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CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE  

Farhan Abdul Rahim 

 

ABSTRACT 
 
  MEMS based mechanical switches are seen to be the likely replacements for 

CMOS based switches due to the several advantages that these mechanical switches 

have over CMOS switches. Mechanical switches can be used in systems under extreme 

conditions and also provide more reliability and cause less power loss. A major 

problem with mechanical switches is bouncing. Bouncing is an undesirable 

characteristic which increases the switching time and causes damage to the switch 

structure affecting the overall switch life. This thesis proposes a new switch design that 

may be used to mitigate bouncing by using two voltage sources using a double 

electrode configuration. The effect of many switch’s tunable parameters is also 

discussed and an effective tuning technique is also provided. The results are compared 

to the current control schemes in literature and show that the double electrode scheme 

is a viable control option. 
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  Chapter 1.
Introduction 

 
 MEMS are present in almost all of everyday objects. They are present in 

mobile phones, toys, appliances and even car tires. The low cost of batch processed 

devices coupled with high reliability and extremely small scale makes MEMS devices 

a viable option for mass scale consumer goods industry. Many MEMS devices are 

present as sensors that have capability of measuring several physical quantities. 

Velocity, temperature humidity and luminosity are some of the few quantities that 

can be monitored using MEMS.  

 One of the major areas of work in MEMS includes ohmic switches. The switch basic 

design is based on the model of already prevalent CMOS based solid state switches 

known as MOSFETS. A typical switch is composed of a gate, drain and a source. 

MEMS switches are similar in this regard having same three components. However, 

the method of transferring the signal and actuation is done through mechanical 

means by the use of a cantilever based design. These types of switches have several 

advantages over their CMOS based counterparts. Power efficiency is one main 

advantage as these MEMS based switches can operate at lower power inputs 

.Furthermore , as solid state switches are made smaller and smaller in line with the 

decreasing size of consumer electronics, the phenomenon of tunneling currents has 

caused large leakage currents causing loss of energy and the device never being in 

the off state completely. Compared to that , researchers have shown that leakage 
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currents are up to 10^-15 times less in case of MEMS switches making them an ideal 

next step for next generation small scale consumer devices [1].  

However, current level in MEMS switching technology makes it hard for the 

switches to be used in high frequency applications. This is due to the physical 

limitation on the connection time between the cantilever tip and the gate. This is 

made worse by the presence of the phenomenon known as bouncing. Bouncing is 

defined as the discontinuities in the switching process after the switch has made 

first contact with the substrate. Bouncing can be hazardous for the switch.  

Bouncing is not very well understood and several authors have modeled bouncing 

with different methodologies. However it is shown that bouncing does not follow 

the well understood model of mechanical bounce and is highly nonlinear and 

dependent on the condition of the substrate and the damping apart from the other 

parameters present. There are several problems associated with bouncing that 

make it an undesirable phenomenon. Bouncing increases the switching time which 

is problematic for high frequency applications such as in RF MEMS. Furthermore, 

the high impact velocity damages the switch itself and the substrate by causing local 

hardening and pitting of the substrate material. Furthermore the heat produced in 

the impact might cause the metal in the switch to weld reducing the effective life of 

the switch. Several authors have discussed methods to reduce bouncing which range 

from open loop control, changing the structure of the tip and the substrate to using 

different materials altogether [1-6]. 
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By reducing bouncing, it is possible to increase the lifetime of the switch by several 

years. It also means improving the switch dynamics by allowing faster and more 

responsive switches. Reliability of these switches will also be improved since 

bouncing tends to destroy switches quite randomly in large ensemble of switches. 

One way to control bouncing is to apply a secondary pulse that can slow down the 

beam and reduce bouncing. Application of such a pulse is hard and may require 

complex circuitry if only a signal pulse is input to the system. In this thesis, we 

propose an alternative solution, which is to use two electrode with one electrode 

used as the actuation electrode and the other used as a control electrode as shown 

in figure (1). The actuation and control voltages can be used to reliably change the 

dynamics of the system and allow users to choose landing time and landing 

velocities easily , making tuning easy especially for a large ensemble of switches.  

 

 

 

 
 

  
 

d 

Actuation electrode 

Control electrode   

Source 

Vdc2 

Vdc1 

Drain 

Figure 1: Proposed double electrode model 
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  Chapter 2.
Literature Review 

 

2.1 Models for Bouncing 

 Bouncing causes the closing time of the switch to be increased meaning that 

switches currently can only function for low frequency applications. Bouncing also 

causes damage to the substrate and to the cantilever by way of pitting, hardening of 

the surface and sometimes even welding due to heat created in the impact [1].  

Many techniques have been proposed by authors to simulate the effect of bouncing. 

In all techniques, the authors seek to capture the dynamics of the system using the 

key variables.  Various techniques have been used to model the effect of bouncing. 

McCarthy et al [2] and Do et al [3] used Euler Bernoulli beam mode to simulate the 

beam dynamics. Bouncing was simulated by inserting a spring at the point of contact 

and equating the spring to the shear force at the beam. However, only McCarthy et al 

[2] did a discussion on the non-linearity of the contact and the spring. Figure (2) 

shows the result of the model for different voltages. The damping was assumed to 

be dominated by squeeze film damping and modeled using the Reynolds equation. 

The calculation was done using finite time difference methods. 
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Figure 2: Bouncing simulation using a beam model [2] 

 

Other authors used lumped mass parameter models favoring springs to simulate 

bouncing. The basic model found in [4-6] was a spring mass model of the form in 

figure (3) which was used to model different designs of switches. The model was 

based on a 3D design and the lumped mass parameter model also in figure (4). 

Several other designs are modeled using the same technique by varying the stiffness 

and the damping of the system. The model is a single degree of freedom system 

which equates the difference of the nonlinear electrostatic force to the linear 

stiffness force to the dynamic equation of the system. 

 

Figure 3: 3D image of th RF switch and the lumped mass model for free 
mode[4] 
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Figure 4: SEM image of RF switch and lumped mass model [5] 
 

To correctly simulate bouncing, many authors such as [2, 3] used a second model 

when the spring comes in contact with the substrate. The effective stiffness, mass 

and the damping are recalibrated and acquired from either 3D model, optimization 

techniques and/or empirically obtained as in [5]. Figure (3) depicts the model as 

well as an SEM of the actual switch used with updated damping and stiffness. 

The updated model was activated in different ways by different authors. Authors in 

[5] chose to only activate the model once and simulate the entire bouncing through 

the second model with forcing equated to 0, others [2], [3] reverted back to the free 

spring mass model when the mass left the substrate. Furthermore many authors 

considered the substrate ridged which is not going to be the case in this study. 

Some authors presented more rigorous representation than a simple spring mass 

model. Peschot et al [7] presented a theory assuming the tip of the cantilever beam 

to be spherical and assuming bouncing to be mechanical bouncing with a constant 

coefficient of restitution between bounces. The group tested the theory by applying 

point loads using an AFM setup and Nano indenter setups as shown in figure (5).  
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Figure 5: testing schematics for AFM and Nano indenter testing [7] 

 

 The measurements and further analysis [7] indicated that bouncing phenomenon is 

highly nonlinear and cannot be explained by simple mechanical bouncing theory. 

The research also used Casimir forces for very short distance to explain the 

phenomenon of electrical bounce which is only nanometers in height. Figure (6) 

shows the dominant forces and their ranges for a mechanical switch [7]. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Forces affecting the beam with respect to the distance [7] 
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Recently, Tung et al [8] modeled the bouncing using reduced order modeling and 

squeeze film damping. The final simulation and testing showed that using 2 modes 

in the simulation captures the real dynamics of the system as the actually bouncing 

has several short spaced impacts during the actual impact. The transient excitation 

of the spring can be thus accurately captured by using a 2nd mode in the reduced 

order model. The authors showed the dependence of contact stiffness and actuation 

voltage to final bouncing characteristics. 

2.2 Control of Bouncing 

 Lots of research have been presented on methods aiming to reduce bouncing. 

Various forms of control including pulse shaping functions, change in mechanical 

switch circuitry and changing the shape tip and the substrate have been presented 

as methods to mitigate the effect of bouncing. 

Jain et al [9] introduced two new novel ways to reduce the speed of the switch 

during bounce. The authors proposed introducing a resistor in series with the 

switch voltage source. The resulting analysis showed that the resistor did not affect 

the pull in characteristic of the switch during the initial phase, due to low transient 

current at the start. However during the stage when contacting the substrate, a large 

transient current across the resistor helped dissipate most of the kinetic energy 

reducing the speed of the switch by almost 50% in some cases. This system works 

on the principle of negative feedback control but the circuitry is simple and robust. 

This control, termed ‘resistive braking’, can be used well in a large ensemble of 

switches due to its simple design. Figure (7) shows another method proposed [9], to 
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pattern the substrate as electrically connected cylinders or other similar shapes that 

could be easily fabricated. The fringing fields of each structure are quite close during 

the initial stages of pull in; hence the pull in voltage remains roughly the same. 

However as the switch tip gets closer, the fringing fields rapidly diverge reducing 

the available potential energy that may be converted to kinetic energy, hence 

causing a reduction in speed of the tip. Figure (7) also shows the pattering as well as 

speed reduction as a function of separation (g), fractal dimension (DF) with 

reference of speed and distance travelled. 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 7: Different substrate shapes and effect of different parameters in 

landing times and landing velocity [9] 
 

Another method to control bouncing is the input pulse shaping .The current 

literature presents variety of different ways in which the voltage wave can be 

manipulated to ensure that the switch closing time and the bouncing speed are 

minimized. Sumali et al [1] introduced a dual pulse waveform that allows the switch 



20 
 

to close while reducing the speed of the impact on the substrate, hence reducing 

bounce of the switch. The dual pulse wave and the corresponding system, as shown 

in figure (8), have a high voltage in the start which causes the switch to move 

towards the substrate at a high velocity. After the initial phase, the voltage is set to 

low to allow the switch to slow down due to the intrinsic damping as well as the 

squeeze film damping [1]. On reaching the substrate, a holding voltage is applied 

that ensure the mechanical restoring forces present in the switch not moving the 

switch back to the initial stage. Different forms of the same rectangular wave were 

tested in trapezoidal and rounded waveform to understand which form of the wave 

provided the least velocity at impact. Rounded waveforms were seen to perform the 

best due to the rectangular waveform being hard to generate exactly in the 

experiment. 

 

Figure 8: Parameters of input wave for open loop control and 3D model for 
the RF switch used in the paper [1] 
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Several authors have worked on methodologies of refining and selecting the best 

parameters for the dual pulse wave. Blecke et al [5] introduced a close loop control 

system to iteratively select parameters for the dual pulse wave. The system can be 

started off from a low voltage to ensure switch safety. The method has been shown 

experimentally to reduce switch closure time and velocity of impact by more than 

50 % in each case. Figure (9) shows the dynamics of the switch for some iterative 

cycles. 

 

Figure 9: Beam dynamics for different iterations of self-learning control [5] 
 

On the other hand, Do et al [3] developed an analytical method based on energy 

consideration for selecting the parameters of the dual pulse wave. The paper then 

introduces an adaptive control that changed the effective gap in the force equation 
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to obtain new parameters for the equation. Lai et al [6] compared the different 

waveforms used in changing the actuation voltage for MEMS switches and their 

effect on the life of these switches (by comparing dielectric charging and bouncing 

caused by each waveform). The four types of waveforms discussed in the paper 

were namely step voltage (ST), dual pulse actuation voltage (DP), exponentially 

increased dual pulse voltage (EDP) and soft landing voltage (SL). The author 

concluded that ST was the worst both in closing time, bouncing mitigation and 

dielectric charging. SL was the best for switching time bouncing mitigation but 

required complex tuning and feedback control to implement. On the other hand EDP 

was best amongst the tested waves in reducing dielectric charging, but had the 

slowest time amongst all tailored waveforms. EDP and DP were less sensitive to 

changes in pull in voltage variation then SL and hence were found to be much easier 

to implement for a switch.  

Spasos et al [10] presented in their paper a description of two presented techniques 

known as the charge control (resistive damping) and voltage control based on an 

open loop statically method to control bouncing called the Taguchis optimization 

technique. The charge control presented is similar to those in [8] that it uses a 

constant current source and a resistor in series with the switch. The paper also 

presented a new hybrid technique which was mixture of the two existing techniques 

explained above. The voltage technique based on Taguchi’s technique allowed for a 

tailored pulse that reduced impact velocity by 41.6%, impact force by 20% and the 

maximum bouncing displacement by 70% as compared to a similar tailored pulse 
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calculated using analytical technique. The paper also concluded that the charge 

control method was inappropriate for the rise time as only one regime (rise or fall 

time) may be tuned using the charge control. The hybrid technique was a mixture of 

the two which improved on all the important parameters with a minor increase in 

the closing time of the switch.  

2.3 Switch Design 

 More recently, a double electrode model was designed by Dadgour et al [11] 

to present a universal NAND NOR gate. A similar switch design may be implemented 

in the MEMS scale to obtain a double electrode switch.  
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  Chapter 3.
Theory and Operations 

 
 
 Bouncing and the operation of the device may be modeled by two separate 

theories. We can use the Euler Bernoulli beam theory to model the dynamics of the 

system or use the lumped mass parameter model. Both models have their 

advantages and disadvantages. While Euler Bernoulli theory provides the deflection 

of every point on the beam with respect to time, lumped mass parameter model can 

only be used for tip displacement (or any other chosen point) on one particular 

derived model. Also, lumped parameter model is computationally much faster and 

easier to implement. However, the beam model is more accurate compared to the 

lumped mass model. In this thesis, both systems are implemented for single and 

double beam models. 

3.1 Beam Model for Single Electrode  

 
 
 

 
 
 

 

 

 

Anchor Beam 

Gate 

Electro Substrate 
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Figure 10: Single electrode beam cross sectional design 

To derive the linear equation of motion of the beam, we start from a free body 

diagram of the beam cross section. The following equation is taken from [12]: 

 

∂2

∂x2
�EI

∂2w
∂x2

� + ρA
∂2w
∂t2

+
c ∂w
∂t

= F 

                            (1) 

Where E is the young’s modulus, I is the moment of inertia, w is the beam deflection, 

ρ and A are the density and area respectively, c is the damping coefficient and F is 

the forcing term. Using the above equation (1), we can derive the dynamic 

characteristic of the bouncing and deflection of the beam using specific boundary 

condition. For a cantilever beam we apply the no displacement and no gradient 

boundary condition at x=0, and no moment and shear force at x=L. 

3.1.1 Calculating the Eigenvalue and the Eigenmode 
 

 Next, we solve the above equation to simulate bouncing in the system. To 

solve for the dynamics, we assume the function as a separable variable of the form 

w(x, t) = ∑ɸ(x)u(t) 

                                                         (2) 

Where w(x,t) is the deflection, ɸ(x) is the modeshape and u(t) is the modal 

coordinate variable. 
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a. No Contact Regime 

In this case, the ɸ(x) is of a free cantilever beam and hence can be assumed to be of 

the form [12], 

ɸ(x)  = Acos(βx) + Bsin(βx + +Ccosh(βx) + Dsinh(βx) 

            (3)  

The following boundary conditions are implemented for a cantilever beam 

ɸ(0)=0  ɸ’(0)=0  ɸ’’(l)=0  EIɸ’’’(l)=0 

 (4)  

Will give a system of equations of the form  

�

1 0 1 0
0 1 0 1

−cos(βl) −sin(βx) cosh(βl) sinh(βl)
sin(βl) −cos(βl) sinh(βl) cosh(βl)

� �

A
B
C
D

� = �

0
0
0
0

� 

(5)  

To avoid a trivial solution, we assume the first matrix to be singular and set the 

determinant of the matrix equal to 0. The determinant gives the equation of this 

form: 

 

cos(βl)2  +  cosh(βl)2  +  sin(βl)2  −  sinh(βl)2  +  2 ∗ cos(βl) ∗ cosh(βl) = 0 

(6) 

We solve for the values of 𝛽𝑙 which correspond to each mode shape of the beam. 
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Since the matrix is assumed to be singular, Ax=b either has no solution’s or infinitely 

many solutions. We assume the latter case.  

After nondimensionalization and solution of the coefficients A, B, C and D in terms of 

one of the variable we obtain the equation [6].  

                

ɸn(x) = cosh��wnonx� − cos��wnonx� − σn�sinh��wnonx� − sin��wnonx�� 

                                                                                                                                          (7) 

Where wnon = (βl)2=�ρAl4

EI
w, where w is the corresponding natural frequency of 

the mode. ρ is the density , A is the cross sectional area of beam, l is the length of the 

beam, E is the  young’s modulus while I is the moment of inertia. 

b. Contact Regime 

 We assume only one mode for our beam model, 𝑤𝑛𝑜𝑛 = 3.51602 and 

𝜎𝑛 = .7341. However, during bouncing we assume a different set of boundary 

conditions. We assume the last boundary condition to be a spring. Figure (11) shows 

the boundary conditions present during bouncing. 
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Figure 11: Beam model representation for contact mode  
 

The boundary conditions are taken from the above figure. The first three boundary 

conditions remain the same as in the case of the cantilever beam. The last boundary 

condition is changed to account for the spring at the tip of the beam. 

ɸ(0)=0  ɸ’(0)=0  ɸ’’(l)=0  ɸ’’’(l)- Rtɸ(l)=0 

 (8) 

The last condition equates the shear force of the beam to the spring force from the 

spring, namely Rt , and it is defined as, 

Rt =
kl3

EI
 

                                                          (9) 

Using the above boundary conditions and putting the equation in the matrix form, 

�

1 0 1 0
0 1 0 1

−cos(βl) −sin(βx) cosh(βl) sinh(βl)
(βl)3sin(βl) − Rtcosβl −(βl)3cos(βl) − Rtsin(βl) (βl)3sinh(βl) − Rtcosh (βl) (βl)3cosh(βl) − Rtsinh (βl)

� �

A
B
C
D

�

= �

0
0
0
0

� 

  (10) 

Assuming non trivial solutions for the derived determinant, we get  
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(βl)3 sinh(βl)2 − (βl)3 cosh(βl)2 − (βl)3 sin(βl)2 − (βl)3 cos(βl)2

+ 2Rt cos(βl) sin(βl) − 2Rt cosh(βl) sin(βl) − 2(βl)3 cos(βl) cosh(βl)

= 0 

(11)  

From the equation(9), we see that 𝑅𝑡 is dependent on the value of the pad stiffness. 

The stiffness is calculated using the formula 𝐾 = 8𝐸𝐼
𝑙3

 for the case of cantilever 

beams. The pad stiffness is assumed to be 30 times the tip stiffness used [1]. After 

calculating 𝑅𝑡, 𝛽𝑙 is calculated and found to be 3.805 for 𝑅𝑡 = 260. 

To calculate the values of the constants in the function ɸ(x), we use the above 

equations to express all the variables in terms of one constant (assuming infinite 

solutions). The final form for such simplification can be presented as follows, 

ɸ(x) = A �cos(βx) − �
cosβl + coshβl
sinβl + sinhβl

� sin(βx) − coshβ(x)

+ �
cosβl + coshβl
sinβl + sinhβl

� sinh(βx)�  

                    (12)  

Using the condition ∫ ɸ2(x)dx = 1 1
0 , which is the result derived from the 

orthogonality of mode shapes, we can find the value of A which will satisfy all of the 

homogenous and non-homogenous boundary conditions. The value of A for the first 

mode shape is found to be 0.87974. 
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To obtain the 2nd order ODE which will be used to solve for the dynamics of the 

system, we simultaneously solve the system for the 2 different models, namely the 

contact model and the free model. 

3.1.2 Reduced-Order Modeling 
 

 To solve for the dynamical system, we start from the equation (1).  We use 

the Galerkin method to derive the reduced order model by using the beams linear 

orthonormal mode shapes. We then multiply the equation by the mode shape and 

integrate it over 1 to 0. The derivation is shown by the equations (13-17). 

EIw′′′′ + cẇ + ρbhẅ =
εb�Vdc2 �

2(d − w)2 

(13) 

Where ε is the permittivity of free space and other symbols are same as before. 

The equation is nondimensionalised by: 

w� =
w
d

, x� =
x
l

, t̂ =
t
T

 

(14) 

w is the defection, d is the gap between the tip and the substrate, x is the 

longitudinal coordinate of the beam , l is the total length of the beam and t is the 

time. 𝑤� , 𝑥� and �̂� are nondimensionlised deflection, length and time respectively. T is 

defined as, 
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T = �ρbhl4

EI
 

(15) 

We substitute equation (2) in equation (13), and replace w to obtain 

ü + wnon 2u + cnonu̇ = α2[Vdc]2 � �
ɸ

(1 − uɸ)2 
�dx

1

0
 

            (16) 

Where ɸ is the corresponding mode shape and u is the modal coordinate variable. 

(1 − 𝑢ɸ)2  in the denominator can be tackled in one to two ways. It can be expanded 

using the Taylor series but such an expansion will require upto 20 terms (12). Or we 

can multiply both sides by (1 − 𝑢ɸ)2 and ɸ and use the orthonormality of the mode 

shapes to simplify the system without the need to expand up to 20 terms in the 

denominator. Implementing the second method, we obtain 

 (ü + wnon 2u + cnonu̇)(1 − 2u� ɸ3dx + u2 � ɸ4dx
1

0

1

0
)α2�Vdc2 + Vac cos(Ωt)�

2
� ɸdx
1

0
 

                                                                                              (17) 

3.1.3 Damping Considerations (Squeeze Film Damping) 
 

  Near the micro scale, it has been shown that squeeze film damping becomes 

a dominant mode of damping and hence cannot be ignored if accurate models of 

bouncing are desired [12]. For accurate simulation we need to solve the equation of 

motion of the beam coupled with the Reynolds equation using finite element 
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method or perturbation equations. However the equations can be simplified if we 

assume the incompressible gas flow model for air [12]. 

c =
b3µ

[d − w(x, t)]3 

                                                 (18) 

Where b is the width of the beam µ represents the viscosity of air and c is damping 

coefficient. 

To account for this change, we revise the equation (13).  The overall form of the 

equation is, 

−
EI ∂4w
∂x4

− m
∂2w
∂t2

= Felectrostatic − FSQFD   

                         (19) 

After normalization we have 

∂4w
∂x4

+
∂2w
∂t2

=
α2Vdc2

�1 − w(x, t)�
2 −

cnon
�1 − w(x, t)�

3
∂w
∂t

 

                          (20)  

Where 𝛼2 = 6𝜀𝑙4

𝐸ℎ3𝑑3
 and 𝑐𝑛𝑜𝑛 = 12𝑐𝑙4

𝐸𝑇𝑏ℎ3
. The parameters remain same as defined 

earlier. As before, we assume the w(x,t) to be a separable function defined in u(t) 

and ɸ(x). Also we multiply both sides by �1 − 𝑤(𝑥, 𝑡)�
3

, ɸ(x) and integrate over the 

entire length. The final result is of the form, 
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ü + uwnon
2 (−u3∫ φ5dx + 3u2∫ φ4dx3u∫ φ3dx∫ φ2dx)+cnonu̇(�φ2)

= α2Vdc2 �∫ φ − u∫ φ2� 

 (21)  

Where the A is part containing the integration terms not multiplied by the voltage 

term, 

A =  (−u3∫ φ5dx + 3u2∫ φ4dx − 3u∫ φ3dx + ∫ φ2dx) 

(22) 

We divide both sides A to simplify the equation to give the form in equation (23), 

ü + uwnon
2 +

 cnonu̇(∫φ2)
A

=
α2Vdc2 �∫ φ − u∫ φ2�

A
 

                      (23)  

3.1.4 Partial Electrode Modeling 
 

 Most RF MEMS switches and other devices normally have partial lower 

electrode. To account for that in our simulations, the electrostatic force is assumed 

to be represented by a step function corresponding to the starting and ending 

dimension of the electrode [12]. The forcing term is updated as given in equation 

(24), 
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F =
εbVdc2 [u(x − x1) − u(x − x2)]

2(d − w(x, t)2  
 

                                               (24)  

In terms of the beam theory, it means changing the integration limits of φ from x2 to 

x1.Hence for partial electrode , all the terms related to the forcing(electrostatic 

term) have their limits of integration changed to, 

� φN(x)
x2

x1
 

                                                                   (25) 

3.1.5 Double Electrode 
 

 

Figure 12: Simplified double electrode model 

 For the double electrode model, the major change is a new forcing term in 

the form of the secondary electrode voltage. Here Vacutation is the actuation voltage 
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while Vvontrol is the voltage of the second electrode or the control voltage. w and d are 

the deflection and the gap between the tip and the substrate respectively. The new 

electrostatic forcing is, 

Fe =
Vactuation2

�d − w(x, t)�
2 −

Vcontrol2

�d + w(x, t)�
2 

                                 (26)  

The overall equation (after normalization) comes in this form, 

∂4w
∂x4

+
∂2w
∂t2

= α2 �
Vactuation2

�1 − w(x, t)�
2 −

Vcontrol2

�1 + w(x, t)�
2� −

cnon
�1 − w(x, t)�

3
∂w
∂t

 

(27)  

As before, to avoid extensive Taylor series in the denominator we multiply both 

sides by (1 + w)2(1 − w)3 , which is the common denominator of all terms on the 

right hand side of equation (27). We use the separation of variables from equation 

(2) and multiple both side by ɸ (the first mode shape, using same methodology as 

used in derivation from equation (20)).The final expansion is given in two parts 

below. 

The left hand side of equation (27) expands to 

ü + wnon
2 u�−u5 �φ

7
dx + u4 �φ6dx + 2u3 �φ5dx − 2u2 �φ4dx − u�φ3dx

+ �φ2dx� + cnon u̇ ��φ2 + 2uφ3 + u2φ4dx � 
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                                                        (28) 

The right hand side expands to 

 

α2 �(V22 − V12) �u3 �φ4 − �φ� −  (3V22 + V12) �u2 �φ3 − u�φ2�� 

(29) 

Same as before, to simplify the equation we collect the integration on the left hand 

side in one term defined as A, 

A = �−u5 �φ
7

dx + u4 �φ6dx + 2u3 �φ5dx − 2u2 �φ4dx − u�φ3dx + �φ2dx� 

(30) 

The final equation can be written in the form 

ü + wnon
2 u + cnonu̇

(∫φ2 + 2uφ3 + u2φ4dx )
A

= α2
�(V22 − V12) (u3 ∫φ4 − ∫φ) −  (3V22 + V12) (u2 ∫φ3 − u∫φ2)�

A
 

   (31) 

3.2 Lumped Mass Parameter model 

 
 In the lumped mass model, the entire system is modeled as a spring mass 

damper system of the form shown in Figure (13). The beam is represented by an 

effective mass in the lumped mass parameter model. Furthermore an effective 
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spring constant and a damping coefficient is derived for the system based on the 

regime as before (contact regime and free regime).  

The basic equation implemented in the system is given in equation (27) 

mx ̈ + cẋ + kx =
εA[Vdc + Vac cos(ωt)]2

2(d − x)2       

                        (32)  

In the equation, m represents mass, while c and k represents the damping and 

spring constants respectively. ε is the dielectric constant for vacuum . A represents 

the cross sectional area of the beam and VDC is the DC voltage. d is the maximum 

distance between the beam tip and the substrate. 

We drive an equivalent spring mass model with a value of m, c and k. The values of c 

(damping) and k (stiffness) change drastically when the contact regime is activated 

(contact between substrate and tip) and when the free regime is activated (no 

contact). Both regimes have unique values of c and k which are derived using 3D 

models. Figure (13) can be used to visually represent and equivalent spring mass 

model for both regimes with different values of c and k. 
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Figure 13: Lumped mass parameter model [12] 
 

3.3 Defining ODE of the System 

 The dynamics of the system and the bouncing is modeled in two parts using 

the spring mass damper system, namely the free regime and the contact regime. 

During the free regime, the beam is not in contact with the substrate hence the 

resultant spring constant (K) and the damping (C) are much lower. On the other 

hand, when beam tip touches the substrate (or the dielectric as in our case), the 

magnitude of C and K becomes higher .We define this regime as the contact regime. 

In the case of the free regime, the equation of motion is defined as, 

mx ̈ + cfẋ + kfx =
εA[Vdc + Vac cos(ωt)]2

2(d − x)2  

                               (33)  

Where f signifies that the system is in the free regime and hence no contact has 

occurred. The values for cf and kf are taken from simulations. 
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As soon as the system reaches a specified distance, which is the distance of the 

dielectric layer as in our system, the equation shifts to contact regime. Note that c in 

the subscript means contact here. As before, the values for C and K are from 

simulations. 

mx ̈ + ccẋ + kcx =
εA[Vdc + Vac cos(ωt)]2

2(d − x)2  

                           (34) 

a) Double Electrode 
 

 In the case of double electrode model, we add a new forcing term to account 

for the secondary electrode. We assume no change occurs to the beam stiffness and 

the damping in the system. Hence to account for this change, the forcing term is 

changed to account for the second electrode, 

Fe =  �
Vdc12

�d
2 − x�

2 −
Vdc22

�d
2 + x�

2� 

(35)                                                                            

Other parts of the equation remain the same. 
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  Chapter 4.
Simulations 

 
 
 Several simulations are conducted to model the effect of bouncing accurately. 

The final purpose of the simulation is to show that the bounce may be reduced by 

implementation of open loop control in the form of pulse shaping functions. Since 

accurate simulations required changing ODE mid simulations, Simulink is chosen as 

the main program due to its excellent support for dynamical system simulations and 

modeling. 

4.1 Results of the Lumped Mass Parameter Model 

 The parameters for the model are taken from [5]. The parameters used for 

the model are presented in table 1. 

Table 1: Parameters for the lumped model [4] 

Parameter Value 
Natural frequency free (wf) 

 
2.1 x 104 Hz 

Damping free 
 

2 x 10−2 

Gap (d) 
 

3.8 x 10-6 m 

Maximum distance to travel 
 

2.6 x 10-6 m 

K (eA/2m) 
 

1.9 x 10-11 [F.m/kg] 

Effective spring constant 
 

42 N/m 

Natural frequency contact (wc) 
 

6.1 x 104Hz 

Damping (contact) 
 

2 x 10−1 

 



41 
 

 
 

4.1.1 Bouncing Characteristics Shown Using Uncontrolled Actuation 
 

 The equations of motion derived equation (33-35) are numerically 

integrated in Simulink to obtain the bouncing dynamics. The overall bouncing for 

the double beam electrode was simulated for the case of 0 control voltage. Figure 

(14) shows this profile with the corresponding displacement and velocity.  

 

Figure 14: The total bouncing profile part a: Displacement of tip. Part b: 
velocity 
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 The landing velocity and landing time are the velocity and time respectively 

of the tip when it reaches the substrate. The average settling time is the average 

time for amplitude of bounce to reduce to 5%.  Average bounce is the average of first 

eight displacements of the tip above the substrate (12). 

The effects on these parameters are tested by changing several variables. The 

variables tested are actuation and control pulse interaction, actuation and control 

voltages, control pulse timing and control pulse shape. Definitions of the variables 

are provided in their relevant section 

a) Single Electrode Uncontrolled Values 
 

 For the case of zero control voltage and 30 V actuation voltage, the landing 

time, landing velocity and other results obtained are shown in table 2.  

Table 2: Uncontrolled variable results 

Landing 
time[µs] 

Landing 
velocity[m/s] 

Average 
bounce[µm] 

Average settling 
time[µs] 

21.5 0.1784 0.358 13 
 

b) Control of Beam Dynamics by Varying Actuation Voltage and 
Control Voltage 

 

 Voltage control refers to the dependence on landing velocity and the landing 

time with both actuation and control voltages. Since voltage appears in the forcing 

term, it directly affects the dynamics of the system. Higher voltage will allow for 

faster switch closing times but with higher impact velocities. This could be mitigated 
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by using higher voltages in the control electrode to slow down the beam. Both the 

effects of control voltage and actuation voltage are studied in this document. 

• Using Control voltage as the Control Parameter 
 

 The dynamics of the switch and all the major parameters are strongly 

affected by the control voltage and hence it is one of the tools that can be used to 

reliably optimize the system. Table (4) shows the dependence of control voltage on 

the landing times and landing velocity. It can be seen that for a control voltage of 9 

V, the landing velocity, average settling time and average bounce are reduced by 

43%, 98% and 102% respectively, while the landing time increases by 11%.  

Table 3 lists the percentage changes with respect to the uncontrolled actuation for 

changes in control voltage. 
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Table 3: Selected percentage changes values from uncontrolled actuation for 
control voltage for actuation voltage 30V, pulse width 6 µs and pulse timing 

17µs 
 

Control 
Voltage 

[V] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change for 
Average bounce 

% Change for 
average settling 

time 
1 
 10.59% -43.18% -71.59% -84.20% 

2 
 10.64% -43.92% -88.85% -94.40% 

3 
 10.64% -43.66% -85.20% -97.24% 

7 
 10.73% -43.37% -86.11% -98.42% 

8 
 10.78% -43.48% -79.43% -90.67% 

9 
 10.82% -43.48% -97.83% -101.90% 

10 
 10.87% -43.38% -88.56% -98.00% 

11 
 10.92% -43.17% -80.38% -88.32% 
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Figure 15: Landing time vs control voltage 

 

 
 

Figure 16: Landing velocity vs control voltage 
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Overall, the control voltage improves all landing velocity for a minor increase in 

landing time, However, it improves the average bounce and settling times 

considerably. Also, the landing time increases and the velocity decreases as control 

voltage is increased. 

• Using Actuation Voltage as the Control Parameter 
 

Table 4: Selected percentage change values from uncontrolled actuation for 
actuation voltage with control voltage at 20V pulse width 6 µs and pulse 

timing 17µs 

Actuation 
Voltage 

[V] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change for 
Average bounce 

% Change for 
average settling 

time 
21 

 86.86% -42.96% 1.72% -43.96% 

22 
 73.43% -39.41% -62.17% -77.40% 

23 
 62.01% -35.38% -99.92% -100.00% 

24 
 52.21% -32.90% -74.83% -92.53% 

25 
 43.61% -30.24% -45.10% -62.71% 

26 
 36.04% -28.97% -52.33% -59.83% 

27 
 29.22% -27.72% -44.79% -56.67% 

28 
 23.04% -28.75% -63.06% -74.04% 

29 
 17.28% -32.35% -95.77% -103.76% 

30 
 11.66% -42.50% -87.59% -97.08% 

 

 Actuation voltage strongly influences both landing time and velocity. From 

the table 4 and figures 17 and 18, we see that actuation voltage may be used to 
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reduce landing time by sacrificing device performance in velocity, settling time and 

average bouncing.  

There is a local minimum observed in the system, figure (18). This will be discussed 

thoroughly in the section 4.1.2 d . 

 
Figure 17: Landing time vs actuation voltage 
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Figure 18: Landing velocity vs actuation voltage 
 

c) Using Different Control Pulse applications as Control Parameter 
 

 We determine the change in the dynamics of the system by applying the 

actuation voltage continuously or applying it only when the control voltage is off. 

• Non Continuous Application of Actuation Voltage 
 

  Figure (19) shows an example of this type of waveform. Table 5 shows the 

numerical results and graphs obtained for the non-continuous application of 

actuation voltage in terms of varying pulse width. The effect of pulse width is 

explained in the section 4.1.2 e. 
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Figure 19: Signal status for non-continuous application of actuation voltage  
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landing velocity, average bounce and average settling time can be achieved by 

applying non continuous actuation voltage. For one particular case, it is seen that by 

applying a  pulse width of 14 µs, from 17 µs, can allow for a reduction in landing 

velocity for 83% , both settling time and average bounce are reduced by 100%.  
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Pulse 
width 
[µs] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change for 
Average bounce 

% Change for 
average settling 

time 
19 

 96.24% -13.82% -59.78% -64.39% 

18 
 82.26% -18.33% -76.89% -86.34% 

17 
 69.86% -26.01% -57.98% -69.97% 

16 
 58.71% -37.33% -93.78% -105.47% 

15 
 47.98% -59.68% -91.21% -98.31% 

14 
 24.62% -82.38% -99.48% -100.16% 

13 
 13.33% -67.64% -23.33% -24.30% 

 

 
Figure 20: Landing time vs pulse width for non-continuous application of 

actuation voltage 
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Figure 21: Landing Velocity vs pulse width for non-continuous application of 

actuation voltage 
 

• Continuous Application of Actuation Voltage 
 

 Continuous application of actuation voltage implies that  actuation voltage is 

always activated while the control voltage will be turned on for specific time 

interval. Figure (22) shows an example of this type of waveform. Table 6 and figures 

23 and 24 show the results obtained. 
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Figure 22: Signal status for continuous application of actuation votlage 
 

Table 6: percentage change in parameters for pulse width--for continuous 
application of actuation voltage with control voltage at 20V actuation voltage 

at 30V and pulse timing 17µs 

Pulse 
width 
[µs] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change for 
Average bounce 

% Change for 
average settling 

time 
19 

 2.60% -3.22% -43.96% -63.71% 

18 
 1.95% -2.64% -24.65% -27.43% 

17 
 1.44% -2.45% -40.37% -43.51% 

16 
 1.02% -2.04% -12.07% -10.89% 

15 
 0.70% -1.69% -22.39% -24.99% 

14 
 0.46% -1.70% 1.06% 0.98% 
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Figure 23: Landing time vs Pulse width 

 

Figure 24: Landing velocity vs pulse width 
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d) Discussion for Low Velocity Present in Non-Continuous 
Application of Actuation Voltage 

 

 From the figures (20, 21) and (23, 24), it can be seen that for some values of 

actuation voltage the velocity attains a local minimum. Also, it is observed that non 

continuous application of actuation voltage allows for a much greater reduction in 

the landing velocity as opposed to continuous application. This is due to the fact that 

during certain values of the actuation voltage, the landing time falls completely 

between the pulse width of the control voltage. This allows for the control voltage to 

rapidly decelerate the beam in the absence of the actuation voltage and hence reach 

much lower velocity at landing time. This is the main reason we see a local 

minimum in the graphs. After the minimum, other values of voltage as in figure (25) 

give higher landing velocities.  

The figure below explains this phenomenon. For high voltages, the landing time 

occurs before the application of the control pulse hence we see that the pulse does 

not affect landing time. For the lower voltages, the landing time occurs after the 

application of the control pulse. This allows the actuation voltage, which dominates 

the forcing near the beam (see equation 35), to reaccelerate the beam and give 

higher landing velocity. The best result occurs when the landing time happens at the 

end of the control pulse width allowing for maximum deceleration of the beam. 
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Figure 25: Landing times for different actuation voltages 
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changing the pulse width directly effects both landing times and velocity. Taking the 

non-continuous application of actuation voltage for reference (see figure 21), we see 

that as the pulse width decreases the landing velocity substantially, while increasing 

the landing time. 

f) Control Pulse Timing 
 

 Control pulse timing is defined as the time the control pulse is first applied. 

Pulse timing has been found to be one of the most important parameters in reducing 

bouncing. Since application of the control pulse only affects the dynamics of the 

system if applied before the initial contact between the tip and the substrate. The 

table 7 and figures (26-27) show the effect of increase pulse timing on the dynamics 

of the system. 

As seen from the graphs and table 7, correct application of the pulse before the first 

impact can significantly reduce bouncing as well as subsequently change the landing 

time and velocity of impact for later time periods. Too late application of the pulse 

will prevent any meaningful control as can be seen in the latter half of both figure 

(26) and figure (27). 

Table 7: Percentage change from uncontrolled actuation for pulse 
position/pulse timing with control voltage at 20V actuation voltage at 30V 

and pulse width at 14µs 
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Pulse 
position 

[µs] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change for 
Average bounce 

% Change for 
average settling 

time 

11 
 2.60% -3.22% -16.27% -20.34% 

12 
 1.95% -2.64% -5.74% -6.42% 

13 
 1.44% -2.45% -3.97% -4.46% 

14 
 1.02% -2.04% -21.96% -30.07% 

15 
 0.70% -1.69% -42.36% -62.16% 

16 
 0.46% -1.70% 1.06% 0.98% 

17 
 0.28% -1.33% -88.71% -113.40% 

18 
 0.14% -0.81% -79.49% -100.84% 

19 
 0.05% -0.33% -91.05% -111.11% 

20 
 0.00% -0.06% 7.61% 7.70% 
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Figure 26: Landing time vs pulse position 

 

Figure 27: Landing time vs pulse position 
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g) Control Pulse Shape 
 

 Different input functions are used to provide the voltage in a variety of 

different shapes. AC voltage is a common input source for electrical applications; 

hence an AC pulse in the form of a sine wave is input to the system and tested. The 

effect of the control voltage in the form of the AC voltage is shown.  

Table 8: Percentage changes from uncontrolled actuation for application of 
half sine wave with control voltage at 20V pulse width 6 µs and pulse timing 

17µs 
 

Control 
voltage[V] 

% Change for 
landing time 

% Change for 
landing velocity 

% Change 
for Average 

bounce 

% 
Change 

for 
average 
settling 

time 

21 86.86% -42.96% 1.72% -43.96% 

22 73.43% -39.41% -62.17% -77.40% 

23 62.01% -35.38% -99.92% -100.0% 

24 52.21% -32.90% -74.83% -92.53% 

25 43.61% -30.24% -45.10% -62.71% 

26 36.04% -28.97% -52.33% -59.83% 

27 29.22% -27.72% -44.79% -56.67% 

28 23.04% -28.75% -63.06% -74.04% 
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Figure 28: The total bouncing profile part a: Displacement of tip. Part b: 
velocity profile and part c: signal shapes. Red signal signifies control voltage 

and the black signal shows actuation voltage 
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Figure 29: Landing time vs Control Voltage 

 
Figure 30: Landing velocity vs control voltage 
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system compared to the other parameters, for the sake of simplicity, we ignore 

damping in this analysis.  

The overall idea of this tuning is to ensure the tip has zero kinetic energy when it 

touches the substrate. As the switch moves closer to the substrate, more and more 

energy is stored as elastic energy in the beam. The only source of energy is the 

voltage in the form of the actuation voltage. The basic idea is to dissipate all the 

energy not stored as elastic energy, using the control voltage.  

Figure 31 shows a sample application of the pulse with the tuning method 

discussed. Note that the actuation voltage is applied from 0 to ta while the control 

voltage is applied from ta to tl. Also, dg is the distance to the substrate while xa is the 

distance at which the control voltage is first applied. 

 

Figure 31: Application of the control pulse. 
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The first parameter that needs to be experimentally determined is the landing time 

of the switch. After that, the application of the control pulse has to be fixed in such a 

way that it includes the landing time of the switch. A good practice is to set the 

ending time of the control pulse width equal to the landing time. The starting time of 

the control pulse width can be set according to user requirements (such as 40% of 

landing time). This will ensure that the landing time will occur during the 

application of the control voltage to provide minimum landing velocity. 

One of the major problems of this method is obtaining xa, the beam tip distance 

travelled at the time the control pulse is applied. As, the governing equation of 

motion is strongly nonlinear, there is no analytical solution to the ODE forcing us to 

use numerical methods to obtain xa. After acquiring xa , it is easier to obtain the 

other parameters as they can directly be derived using the pulse width and beam 

parameters (see figure 31) . As stated earlier, our objective is to achieve zero kinetic 

energy during the landing time, hence we equate the total energy terms present in 

the system. 

𝐸𝑛𝑒𝑟𝑔𝑦 = � 𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
𝑡

0
. 𝑣 𝑑𝑡 

(43) 

As 𝑣𝑑𝑡 = 𝑑𝑥 

𝐸𝑛𝑒𝑟𝑔𝑦 = � 𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
𝑥

0
.𝑑𝑥 
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(44) 

Hence equating the energy terms, 

Energy provided by actuation voltage − Stored eleastic energy

= Energy dessipated by control voltage 

(45) 

� �
Vdc1

2(d − x)2�
xa

0
dx −

kdg2

2
= � �

Vdc2
2(d + x)2�

dg

xa
dx 

(46) 

Solving the above equation for the control voltage can provide an optimized system 

that will provide close to zero landing velocity.  

Figure (32) shows a final tuned figure with zero bouncing. Using the earlier method, 

it is possible to find parameters in close proximity to the optimized parameters that 

will allow soft landing. 

Tuning allowed reducing the bouncing considerably as well as reducing the landing 

velocity of 9cm/s. This may be repeated with other pulse shapes and beams of 

different dimensions to obtain landing with virtually no bounce. However, it can be 

seen that the landing time has increased 24 us to 31us.  
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 Figure 32: Final tuned figure with displacement and velocity profiles 
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Vp 

Vh 

Vc ta tc 

Vc ta tc 

Vp 

Vh 

 

(a) 

(b) 

case of double electrode model, we modify the waveforms with the inclusion of a 

control voltage (Vc). The figure below presents the general shape of the tested 

waves. Table 9 shows the values used to compare the two waveforms. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 33: Dual pulse actuation waveform and exponentially increase dual 
pulse actuation waveform[13] 

 

 

 

 

 
 

Figure 34: DP and EDP waveforms used for our double electrode model 
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Table 9: Literature compares parameters for different waves 

 

Using data from table 9, the displacement and velocity profiles are obtained given in 

figure (35) and figure (36). 
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Figure 35: Landing time and landing velocity comparison between DP and DP 
using double electrode 
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Figure 36: Landing time and landing velocity comparison for EDP and EDP 
using double electrodes 
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Hence, for both cases we see that the double electrode model provides better overall 

dynamics compared to the single electrode case. 

4.2 Beam Model 

 The parameters used in the model were taken from [2]. Table 10 shows the 

parameters were used for the beam model. 

Table 10: Parameters for beam model 

Parameter Value 

Length 70 um 

Width 30um 

Thickness 2um 

Gap (dg) 1.5um 

Max distance dt) .75um 

Electrode position 21 um to 49 um 

Young’s Modulus (E) 207GPa 

Density 8900 kg/m3 

 
 

4.2.1 Bouncing Characteristics Shown Using Uncontrolled 
 

 The bouncing characteristic for the double electrode model is simulated 

using a Simulink model. 
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a) Uncontrolled Bouncing Displacement 

 

Figure 37: Uncontrolled bounce dynamics 
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4.2.2 Control of Bouncing Using the Double Electrode 
 

 Similar to the beam mass model several important parameters where tested 

for the beam model. The parameters tested for the beam model are voltage in the 

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time[us]

D
is

pl
ac

em
en

t[u
m

]



72 
 

form of actuation voltage. The pulse width and pulse timing. The detailed definition 

for individual parameters and there significance may be found in section 4.1.2. 

a) Actuation Voltage 
 

 Figure (38-39) shows the Landing velocity and time for changes in actuation 

voltage. The control voltage was set at 110V .The pulse width was set at 0.21 µs and 

pulse timing was 0.61 µs. 

 

Figure 38: Landing time vs actuation voltage 
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Figure 39: Landing velocity vs actuation voltage 
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Figure 40: Landing time vs pulse width 

 

Figure 41: Landing velocity vs pulse width 
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As in the case of lumped parameter modeling, certain pulse width provide best 

landing velocity characteristics. Also, it can be seen from figure (40) and (41) 

smaller pulse width allow for faster landing times with sacrifice in terms of higher 

landing velocities. The figures verify the case for the lumped mass system. 

c) Control Pulse Timing 
 

 For this simulation, Voltages is set at 280V and 110V for control and 

actuation voltages respectively. The pulse width is set to 0.21µs. The figures below 

show the characteristics of the landing time and velocity for moving the pulse .0175 

µs forward each iteration near the theoretical contact time between the tip and the 

substrate. 

 

Figure 42: Landing time vs pulse position 
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Figure 43: Landing velocity vs pulse position 
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spring mass model using the parameters provided. Then the method mention in 

section 4.1.3 can be applied. Figure (44) is an example of this tuning. 

 

Figure 44: Tuned bouncing profile for beam model 
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  Chapter 5.
Conclusion and Future Work 

 
 This thesis discusses a new technique to reduce the problem of bouncing in 

micro beams using the double electrode model which uses resistive forces to slow 

down the acceleration of the beam to ensure smooth landing time. The main idea 

behind the control voltage is to allow users to tune the system according to their 

requirements. The system was modeled using the lumped parameter model and the 

beam model and the dependence of several variables was tested on the system 

dynamics and schemes were developed to allow for better control. The results were 

compared against popular bouncing control waveforms to show the viability of the 

double electrode control scheme. Finally, the beam model was used to verify the 

lumped mass model to ensure parameters tested followed similar trajectory in both 

cases. The overall simulations result show positively that bouncing and landing time 

maybe reduced overall by the application of a resistive force using a double 

electrode configuration. 

The next step on continuing of this research is to fabricate the beam and 

experimentally show that no bounce can be obtained by varying the control 

parameters. Energy methods can be used to further study the system and provide 

methods to derive best parameters where other analytical solutions have failed. 

Analytical methods such as the differential flatness methods can also be 

implemented to reduce the complexity of the nonlinear system and provide 

optimization of important parameters while ignoring less important ones. 
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