-D parameterized Manning’s n coefficients field for Galveston

Bay, we observe that the variations of β significantly affect the water elevations com-

puted by ADCIRC, while varying the value of α barely cause any noticeable variation

in the water elevations, meaning that ADCIRC is not sensitive to variations in the

valuse of Manning’s n coefficient in the deep water for this computational domain.

Thus, the experiment is designed in such a way that α is fixed to 0.005 we only

estimate β. This is sufficient for our purpose of our study.

We begin with the initial guesses n0.005,0.01, n0.005,0.05, n0.005,0.15 and n0.005,0.2. We

assimilate data from 20 stations located in Galveston Bay. We run the model for 30

days including a 12 hours ramp up period. The simulation time for Galveston Bay

has to be longer in comparison to the case of Inlet (only 5 days) since it takes longer

for the sequence to converge to the true value.

As final result, the final estimates from all initial guesses converge to 0.1. All

initial estimates accurately recover the true β except that from the smallest initial

guess 0.01. This is to be expected with the same explanation regarding the sensitivity

of the ADCIRC model toward the variations in small Manning’s n coefficients. The

plots of the point parameters estimation for the Galveston Bay is shown in Figure 3.7

and its extended version including uncertainties is presented in Figure 3.8.
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3.6 The effect of increasing ensembles size

In general on EnKF, as the SEIK, benefit from increasing the ensemble size. However,

increasing the number of ensemble members means increased computational cost,

doubling ensemble would double the model runs, which in the case of ADCIRC may

significantly increase the computational load. This section studies the SEIK filter

performance with respect to ensemble size with the idealized inlet Ebb Shoal.

For the constant Manning’s n coefficient case, we run SEIK with the ensemble

sizes of 10, 20 and 100, and compared the parameter estimates in time focusing on

both the means and the 95% percentile of the parameter. The posterior distribution

at the final assimilation time are compared between all ensemble size. We conducted

this experiment in two cases where the initial guess did and did not recovered the

truth, using the initial guesses equal to 0.06 (Figure 3.10) and 0.015 (Figure 3.9)

respectively.

Using 100 ensemble members, the results show significant improvement in com-

parison to using only 10 ensemble members, especially for the case where we estimate

the Manning’s n coefficient 0.17 from the smallest initial guess 0.015. In the 10 en-

semble case, the recovering truth after the end of the assimilation is 0.07. When we

used 100 members, the estimation increased to 0.14, which is considered to be within

the same class as the truth. However, it’s clear that a hundred ensemble members is

still not sufficient to accurately recover the class E exactly for small initial guesses.

As for the case where we start the guess from class C (Figure 3.10), no significant

improvement results from increasing the ensemble size as the estimates was accurate

enough to begin with. Nevertheless, the recovering of the truth from class E from

class C is more accurate with increased ensemble size. one can also observe faster

convergence toward the truth with increased ensemble sizes.

In the case of estimating a 2-D parameterized Manning’s n field, we compare the

results obtained from 10 ensemble and 100 ensemble members for both α (Manning’s
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n coefficient in the open ocean) and β (Manning’s n coefficient in the landlocked

area). As expected, we found the improvement in estimating the parameters, espe-

cially β when using 100 ensembles, in comparison to using 10 only ensembles, which

underestimated the truth for all initial guesses.

3.7 The effect of using inflation factor

The previous section was shown that increasing ensemble size is effective, however

large number of members are needed to accurately recovering the parameters, and

this means increased computational cost. Another way to improve the robustness

of an EnKF is to inflate the forecast error covariance by multiplying by an inflation

factor > 1 [76]. The use of an inflation factor in described thoroughly in Pham [39].

Covariance inflation is becoming important assimilation technique in the successful

implementation.

We perform the same OSSEs as in the previous section for the idealized inlet

Ebb Shoal, with an inflation of 2. Figure 3.13 shows the performance of the SEIK

filter in recovering the true Manning’s n coefficient from several initial guesses for

the 1D constant Manning’s n value. Significant improvement was observed and any

true value is now accurately recovered from any starting point. This is due to the

inflation of the background error covariance at every forecast step, as illustrated by

the opaque color background around the estimated means.

Similarly to the previous section, we compared the SEIK implementation with

and without inflation for the initial guess equal to 0.015 and 0.06, which represent

the classes with the resulting least and most accurate estimates respectively (Figure

3.14 and Figure 3.14). The recovering of a constant Manning’s n coefficient is now

accurate regardless of the classes we started from, with an additional widening of the

distribution around the mean.
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The results estimating of 2D parameterized Manning’s n field in Figure 3.16 and

Figure 3.17 show somewhat similar improvements as for the 1D cases.

3.8 Discussions

In this chapter, we discuss the use of the SEIK for parameter estimation to recover

the true value of the Manning’s n coefficient. We conducted the OSSEs in two distinct

domains. The effort was spent to recover both constant fields and 2D parameterized

piecewise constant field. The result shows that in the case where we apply SEIK

with small number of ensembles, large true values can hardly be recovered from small

initial guesses with with short simulation windows, and better estimates required

longer simulation time will be needed. Increasing the ensemble size significantly

improve the filter solutions, however this also requires much more computation. The

most suitable solution to tackle this underestimation issue is to inflate the background

forecast error covariance, which in turn speeds up the convergence of the estimation

to the truth, with no significant increase in computational resources. In addition to

the work of Talea et al., which mainly focus only on the point estimation of Manning’s

n field, we also look at the uncertainty propagation of this parameter by analyzing

at its marginal distribution. The distribution of the parameters estimated by the

SEIK are Gaussian, with their statistics can be completely determined by the first to

moment statistics. We observed that while increasing the ensemble size significantly

improves the estimates, the variance in respect to ensemble size are approximately

the same. The use of an inflation factor widen the estimated Manning’s n coefficient

distributions depends on the size of inflation factor. While the EnKF-based approach

for the parameter estimation provide good estimations of the mean, the correctness

of its marginal distribution is still needed to be addressed. In the next chapter,

the PC-MCMC based parameter estimation will be implemented to compute the full
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distribution of the estimated Manning’s n coefficient, and then compared with the

results from EnKF based estimation approach.
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Figure 3.1: point estimation of various constant Manning’s n fields parameterized for
the idealized inlet with ebb shoal case.
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Figure 3.2: Estimates of various Manning’s n fields parameterized by a single value
for the idealized inlet with ebb shoal case using 10 ensemble members. The width of
the pdf from the mean is equal to 3th standard deviation.
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Figure 3.3: point estimation of various constant Manning’s n fields parameterized
for Galveston Bay.
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Figure 3.4: Estimates of various Manning’s n fields parameterized by a single value
for Galveston Bay. The width of the pdf from the mean is equal to 3th standard
deviation.
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Figure 3.5: point estimates of α (left) and β (right) from various initial guesses for
the idealized inlet with ebb shoal case.

Figure 3.6: pdf estimates of α (left) and β (right) from various initial guesses for the
idealized inlet with ebb shoal case using 10 ensembles.

Figure 3.7: point estimates of β from various initial guesses with the same α for
Galveston bay case.
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Figure 3.8: point estimates of β from various initial guesses with the same α for
Galveston bay case using 10 ensembles.
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Figure 3.9: Comparison of the posterior distribution resulting from SEIK for constant
Manning’s n coefficient with three different number of ensembles and initial guess =
0.015. (Left column) the 95 percentile over time, (Right column) the pdf of the
posterior at the end of the simulations.
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Figure 3.10: Comparison of the posterior distribution resulting from SEIK for con-
stant Manning’s n coefficient with three different number of ensembles and initial
guess = 0.06. (Left column) the 95 percentile over time, (Right column) the pdf of
the posterior at the end of the simulations.
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Figure 3.11: Comparison of the posterior distribution result from SEIK for piecewise
Manning’s n coefficient in the open ocean with different number of ensembles from
several initial guesses. (Left column) the 95 percentile over time, (Right column) the
pdf of the posterior at the end of the simulations.
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Figure 3.12: Comparison of the posterior distribution result from SEIK for piecewise
Manning’s n coefficient in the landlocked area with different number of ensembles from
several initial guesses. (Left column) the 95 percentile over time, (Right column) the
pdf of the posterior at the end of the simulations.
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Figure 3.13: Estimates of various true Manning’s n fields parameterized by a single
value for the idealized inlet with ebb shoal case using 10 ensemble members with
inflation factor of 0.5. The width of the pdf from the mean is equal to 3th standard
deviation.
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Figure 3.14: Comparison of the posterior distribution result from SEIK for constant
Manning’s n coefficient between SEIK and SEIK with inflation factor, initial guess
= 0.015. (Left column) the 95 percentile over time, (Right column) the pdf of the
posterior at the end of the simulations.
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Figure 3.15: Comparison of the posterior distribution result from SEIK for constant
Manning’s n coefficient between SEIK and SEIK with inflation factor, initial guess
= 0.06. (Left column) the 95 percentile over time, (Right column) the pdf of the
posterior at the end of the simulations.



72

Figure 3.16: Comparison of the posterior distribution result from SEIK for 2D piece-
wise Manning’s n coefficient between SEIK and SEIK with inflation factor in the
open ocean of idealized inlet case. (Left column) the 95 percentile over time, (Right
column) the pdf of the posterior at the end of the simulations.
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Figure 3.17: Comparison of the posterior distribution result from SEIK for 2D piece-
wise Manning’s n coefficient between SEIK and SEIK with inflation factor in the
open ocean of idealized inlet case. (Left column) the 95 percentile over time, (Right
column) the pdf of the posterior at the end of the simulations.
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Chapter 4

PC-MCMC based for Manning’s n

coefficient estimation

Chapter 3 presented and discussed the use of a Bayesian filtering approach based on

the ensemble Kalman filter, the SEIK filter, for estimating the Manning’s n coeffi-

cient of the ADCIRC model. In this chapter we use the MCMC method to directly

sampling the pdf of Manning’s n coefficient from Bayes’s rule. To alleviate the huge

computational requirements of MCMC we also resort to a PC-based appraoch to built

a surrogate model that allows to sample the likelihood with reasonable computational

requirements.

In the following section in will be shown that the EnKF and SEIK filter can be

derived from the Bayes’ theorem under specific assumptions they rely on. The notion

that all data assimilation methods can be formulated from the Bayes’ theorem will

lead us the resemblance between filtering problem and Markov Chain Monte Carlo

(MCMC) methods for parameter estimation since MCMC also provides the method

for sampling the distribution from the posterior provided by Bayes’ theorem with less

restriction than Kalman filter.

In general circumstances, since the large number of sampling iterations in MCMC

is required for the distribution to converge to the posterior, it is too costly and time-

consuming to apply MCMC to the sophisticate model such that of the ADCIRC
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model since for each model run is already costly. However, since we have reduced

the size of the model in the form of the surrogate model presented in the previous

chapter (By applying polynomial chaos expansion to the model), the evaluation of

MCMC with huge sampling become cheap and applicable.

In fact, KF and its derivatives based on the filtering theory are considered to

be well-established, robust and flexible method in data assimilation for real-world

applications. Their sequential nature has made them suitable for real-time ocean and

atmospheric forecasting. They also capable of updating the huge state vector which

is not the case for MCMC if the model evaluated by MCMC is slow. Furthermore,

the reduced version of the model using PCs required that the number of parameters

we want to estimate must be small. It cannot account for the big vector of the initial

condition (i.g. The water elevation at each and every node on the domain) using

PCs. In this thesis, it is only reasonable to apply the PCs to the model because

the maximum number of the parameters we want to approximate is two, while the

forcing, boundary conditions and other initial conditions are remain unchanged.

Since the filtering approaches in data assimilation are more practical and appro-

priately utilized in storm surge forecasting, however, with the restricted Gaussian

statistics assumption, the question that needs to be addressed here is, how well the

posterior distribution obtained from SEIK approximates the true posterior distribu-

tion?. In this chapter, we represent the posterior distribution of the Manning’s n

coefficients with the PDF generated by MCMC methods. The comparison of both

approaches is the main objective of this chapter and also serve as the conclusion to

the whole work devoted in this thesis.
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4.1 MCMC theory and Algorithm

In the context of parameter estimation, it is useful to look at the data assimila-

tion problem in the view of Baysian inference. Especially since MCMC algorithm is

constructed on the calculation of the prior and the likelihood function derived from

Bayes’ theorem, we will start our framework by explaining the Bayes’ theorem.

Suppose that we have a set of data ({di}Ni=1) and we assume a certain model to

describe the data. Let H be the set of parameters (i.e. our hypotheses) defining our

model. Bayes’ theorem is given by,

p(H| {di}Ni=1) ∝ p({di}Ni=1 |H)p(H) (4.1)

where,

� p(H) is the prior of H.

� p({di}Ni=1 |H) is the likeihood function.

� p(H| {di}Ni=1) is the posterior probability.

The likelihood function p({di}Ni=1 |H) represents the probability of obtaining the

data given the hypotheses H. The prior p(H) represents the information that we

have about the unknown parameters before the observations are taken into consid-

eration. The choice of a prior is a key step in the inference process and should be

based, when possible, on some a priori knowledge about the parameters. In general,

we distinguish between informative (e.g. a Gaussian with known mean and variance),

and non-informative priors (e.g. a uniform distribution where we only need the upper

and lower bounds). Bayes’ theorem describes a process of continuously updating the
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current state of knowledge in view of new observation.

Let’s now consider our model,

h(ξ, x, t) =
P∑
k=0

ck(x, t)Ψk(ξ, x, t) (4.2)

where h(ξ, x, t) represents the solution of shallow water equation is the water el-

evations as a function of ξ = (α, β)T , position on x-y coordinate and time. It follows

that our hypothesis is H = {α, β}.

The purpose is to recover the original model given the true data from the ob-

servation which means recovering the parameters. In our case, we run the original

ADCIRC model with a set of Manning’s n coefficients α and β, recording the eleva-

tion at the chosen points and times then we consider those data the truth (or the

observation vector).

To build the likelihood function we assump the following relationship:

d(x, t) = h(ξ, x, t) + ε (4.3)

where ε is a random variable which represents the discrepancy between our model,

h(ξ, x, t) , and the observations. Assuming N independent realizations and to be

normally distributed, the likelihood function can be written as

L ≡ p({di}Ni=1 |H) =
N∏
i=1

1√
2πσ2

exp(
(di,j − h(xi, tj))

2

2σ2
) (4.4)
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By assuming that ε follows a Gaussian distribution with mean zero and variance

σ2, i.e. ε ' N(0, σ2). The objective here is to jointly infer σ2, α and β.

The prior of α and β is defined by a uniform distribution,

p(ξi) =

 1/2 for -1 6 ξi 6 1,

0 Otherwise ,

We know that σ2 cannot be negative. This is what we defined a priori knowledge

about a parameter. We assume a Jeffreys prior:

p(σ2) =

 1/σ2 for σ2 > 0

0 Otherwise ,

Now the final form of the joint posterior is,

p({ξk}pk=0 | {di}
N
i=1) ∝ [

N∏
i=1

1√
2πσ2

exp(
(di,j − h(xi, tj))

2

2σ2
)]p(σ2)

p∏
j=0

p(ξj) (4.5)

The next step after we formulate the posterior is to simulate it. This can be done

by usig MCMC sampling algorithm.

Markov Chain Monte Carlo (MCMC) methods generates a Markov chain in which

at a certain time t, the each state xt depends only on the previous one xt1. Suppose

the current value of the chain is xt. We draw a proposal state x from a Gaussian

function centered at the current state: Q(xt) ∼ N(xt, β
2I). Then we Calculate the

ratio of the likelihood evaluated for the proposed sample x and the previous sample

xt:
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r =
L(x′)

L(xt)
(4.6)

The new state xt+1 is chosen according to the following rule:

xt+1 =

 x′ if α < r, ACCEPTED,

xt if Otherwise , REJECTED.

Here α ∼ U(0, 1) and β2 is the variance in proposal drawing step. β2 need to be

well-tuned in order to produce a well-mixed chain. Unfortunately there is no standard

procedure to know the best β2. This value has to be figured out by trials-and-errors

method. In general, the objective is to have an average acceptance ratio between 0.40

and 0.50.

4.2 Polynomial Chaos, Theory and Methodology

Uncertainties in the input variables, parameters and state variables can be modeled

as stochastic variables. The system states can be represented by a random vector,x(t)

and its time evolution is given by the following differential equation:

ẋ(t,Θ) = f(t,Θ,x,u), x(t0) = x0 (4.7)

Here, Θ represents uncertain parameters and u is deterministic forcing terms.

The initial state estimate x0 may be also uncertain. Let p(tk, xk,Θ) is the probability

distribution function (pdf) of the state vector tk. Our aim is to compute full pdf,

characterizing the space-time evolution of state vector xk, monitoring uncertainty in
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terms of multi-modal distribution, exploiting Bayesian inference to update estimated

parameters.

Various techniques have been developed to propogate uncertainties in the inputs

and the parameters forward in time [77]. The most popular one being Monte Carlo

(MC) [78] , Gaussian closure [79], equivalent linearization [80], and stochastic aver-

aging [81, 82]. All of these methods, except the MC methods are suitable only for

linear or moderately nonlinear systems. The MC method requires however exten-

sive computational resources and can be prohibitive for high-dimensional dynamic

systems.

Recently new uncertainties propagation methods have been developed based on

the polynomial chaos theory [33]. Generalized polynomial chaos (gPC) is an extension

of the homogeneous chaos idea of Wiener. The idea is to separate the random variables

from deterministic one while solving the stochastic differential equation. Then the

random variables are expanded using a suitable polynomial expansion. Suitable type

of basis polynomial for random variables of different probability distribution as shown

in the following table.

Table 4.1: The type of generalized polynomial chaos and their corresponding random
variables

Distribution of Z gPC basis polynomials Support

Continuous Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jocobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, ..}
Binomial Krawtchouk 0, 1, ..., N
Negative binomial Meixner {0, 1, 2, ...}
Hypergeometric Hahn 0, 1, ..., N
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4.2.1 Linear systems

A linear first-order stochastic equation can be written in the following generic form:

ẋ (t,Θ) = A(Θ) + B(Θ)u(t) (4.8)

where A ∈ Rn×n and B ∈ Rn×p · u ∈ Rp×1 is vector of input signals and θ ∈ Rr

is a vector of uncertain parameters which is a function of the random variable ξ with

a known probability distribution p(ξ). We assume that the uncertain state vector

x(t,θ) and system parameter Aij and Bij can be written as a linear combination of

basis function, φk(ξ), which span the stochastic space of random variable ξ :

xi(t, ξ) =
N∑
k=0

xik(t)φk(ξ) = xTi (t)Φ(ξ) (4.9)

Aij =
N∑
k=0

aijkφk(ξ) = xTijΦ(ξ) (4.10)

Bij(ξ) =
N∑
k=0

bijkφk(ξ) = bTijΦ(ξ) (4.11)

where Φ(.) ∈ RN is a vector of polynomial basis function orthogonal to p(ξ)

constructed using the Gram-Schimidt Orthogonalization process. The choice of poly-

nomial basis functions and the corresponding pdf of p(ξ) is summarized in 4.1 [36].

The coefficient aijk and bijk are calculated from the following normal equations :

aijk =
〈Aij(Θ(ξ)), φk(ξ)〉
〈φk(ξ), φk(ξ)〉

(4.12)

bijk =
〈Bij(Θ(ξ)), φk(ξ)〉
〈φk(ξ), φk(ξ)〉

(4.13)

where 〈u(ξ), v(ξ)〉
∫
Rr u(ξ)v(ξ)p(ξ)dξ is the inner product with p(ξ) as a weighing

function.
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The total number of terms in the gPC expansion (N) depends on the selected

highest order of basis polynomial φk(ξ) , denoted by l. The dimension of the vector

of uncertain parameters Θ is then

N =

l +m

m

 =
(l +m)!

m!l!
(4.14)

Now, substituting Eq. 4.9, 4.10 and Eq. 4.11 in Eq. 4.8, we obtain:

ei(ξ) =
N∑
k=0

ẋik(t)φk(ξ)−
n∑
j=1

(
N∑
k=0

aijkφk(ξ)

)(
N∑
k=0

xik(t)φk(ξ)

)

−
p∑
j=1

(
N∑
k=0

bijkφk(ξ)

)
uj, i = 1, 2, ..., n (4.15)

Eq.(4.15) gives the error of gPC solution of Eq.(4.8) which contains n(N + 1) time-

varying unknown coefficients xik(t). This unknown coefficients can be obtained by

projecting the error of Eq. 4.8 onto the space of basis function φk(ξ) (Galerkin

process).

〈ei(C, ξ), φk(ξ)〉 = 0, i = 1, 2, ..., n, k = 1, 2, ..., N (4.16)

Thus we obtain the following set of n(N + 1) deterministic differtial equations :

ẋpc(t) = Axpc(t) + Bu(t) (4.17)

Here xpc(t) =
{
xT1 ,x

T
2 , ..., N

}
is a vector of n(N + 1) unknown coefficients, A ∈

Rn(N+1)×n(N+1) and B ∈ Rn(N+1)×p. Let P and Tk, for k = 0, 1, 2, ..., N denote the
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matrices of the inner product between the orthogonal polynomials defined as follows:

Pij = 〈φi(ξ), φj(ξ)〉, i, j = 0, 1, 2, ..., N (4.18)

Tkij = 〈φi(ξ), φj(ξ), φk(ξ)〉. i, j = 0, 1, 2, ..., N (4.19)

Then we can write A and B as an n(N + 1)× n(N + 1) block-diagonal matrix, each

of them being an (N + 1) × (N + 1) matrix. The matrix A is composed of blocks

Aij ∈ R(N+1)×(N+1) defined as:

Aij = AijP, i, j = 1, 2, ..., n (4.20)

which can be written as

Aij(k, :) = aTijTk, i, j = 1, 2, ..., n (4.21)

The matrix B consists of blocks Bij ∈ R(N+1×1), which is defined as:

Bij = Pbij i = 1, 2, ..., n, i = 1, 2, ..., p (4.22)

Eq. (4.9) together with Eq. (4.17) define the uncertain state vector x(t, ξ) as a

function of the random variable ξ. Following this formulation any order moment of

uncertain state variables can then be computed. For example, the first two moments

for state vector x(t) can be computed as follow:

E [xi(t)] =
n∑
i=1

xi1(t), i = 1, ..., n (4.23)

E [xi(t)xj(t)] =
N∑
k=0

xik(t)xjk(t), i, j = 1, ..., n (4.24)
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4.2.2 Nonlinear systems

To extend the gPC method to propagating the state and parameter uncertainties with

a nonlinear system, we start from the following generic equation:

ẋ(t,Θ) = f(t,Θ,x,u), x(t0) = x0 (4.25)

where u(t) is the input vector at time t, x(t,Θ) = [x2(t,Θ), x1(t,Θ), ..., xn(t,Θ)]T ∈

Rn is the state vector of stochastic system. Here the uncertain parameter vector

Θ = [θ1,θ2, ...,θm]T ∈ Rm is assumed to be constant with time and a function of

a random vector ξ = [ξ1, ξ2, ..., ξm]T ∈ Rm defined by p(ξ) over the support Ω. In

general f(t,Θ,x,u) can be a nonlinear function.

In this case the gPC expansion for the state vector x and the uncertain parameter

Θ is given by:

xi(t,Θ) =
N∑
k=0

xik(t)φk(ξ) = xTi (t)Φ(ξ)⇒ x(t, ξ) = Xpc(t)Φ(ξ) (4.26)

θi(ξ) =
N∑
k=0

θikφk(ξ) = θTi φ(ξ)⇒ Θ(t, ξ) = ΘpcΦ(ξ) (4.27)

where, Xpc and Θpc are matrices of coefficients of gPC expansion for state x and

parameter Θ respectively. The coefficients θik are obtained through the normal equa-

tions, as in the linear case:

θik =
〈θi(ξ), φk(ξ)〉
〈θk(ξ), φk(ξ)〉

(4.28)

Similar to linear case,we substitute Eq. (4.26) and (4.27) into (4.25) and obtain:

ei(Xpc, ξ) =
N∑
k=0

ẋik(t)φk(ξ)− fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), i = 1, 2, ..., n (4.29)
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Applying the Galerkin process to Eq. (4.16) we obtain n(N + 1) time-varying coeffi-

cients xik . However, for nonlinear stochastic differential equations, Galerkin process

will lead to a set of n(N + 1) nonlinear deterministic differential equations and diffi-

culties may arise during the computation of projection integrals of Eq. (4.16). This

problem can be overcome by using the Polynomial Chaos Quadrature (PCQ) tech-

nique , which is discussed in the next section.

4.2.3 Polynomial chaos quadrature

Dalbey et al. [83] proposed a technique called ,Polynomial Chaos Quadrature (PCQ),

for the implementation of polynomial chaos integration with non linear model. The

idea is to replaced the projection step of the gPC by a PCQ. After substituting Eq.

(4.26) and Eq. (4.27) into (4.25) one obtains:

N∑
k=0

ẋik(t)φk(ξ)− fi(t,Xpc(t)Φ(ξ,ΘpcΦ(ξ)),u) = 0, i = 1, ..., n (4.30)

Upon the projection step of PC yields:

N∑
k=0

〈φk(ξ), φj(ξ)〉ẋik − 〈fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), φj(ξ)〉 = 0 (4.31)

i = 1, ..., n, j = 0, ..., N

When f is linear it is possible to evaluate the projection integral in Eq. (4.31) an-

alytically. When f is nonlinear, the exact integration is replaced by a numerical

integration, in this case the Gauss quadrature method. Then one obtain:

〈φi(ξ), φj(ξ)〉 =

∫
φi(ξ)φj(ξ)p(ξ)dξ '

M∑
q=1

wqφi(ξq)φj(ξq) (4.32)
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〈φi(ξ), φj(ξ)φk(ξ)〉 =

∫
φi(ξ)φj(ξ)φk(ξ)p(ξ)dξ

'
M∑
q=1

wqφi(ξq)φj(ξq)φk(ξq) (4.33)

〈fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u), φj(ξ) =

∫
fi(t,Xpc(t)Φ(ξ),ΘpcΦ(ξ),u))

φj(ξp(ξ)dξ '
M∑
q=1

wq〈fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u), φj(ξq) (4.34)

where M is the number of quadrature used. Substituting Eq. (4.32), (4.33) and (4.34)

into Eq. (4.31) and interchanging summation and differentiation we obtain:

d

dt

M∑
q=1

N∑
k=0

wqφj(ξq)φk(ξq)xik −
M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u), φj(ξq) = 0,

(4.35)

which becomes after simplification:

d

dt

M∑
q=1

φj(ξq)xi(t, ξq)wq −
M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u), φj(ξq) = 0.

(4.36)

Performing integration with respect to time t yields:

M∑
q=1

(xi(t, ξq)− xi(t0, ξq))φj(ξq)wq

−
∫ t

t0

M∑
q=1

wqfi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u), φj(ξq)dt = 0. (4.37)



87

Interchanging the order of integration and summation leads to the following equation.

M∑
q=1

{
(xi(t, ξq)− xi(t0, ξq))−

∫ t

t0

fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u), φj(ξq)dt

}
φj(ξq)wq = 0

i = 1, ..., n (4.38)

The integral term in Eq. (4.38) can be evaluated by integrating the model equation

with a specific instance of the random variable ξ. In this way the statistics of the

system responses can be computed by sampling the random input with a specific pdf.

Finally, the coefficients of the gPC representation can be computed as follows:

xik = 1/d2
k

M∑
q=1

Xi(t0, t, ξq,u)φk(ξq)wq, k, j = 0, 1, ..., n (4.39)

where

Xi(it, ξq,u) = xi(t0, ξq) +

∫ t

t0

fi(t,Xpc(t)Φ(ξq),ΘpcΦ(ξq),u) (4.40)

d2
k =

∫
Ω

φk(ξ)φk(ξ)p(ξ)dξ (4.41)

The moments of the system state and parameters can be estimated by the following

relation:

E
[
xi(t)

N
]

=

∫
Ω

(∫ t

t0

ẋidt

)
dp(ξ)

=

∫
Ω

(
xi(t0,xi) +

∫ t

t0

fi(t,x,Θ,u)dt

)N
dp(ξ). i = 1, ..., n (4.42)

For a fixed Θ = Θq, the time integration is simply deterministic and can be computed

with standard numerical methods. Applying PCQ over the certain inputs to estimate
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the state pdf yields the following moment relation.

E
[
xi(t)

N
]

=
∑
q

wq
[
Xi(t0, t, ξq,u)

]N
i = 1, 2, ..., n (4.43)

Thus the moments of state variables are approximated as a weighted sum of the out-

puts of simulation run at the quadrature points of the uncertain input parameters.

In the standard Gaussian quadrature applied in this work, we have to exactly inte-

grate polynomials up to degree 2N + 1 with N + 1 quadrature points. Consequently

the number of quadrature points increase exponentially as the number of input pa-

rameters increases. To mitigate this error of PCQ under sampling, an adaptive or

nested quadrature scheme which successively refines the accuracy of the solutions by

increasing the number of sample points, such as Clenshaw-Curtis quadrature method

[84], [85] was developed. Some examples of gPC formulation and simulation results

for linear and nonlinear systems are given in [36] and [77].

4.2.4 Non-intrusive spectral projection (NISP)

In the process of formulating gPC, one can compute the coefficients of PC expansion

following two main approaches: (1) intrusive methods, and (2) the non-intrusive

methods. The most straightforward way to build a gPC model is to reformulate

the original stochastic model through Galerkin projection onto PC basis and then

solve for the time/space evolution of PC coefficients [23], [24]. This is exactly what

we call, an intrusive approach. This reformulation may however be difficult to code

and requires considerable skills for rather complex models like ADCIRC. In the non-

intrusive methods, the requisite spectral representation is computed through direct

application of existing deterministic solvers. This approach reduces the complexity

of gPC formulation while still providing satisfied gPC representation of the original

model as has been shown in many application [42, 34, 16].
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In the non-intrusive approach we may use different methods to compute the PC

expansion coefficients including non-intrusive spectral projection (NISP), the colloca-

tion methods (CM), and the regression-like methods. In the regression-like methods

[86], the PC coefficients can be estimated by minimizing the distance between the PC

expansion and experimental observations/simulations. Using interpolation, the CM

methods computes the PC coefficients by using the PC basis as a set of interpolants

[87, 88, 28, 89] . The NISP method, which we chose to apply in this work, computes

the PC coefficients through L2-projection of variables onto PC basis.

However NISP is not without drawbacks but in general all non-intrusive methods

suffer from the so-called curse of dimensionality. In the NISP method, a rapid increase

in the number of deterministic realizations is required to compute the PC coefficient

as the order of expansion and number of stochastic dimensions increase. One way

to mitigate this drawback of NISP is to use sparse quadrature techniques where the

quality of the PC representation can be monitored and the sparse grid is successively

refined to meet the accuracy required.

The following discussion summarize the use of Non-intrusive spectral projection

in the PC method. We denote a probability space by (Ω,F , µ), where Ω is the

sample space, F is an appropriate σ-algebra on Ω, and µ is a probability measure.

Let ξ is a random variable on Ω having a uniform pdf ξ ∼ U (a, b) on the interval

[a, b]. The cumulative distribution function of random variable ξ on Ω is given by

Fξ(x) = µ(ξ ≤ x) for x ∈ R

Let us consider a model with finite uncertain parameters. These parameters are

parameterized by a finite collection of real-valued, independently and identical dis-

tributed (iid) random variables ξ1, ..., ξd on Ω where d refers to the number of random

variables or the dimension of the stochastic problem. Let Fξ denote the joint dis-

tribution function of the random vector ξ = (ξ1, ..., ξd)
T . Since all events ξj are

independent, Fξ(x) =
∏d

j=1 F (xj) for x ∈ Rd, where F is the common distribution
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function for ξ1, ..., ξd.

In computation we normally work in the image probability space (Ω∗,B(Ω∗), Fξ)

for convenience. Here Ω∗ ⊆ Rd is the image of Ω under ξ, and B(Ω∗) is the Borel σ-

algebra on Ω∗. Let X and Y denote the two random variables. Thus the expectations

are defined for X, Y : Ω∗ → R as:

〈X〉 =

∫
Ω∗
X(s)dFξ(s). (4.44)

The space of square integrable random variable on Ω∗, L2(Ω∗):

〈XY 〉 = (X, Y ) =

∫
Ω∗
X(s)Y (s)dFξ(s) (4.45)

and the norm of X is defined by ‖ X ‖L2(Ω∗)= (X,X)1/2 = 〈X2〉1/2. If we parameterize

these random inputs with canonical random variables ξi
iid∼ U (−1, 1) and use the d-

variate Legendre polynomials {Ψk}∞0 . Each Ψk is defined as follows.

Ψk(ξ) =
d∏
i=1

Ψαki (ξi), ξ ∈ Ω∗ (4.46)

where αk = (αk1, α
k
2, ..., α

k
d) is a multi index vector, with αki being the order of 1D

Legendre polynomial, Ψ , in ξi. With this basis, any X ∈ L2(Ω∗) can be written as a

gPC as follows.

X =
∞∑
k=0

ckΨk. (4.47)

For computation, we truncate Eq. 4.47 to a finite series

X(ξ)=̇
P∑
k=0

ckΨk.(ξ) (4.48)

P depends on the stochastic dimension d and expansion order, p, according to the
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following relation

P =
(d+ p)!

d!p!
− 1. (4.49)

Let X belongs to L2(Ω∗). Since {Ψk}P0 form an orthogonal system, we can simplify

the following dot product.

(X,Ψk) =

(
P∑
l=0

clΨl,Ψk

)
=

P∑
l=0

cl(Ψl,Ψk) = ck(Ψk,Ψk), (4.50)

and the coefficient ck is computed from

ck =
〈XΨk〉
〈Ψ2

k〉
. (4.51)

Here the moments 〈Ψ2
k〉 of multivariate Legendre polynomials in 4.51 can be evaluated

analytically [24] while 〈X,Ψk〉 require more elaborated computation. As we note that

〈X,Ψk〉 =

∫
Ω∗
X(s)Ψk(s)dFξ(s), k = 0, ..., P.

Thus evaluating coefficient ck involves computing the values of a set of P +1 integrals

over Ω∗ ⊆ Rd which can be discretized as finite sums using an appropriate quadrature

formula which takes the form

∫
Ω∗
X(s)Ψk(s)dFξ(s)=̇

Nq∑
j=1

wjX(ξj)Ψk(ξj), (4.52)

where ξj ∈ Ω∗ and wj are the nodes and weights. As mentioned previously, the

complexity of NISP scales with Nq = nd, the number of nodes n and number of

uncertain parameters d. Thus this approach is limited to low d. Indeed, as the

number of uncertain parameters increase the integral in Eq. (4.52) becomes more

complex exponentially, creating the so-called ’the curse of dimensionality’. To this
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end one way to mitigate the difficulty is to use Smolyak’s formula [90] which leads

to sparse quadrature technique [91, 92, 93]. In this approach, the set of integration

nodes comprise what we call the NISP sample denoted by

S = {ξj}
Nq
j=1 ⊂ Ω∗. (4.53)

Thus, to evaluate Eq. 4.52 , one needs to compute X(ξq) for all (ξq ∈ S . Let

Π ∈ R(P+1)×Nq be the matrix called ”the NISP projection matrix” which is given by

Πk,j =
wjΨk(ξj)

〈Ψ2
k〉

, k = 0, ..., P, j = 1, ..., Nq

Let ζ be the vector with coordinates ζi = X(ξj), then the vector c = Πζ, or in

component form

ck =

Nq∑
j=1

Πkjζj =

Nq∑
j=1

ΠkjX(ξj), k = 0, ..., P. (4.54)

4.3 ADCIRC uncertainties recast as stochastic vari-

ables

Let p = (p1, p2)T be the vector of random model inputs having uniform distri-

bution as specified in Table 4.2. Specifically, the inputs pi are parameterized by

Table 4.2: The random input parameters for ADCIRC

Parameter Description Distribution

p1 (Manning’s n coefficient in the open ocean) U (−1, 1)
p2 (Manning’s n coefficient in the landlocked area) U (−1, 1)
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ξi ∼ U (−1, 1), i = 1, 2 through

pi(ξ) = µi + σiξi, i = 1, 2 (4.55)

where ξ = (ξ1, ξ2)T , µi = (1/2)(ai+ bi), and σi = (1/2)(bi−ai), so that pi ∼ U (ai, bi)

as in Table 4.2. Now let G be the physical domain in consideration. At a given time t

and a point x ∈ G and with a given vector of random inputs p(ξ) we have the model

output denoted by X(t,x, ξ). Here

X(t,x, ξ) = A(t,x; p(ξ)) (4.56)

where A(t,x; p(ξ)) is the output of a deterministic ADCIRC solved at time t and

point x with the input parameters p(ξ). X may correspond to any output considered

the quantities of interest (QoIs).

4.3.1 PC representation of ADCIRC model for the idealized

ebb shoal

Based on the results of the SEIK implementation in chapter 3, we will only apply

the PC representation to the idealized Ebb Shoal case. The polynomial chaos is

applied to the ADCIRC model, where the boundary conditions and initial conditions

are assumed perfectly known as in chapter 3. We used NISP with a level 6 Smolyak

quadrature to compute the spectral expansion of the model output in the PC basis.

Figure 4.4 plots the water elevation in time for both original ADCIRC model and

its surrogate counterpart at station one of the idealized Inlet Ebb Shoal. To ensure

that level 6 quadrature is a good representation of ADCIRC in this specific case, we

generated many PC version of the model with different number of quadrature levels

ranging from 1 up to 6 and observed the convergence of these representations. This
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is shown in Figure 4.3 alongside with the convergence to the PC coefficients at a

selected station and time. According to these results, the distribution seems to level

off at the PC order level p = 6 suggesting that a sixth−order expansion is sufficient.

In addition, we also compute the RMSE between the water elevation from ADCIRC

model and its counterpart. The RMSE is less than 5% of the wave amplitude for all

quadrature points. The errors are shown in Table 4.3.

Table 4.3: The random input parameters for RMSE between the true model and the
surrogate model (water elevations)

Quadrature point RMSE (at station 1)
1st quadrature 0.088
10th quadrature 0.0011
20th quadrature 0.00036
30th quadrature 0.0012

4.4 Manning’s n coefficient estimation using PC-

based ADCIRC model and MCMC

The following results are the posterior distribution of Manning’s n coefficients com-

pared between SEIK and MCMC with the optimal β2. They were generated using

100000 iterations of MCMC. The accuracy of the estimations from MCMC are not

affected by the initial guesses while SEIK is suffer the recovering of high value Man-

ning’s n coefficients from the low-value initial guesses. Since the inflation factor was

used to improve the posterior from SEIK in chapter 3, we can show the comparison

between the two schemes (SEIK and MCMC) with and without inflation factor for

SEIK.

Figure 4.7 and 4.11 shows the comparison of the posterior pdfs of Manning’s

n coefficient between SEIK filter approach with 10 ensemble members and MCMC

in a constant field and 2D parameterized field respectively. The pdfs produced by
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SIEK is much more narrow in comparison to those produced by MCMC. This is due

to our initial setup of background error covariance when we run SEIK. SEIK filter

also underestimated the truths in many cases while MCMC experiences no difficulty

in the mentioned manner. The distributions produced by MCMC cover the wide

range of Manning’s n coefficient and clearly portray to the Gaussian distribution

with their means approximately at the truth values. It is concluded that SEIK filter

with small ensembles size is not a good representation to propagate the uncertainty

of the estimated parameters. However, the distribution can be improved to match

the goal standard MCMC by using background error covariance inflation.

Figure 4.10 and 4.12 shows the comparison of the posterior pdfs of Manning’s n

coefficient between SEIK filter with the inflation factor of 2 and MCMC in a constant

field and 2D parameterized field respectively. The effect of enforcing inflation factor

is more spread among the samples of the joint pdfs produced by SEIK as well as the

improvement in the estimation means of Manning’s n coefficients in all cases. The pa-

rameter estimation with SEIK filer in this case is appears to be a good representation

of the true posterior distribution formulated by Bayes’s rule.

4.5 Conclusion

The main focus of the theoretical part of this chapter is to portray of the link between

sequential data assimilation and the general parameter estimation framework based

on Bayesian theorem. We shown that any form of sequential data assimilation scheme

including SEIK can be fundamentally derived from the Bayes’s rule for the first-order

Markov process. Given the sufficient amount of the observations, Bayes’s rule gives

the full pdfs of the estimated parameters with no Guassian restriction as prescribed

by Kalman filtering framework. The sampling of the posterior from the Bayes’s

rule using Metropolis-Hasting algorithm in MCMC is treated as the reference to
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other data assimilation schemes. Thus, for the experimental part of this chapter, we

compared the pdfs of Manning’s n coefficient from SEIK filter both with and without

inflation factor to the gold standard MCMC method. The result reflect that the

uncertainty representation by SEIK for parameter estimation with inflation is a good

approximation of the true pdfs computed from the Bayes’s rule.
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Figure 4.1: (Left) The distributions of the ADCIRC surrogate model output(water
elevation) of idealized Ebb Shoal case with several polynomial orders at the selected
points and times. The distributions is created by a million samples. (Right) Polyno-
mial chaos coefficients at the corresponding points and times.
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Figure 4.2: (Left) The distributions of the ADCIRC surrogate model output(water
elevation) of idealized Ebb Shoal case with several polynomial orders at the selected
points and times. The distributions is created by a million samples. (Right) Polyno-
mial chaos coefficients at the corresponding points and times.
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Figure 4.3: (Left) The distributions of the ADCIRC surrogate model output(water
elevation) of idealized Ebb Shoal case with several polynomial orders at the selected
points and times. The distributions is created by a million samples. (Right) Polyno-
mial chaos coefficients at the corresponding points and times.
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Figure 4.4: (Right) Water elevations simulated in time from the true model and
the surrogate model at several quadrature points (different Manning’s n coefficients).
(Left) The residuals.
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Figure 4.5: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter( after 108 analysis iterations)and MCMC method.
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Figure 4.6: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter( after 108 analysis iterations)and MCMC method.
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Figure 4.7: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter( after 108 analysis iterations)and MCMC method.
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Figure 4.8: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter with inflation( after 108 analysis iterations)and MCMC
method.
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Figure 4.9: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter with inflation( after 108 analysis iterations)and MCMC
method.



106

Figure 4.10: The comparisons between the posterior distributions of 1D Manning’s n
coefficient between SEIK filter with inflation( after 108 analysis iterations)and MCMC
method.
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Figure 4.11: The comparisons between the posterior distributions of 2D Manning’s n
coefficient between SEIK filter( after 108th analysis iterations)and MCMC method,
(Right) the distributions of α, (Left) the distribution of β .
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Figure 4.12: The comparisons between the posterior distributions of 2D Manning’s n
coefficient between SEIK filter( after 108th analysis iterations)and MCMC method,
(Right) the distributions of α, (Left) the distribution of β.
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Chapter 5

Concluding Remarks

The parameter estimation problem is the on-going research area requires that there is

sufficient data provided from the real-world observation system. The inverse problem

can then be formulated in order to estimate the parameter in the model that fit

the observations. This thesis focus on determining the parameters related to the

ocean modeling system. The accurate knowledge about the bottom stress terms in a

physical domain is essential for the modeling of the hydrodynamics system. In the

field of ocean modeling, bottom stress terms are embedded in the momentum equation

of the shallow water model, which is used vastly in the prediction sea level, tides

and storm surge under both moderate and extreme conditions. These stress terms

is formulated using Manning’s n coefficient which relating the bottom stress to the

height of the water column above it. However, Manning’s n coefficient is empirically

defined constant and always subjected to large amount of uncertainty in the real-

world physical simulations. The recovering of the true Manning’s n coefficient from

the observations is an active research area. An attempt to find the efficient framework

for the parameter estimation in storm surge and tides modeling is served as the prior

guaranty to the effective coastal ocean prediction system.

In this work, we made an attempt to validate the correctness in estimating Man-

ning’s n coefficient by SEIK filter, which is one of the most recent scheme in statistical

data assimilation introduced in many literature, by comparing the posterior distri-
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bution of the parameter we estimated from SEIK to the distribution form the gold

standard approach, MCMC as our reference.

In the first part, we conducted the Observation Simulation System Experiments

(OSSEs) on Advance Circulation (ADCIRC) model. We generated the synthetic

water elevation data from several fields of Manning’s n coefficient. Using the singu-

lar interpolated evolutive Kalman (SEIK) filter, we then recover these Manning’s n

coefficient fields from incorrect initial guesses. We separated our OSSEs in to two

domains, one is idealized inlet with Ebb Shoal with comprising the open ocean area,

landlocked area and the inlet, another is the Galveston Bay represents the more re-

alistic version of the first domain. We estimated two configuration of Manning’s n

coefficient fields. The first was defined by a constant Manning’s n coefficient across

the domain. The second configuration is 2D parameterized piecewise Manning’s n

coefficient where the bottom stress in the bay was defined by one constant value,

and the bottom stress in the open ocean was defined by the other. For the constant

Manning’s field, with small ensemble size (i.e. 10 ensemble members), there arise the

difficulty in estimating the large Manning’s field from the small initial guess for both

domain. This is mainly due to the sensitivity difference of ADCIRC between the

small Manning’s n coefficient values and the large value. ADCIRC is more sensitive

to the change in small Manning’s n coefficient compare to the same amount of change

in large Manning’s n coefficient. Increasing the size of ensemble members improved

the estimations. We have experimented with 10, 20 and 100 ensemble members for all

cases. The estimation from the small initial guess increase by 200% when using 100

ensemble members for the most difficult case (i.e. estimating the largest Manning’s n

field from the smallest initial guess). For the 2D parameterized field of both domain,

the use of small ensemble size is sufficient to recover the truths. Since the increasing of

ensemble members requires greater computation, we instead used an inflation factor

as the solution to increase the the background error covariance. We found that the
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estimations converge to the truth faster with less computation compare to increasing

ensemble size and the estimation of the means are accurate regardless of the accuracy

of initial guesses. It also can be observed that the use of inflation factor has widen

the posterior distribution of the parameter produced by SEIK.

In the second part, a spectral projection approach was implemented to propagate

parametric uncertainties in a coastal ocean model. A non-intrusive spectral projection

scheme was used to derive the PC representation of ADCIRC for selected Quantity

Of Interests (QoIs), which in our case, the water elevation. Using PC expansion, we

created the surrogate ADCIRC model of the idealized inlet with Ebb Shoal with the

same forcing as the previous OSSEs with SIEK. The input of the surrogate ADCIRC

model requires two inputs including the Manning’s n coefficient in the landlocked

area and another in the open ocean. The output of the surrogate model following

the variation in these inputs are the water elevations at each node on the domain

in time. The merit of applying spectral projection approach to the model is that

its surrogate counterpart is much faster to execute, which allows the high frequency

sampling of the model in practical application possible. For our presented setups,

conditions and dimensions of stochastic problem, a level 6 sparse quadrature was

found to be adequate for producing the desirable model response.

In the last part of this study, we investigated more deeply into the Bayesian

viewpoint of sequential data assimilation. We emphasized that Kalman filter can be

viewed as the derivation of Bayesian’s rule sequentially in time. The Bayes’s rule

compute joint probability density functions (pdfs) of the estimated parameters given

the model and a set of observations. The surrogate version of ADCIRC created by

PC expansion was used in MCMC sampling of the posterior distribution of Manning’s

n coefficients for the idealized inlet with Ebb Shoal. The implementation of PC and

MCMC alleviate upon the restriction of Gaussian posterior distribution imposed by

implementing Kalman filter to the parameter estimation problem. The Metropolis-
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Hastings algorithm is used for our sampling of the posterior distribution for both

a constant Manning’s n field and 2D parameterized Manning’s n field. We finally

compared the posterior distribution produced by SEIK filter and MCMC on PC-

based model, it is found that the Manning’s n coefficient estimation with SEIK, when

using the inflation factor, is a good approximation to the pdfs produced by the gold

standard MCMC.

In conclusion, while the PC-based approach coupled with MCMC for parameter

estimation is well-served for offline application with low dimension stochastic system,

it is not designed for the usage in the online coastal ocean forecasting system which

includes a large number of uncertain parameters. The sequential data assimilation

scheme such as Kalman filter provides a robust solution to approximate the pdfs

in real-time. However with the Guassion restriction, the parameter uncertainties

propagation by Kalman filter can be deceiving. The result of our study shows that

implementing the SEK filter to estimate Manning’s n coefficient in ADCIRC model,

in additional with appropriate inflation factor, produces the pdfs close to that of the

goal standard MCMC. This indicates that the use SEIK filter is valid and efficient to

estimate the uncertainty of low dimensional bottom stress term in ADCIRC model.
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