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 ABSTRACT 
 
 

Efficient Generation and Selection of Combined Features  
for Improved Classification 

 
 

Ahmad Shono 
 
 

This study contributes a methodology and associated toolkit developed to allow users to 

experiment with the use of combined features in classification problems. Methods are 

provided for efficiently generating combined features from an original feature set, for 

efficiently selecting the most discriminating of these generated combined features, and for 

efficiently performing a preliminary comparison of the classification results when using the 

original features exclusively against the results when using the selected combined features. 

The potential benefit of considering combined features in classification problems is 

demonstrated by applying the developed methodology and toolkit to three sample data 

sets where the discovery of combined features containing new discriminating information 

led to improved classification results. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 A Brief Review of Binary Classification 
 

In bioinformatics and in other fields, a common problem that arises is finding a way to 

distinguish between two data sets so that given any data item we can reliably determine to 

which data set it belongs. This is known as the binary classification problem [1] where the 

data items are called instances and the data sets are called classes. For example, the 

problem of determining whether a patient has a certain disease or not can be considered a 

binary classification problem where the patient is an instance and the classes are ‘diseased’ 

and ‘not diseased’. 

Machine learning algorithms known as classifiers [1] address the binary classification 

problem by learning a classification model from a training set of instances. This trained 

model can then be used to map new instances to the classes. Classifiers train a model by 

analyzing a chosen number of measurable or observable characteristics of the instances. 

Depending on context, these characteristics may be called variables, attributes, or features 

[1]. For the remainder of this document, we will refer to these characteristics as features. 

The performance of each classifier varies depending on the nature of the available 

training set of instances and the chosen features. Although there is no general methodology 

that always works well, significant improvement in classifier performance may be attained 

by optimizing the choice of features. This is known as feature selection [1] and can be done 

through the removal of redundant or irrelevant features, the selection of the best 

discriminating subset of features, or the discovery and use of new features that contain 

additional discriminating information. 
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1.2 Generation of Combined Features 
 
As mentioned at the end of the previous section, one way to possibly attain significant 

improvement in classifier performance is through the discovery and use of new features 

that contain additional discriminating information. One method of feature discovery is the 

generation of new features derived from the original features, as is done for example by the 

Support Vector Machines (SVM) classifier [2]. This study also generates new features but 

through a different methodology that is based on the construction of combinations of the 

original features up to a certain maximum combination size. The intuition is that these 

combinations of features – hereafter referred to as combined features – may contain 

additional discriminating information, and classifiers that are capable of taking advantage 

of any such additional information may show significantly improved results. 

As an illustrative example, consider the small data set shown in Table 1-1. By 

considering only the original features A and B, we cannot intuitively discern a good 

solution, especially since the features appear to have similar value ranges and distributions 

in both the positive and negative classes. However, if we generate the combined 2-feature 

AB with values A×B as shown in Table 1-2, then a perfect solution becomes apparent based 

on the following rule: 

ὭὪ ὃὄ ςȟὸὬὩὲ ὧὰὥίί Ὥί ὴέίὭὸὭὺὩ 

Table  1-1: Data Set (before feature generation) 

Positive Negative 
Instance Feature A Feature B Instance Feature A Feature B 

1 3 1 1 1 2 
2 2 2 2 3 0 
3 1 3 3 2 1 
4 3 2 4 0 3 
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Table  1-2: Data Set (after generating new features by multiplication) 

Positive Negative 
Instance Feature AB (A×B) Instance Feature AB (A×B) 

1 3 1 2 
2 4 2 0 
3 3 3 2 
4 6 4 0 

 
Note that in this example, calculating the value of the generated combined feature 

through addition instead of multiplication, as shown in Table 1-3, would also provide a 

perfect solution based on the following rule:  

ὭὪ ὃὄ σȟὸὬὩὲ ὧὰὥίί Ὥί ὴέίὭὸὭὺὩ 

Table  1-3: Data Set (after generating new features by addition) 

Positive Negative 
Instance Feature AB (A+B) Instance Feature AB (A+B) 

1 4 1 3 
2 4 2 3 
3 4 3 3 
4 5 4 3 

 

Ultimately, the choice of a method used to calculate the values of generated combined 

features should be guided by the nature of the data and the original features in order to 

preserve interpretability and hopefully gain better insight into the specific classification 

problem being addressed. For example, if feature A and B from Table 1-1 represent the 

height and width of an instance, then feature AB (A×B) from Table 1-2 would represent the 

area of that instance, and the classification results would provide the insight that the 

positive instances have larger areas compared to the negative instances. 

To clarify these ideas further in a more common framework, consider data sets where 

the feature values represent the number of occurrences or frequency of the features. In that 

case, the value of a combination of two features through multiplication can be interpreted 
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as the number of paired occurrences of the two features. Figure 1-1 shows an example of 

an instance where the value of the combined feature AB (A×B) represents six paired 

occurrences of feature A (occurring 3 times) and feature B (occurring 2 times). 

 

Figure  1-1: Combined Features Interpretability Example 

Another notable aspect of generation of combination of feature is that the additional 

discriminating information – if it exists – may be found in combinations of more than two 

features. It is therefore desirable to generate feature combinations of size two, three, four, 

and so on. For explanation, here, a feature combination of size 3 means a new feature 

generated from a combination of 3 original features. We highlight here that the way of 

combining original features into new one can take various forms, e.g. addition of values, 

multiplication of values, or in general any nonlinear combination of values.  

However, the computational cost of generating combined features can grow very rapidly 

due to combinatorial explosion, depending on the number of original features, the way how 

they are combined, and the desired maximum combination size. For example, for a data set 

with 100 original features and a desired maximum combination size of four, there are over 

four million combined features to generate: 

ὔόάὦὩὶ έὪ ὧέάὦὭὲὩὨ ὪὩὥὸόὶὩί ὸέ ὫὩὲὩὶὥὸὩ 
ρππ
ς

ρππ
σ

ρππ
τ

 

ρππȦ

ςȦρππςȦ

ρππȦ

σȦρππσȦ

ρππȦ

τȦρππτȦ
 

τωυπρφρȟχππσȟωςρȟςςυτȟπψχȟψχυ 
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1.3 Dragon Combined Features Discovery (DCFD) Toolkit 

This study contributes a methodology and associated toolkit (DCFD) developed to allow 

users to experiment with the use of combined features in classification problems. The 

DCFD toolkit provides efficient tools for generating combined features from an original 

feature set, for selecting the most discriminating of these generated combined features, and 

for performing a preliminary comparison of the classification results when using the 

original features exclusively against the results when using the selected combined features. 

This study also reports the results of the practical application of the DCFD toolkit on three 

sample data sets.  
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CHAPTER 2:  METHODOLOGY 
 
 

2.1 Problem Formulation 

In order to investigate the effect of using combined features in binary classification 

problems, the following tasks are essential: 

1) Efficient Generation of Combination of Features: The efficient generation of as 

many combined features as possible is essential since generating more combined 

features increases the chance of finding additional discriminating information. 

2) Efficient Feature Selection: The efficient selection of the best discriminating 

subset of original and generated combined features is essential since the number of 

generated combined features tends to be significantly large due to combinatorial 

explosion. 

3) Fair Comparison of Classification Results: In order to properly investigate the 

effect of using combined features, it is essential to perform fair comparisons of 

classification results obtained with the original features versus those obtained with 

the selected combined features across a wide variety of different types of classifiers. 

 

2.2 Generation of Combined Features 

Given any binary class data set with numeric features, a maximum combination size, and 

a method for calculating combined feature values, the objective is to generate a new data 

set with all possible combined features. In order to generate combined features from data 

sets that include non-numeric features, the non-numeric features must first be converted 

into numeric features. 
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In order to mitigate the effects of combinatorial explosion, two optional and mutually 

non-exclusive methods can be used for reducing the number of original features and the 

number of generated combined features. They are described in the following two sections. 

 

2.2.1 Occurrence Percentage Cutoff 

A feature is said to occur in an instance if its value is greater than zero. Any feature that 

has an occurrence percentage less than a certain value in both the positive and negative 

classes is ignored. The occurrence percentage in a class (positive/negative) is calculated as 

follows: 

ὕὧὧόὶὶὩὲὧὩ ὖὩὶὧὩὲὸὥὫὩ Ὥὲ ὅὰὥίί
Π έὪ ὕὧὧόὶὶὩὲὧὩί Ὥὲ ὅὰὥίί

Π έὪ ὅὰὥίί ὍὲίὸὥὲὧὩί
ρππ  

The intuition behind this cutoff is that any feature with a low occurrence percentage in 

both classes is less likely to be part of any significantly discriminating combined feature. 

Selecting the occurrence percentage cutoff is a tradeoff between efficient computation and 

the size of the combined feature search space. Typically, a small occurrence cutoff of 1% – 

5% is used since a larger cutoff would acutely increase the chance of overlooking 

significantly discriminating combined features. 

 

2.2.2 Absolute Difference Percentage (ADP) Cutoff 

A feature is said to occur in an instance if its value is greater than zero. Any feature that 

occurs in both the positive and negative classes with an absolute difference percentage less 

than a certain value is ignored. The absolute difference percentage may be calculated in 

many different ways, but here it is calculated as follows: 
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ὃὦίέὰόὸὩ ὈὭὪὪὩὶὲὩὧὩ ὖὩὶὧὩὲὸὥὫὩ

ȿΠ ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίΠ ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίȿ

ÍÁØ Π ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίȟΠ ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί
ρππ 

This parameter generally works fine for approximately balanced data sets, but for highly 

imbalanced data sets should be replaced by: 

ὃὦίέὰόὸὩ ὈὭὪὪὩὶὲὩὧὩ ὖὩὶὧὩὲὸὥὫὩȿ
Π ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί

Π ὖέίὭὸὭὺὩ ὍὲίὸὥὲὧὩί

Π ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί

Π ὔὩὫὥὸὭὺὩ ὍὲίὸὥὲὧὩί
ȿ ρππ 

The intuition behind this cutoff is that any feature with a similar number of occurrences 

in the positive and negative classes is less likely to contain discriminating information, and 

therefore less likely to be part of any significantly discriminating combined feature. 

However, this intuition can be misleading for some data sets. As an illustrative example, 

consider the data set depicted in Table 2-1 where feature A and B occur 50 times in the 

same positive instances and occur 50 times each in different negative instances. Since 

features A and B have zero difference percentages, they will be ignored according to the 

absolute difference percentage cutoff rule, and the significantly discriminating combined 

feature AB is never discovered. 

Table  2-1: Difference Percentage Cutoff Example 

 Positive Negative 

Feature A Occurrences 50 50 

Feature B Occurrences 50 50 

Feature AB Occurrences 50 0 

 
 

Therefore, although the absolute difference percentage cutoff is similar to the 

occurrence percentage cutoff in that it mitigates combinatorial explosion, it also introduces 

an additional and distinct possibility for overlooking significantly discriminating combined 
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features, and should consequently only be used when the occurrence percentage cutoff 

does not provide enough combinatorial explosion mitigation on its own. 

 

2.3 Feature Selection 
 

Due to the typically large number of generated combined features, it is necessary to 

apply feature selection methods that are capable of efficiently processing a large number of 

features. Since wrapper and advanced filter methods are prohibitively expensive from a 

computational perspective for such a task, the use of less sophisticated feature ranking 

methods is warranted. The following sections describe the feature ranking methods used in 

this study. 

 

2.3.1 Rank by Least Error Percentage (LEP) 

The error percentage per feature is calculated as follows: 

Ὁὶὶέὶ ὖὩὶὧὩὲὸὥὫὩ
Ὂὖ Ὂὔ

Π έὪ ὍὲίὸὥὲὧὩί
ρππ 

The confusion matrix [1] – which includes the number of False Positives (FP) and False 

Negatives (FN) – is determined based on a certain threshold, which is either given as a 

parameter or found through exhaustive search for the best associated error percentage. 

For each feature, the exhaustive search considers all possible thresholds between the 

largest minimum value and the smallest maximum value. 

 

2.3.2 Rank by Absolute Difference Percentage (ADP) 

Features could be ranked based on the decreasing value of this parameter, described 

previously in section 2.2.2.  



20 
 

2.3.3 Rank by Distance from Ideal Predictor (DIP) 

Following ideas from (Bajic 2000, Briefings in Bioinformatics) [3] we can use the 

concept of distance to represent the quality of our predictor when we use the selected 

feature. This approach, based on two or more measurements of prediction quality and any 

type of distance measure, is particularly useful when dealing with highly imbalanced 

classes of data and can be applied to any set of features and any predictor. This study uses 

the True Positive Rate (TPR) and True Negative Rate (TNR) prediction quality 

measurements and Euclidean distance. Since an ideal predictor would classify the entire 

data set with 100% TPR (sensitivity) and 100% TNR (specificity), we can represent this 

ideal predictor as the point (1,1) in the plane (TPR,TNR) as depicted in Figure 2-1. Features 

can then be ranked by their Euclidean “distance from the ideal predictor” (DIP) according 

to the following calculation: 

ὈὭίὸὥὲὧὩ Ὢὶέά ὍὨὩὥὰ ὖὶὩὨὭὧὸέὶρ ὝὖὙ ρ ὝὔὙ 

The confusion matrix is determined based on a certain threshold, which is either given 

as a parameter or found through exhaustive search for the best associated DIP. For each 

feature, the exhaustive search considers all possible thresholds between the largest 

minimum value and the smallest maximum value. 

 

Figure  2-1: Distance from the Ideal Predictor (DIP) 
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2.3.4 Rank by P-Value 

The p-value [4] per feature is calculated according to the Numerical Recipes [5] 

computation for two-tailed T distribution test statistic as implemented in [6].  Assuming 

unequal variance, the t-score and degrees of freedom per feature are calculated as follows: 

ὸ ίὧέὶὩ
ὢ ὢ

ί
ὲ

ί
ὲ

 

ὨὩὫὶὩὩί έὪ ὪὶὩὩὨέά

ί
ὲ

ί
ὲ

ί
ὲ
ὲ ρ

ί
ὲ
ὲ ρ

 

Where: 

ὲ Π ὴέίὭὸὭὺὩ ὭὲίὸὥὲὧὩί          ὲ Π ὲὩὫὥὸὭὺὩ ὭὲίὸὥὲὧὩί 

ὢ ὥὺὩὶὥὫὩ ὴέίὭὸὭὺὩ ὺὥὰόὩ          ὢ ὥὺὩὶὥὫὩ ὲὩὫὥὸὭὺὩ ὺὥὰόὩ 

ί ὴέίὭὸὭὺὩ ὺὥὶὭὥὲὧὩ          ί ὲὩὫὥὸὭὺὩ ὺὥὶὭὥὲὧὩ 

 

2.4 Classification Results Comparison 

In order to ensure fair comparison between classification results obtained with the 

original features versus those obtained with the selected combined features, the following 

guidelines should be followed: 

1) Any occurrence or difference percentage cutoffs applied in the generation of the 

combined features should also be applied on the original features.  This ensures that 

any improvement in the classification results can be attributed to new 

discriminating information gained from the combined features and not to the 

removal of irrelevant or redundant original features. 
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2) Feature selection methods applied on the generated combined features should also 

be applied on the original features. This ensures that any improvement in the 

classification results can be attributed to new discriminating information gained 

from the combined features and not to any optimization gained through feature 

selection. 

3) Since classifier performance varies greatly depending on the nature of the data set, a 

wide variety of different types of classifiers should be used for each experiment, 

thereby ensuring a fair overall comparison. 

The following sections provide brief descriptions of the 15 classifiers used in the 

experiments described in this study. All classifiers were applied using the implementations 

available in the Weka [7] toolkit. 

 

2.4.1  Naïve Bayes classifier 

The Naïve Bayes classifier [8] is a probabilistic classifier based on Bayes’ theorem: 

ὖὃȿὄ
ὖὄȿὃὖὃ

ὖὄ
 

The classification problem is transformed into the problem of finding the probability of 

the instance B belonging to the class A. The classifier is considered naïve because it 

assumes that the features are statistically independent. 

 

2.4.2  Bayesian Network classifier 

The Bayesian Network classifier [9] searches for a Bayesian Network that best matches 

the feature probability distribution in the training set of instances. This classifier therefore 
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avoids the naïve assumption that the features are statistically independent. Once a suitable 

network is found, it can be used to predict the class label of new instances. 

 

2.4.3  Support Vector Machines (SVM) classifier 

The SVM classifier [2] projects instances to a higher dimensional space by using a kernel 

function, and searches for a hyper-surface that separates the training set of instances into 

the two classes with the widest possible margin between the boundary instances of the two 

classes. These boundary instances are called support vectors. Once a suitable hyper-surface 

is found, it can be used to predict the class label of new instances. In this study, the SVM 

classifier was applied using the Weka integrated LIBSVM [10] implementation. 

 

2.4.4  Logistic classifier 

The Logistic classifier [11] is a probabilistic classifier based on logistic regression with a 

ridge estimator. Logistic regression measures the relationship between the class label and 

the features by using probability scores. 

 

2.4.5  Instance-Based K-Nearest Neighbors (IBk) classifier 

The IBk classifier [12] is a lazy instance-based learning classifier derived from the 

nearest neighbors algorithm [13]. Instead of learning a classification model from the 

training set of instances, this classifier predicts the class label of a new instance based on 

the proximity of that instance to a certain number (k) of training instances. 

 

2.4.6  Bagging classifier 

The Bagging classifier [14] is an ensemble classifier that uses random samples of the 

training set of instances to construct multiple classification models of a certain classifier. In 
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this study, the Reduced-Error Pruning Tree (REPTree) classifier is used. The REPTree 

classifier uses information gain as the splitting criterion. The Bagging classifier predicts the 

class label of new instances by aggregating the predictions of the constructed REPTree 

classification models.  

 

2.4.7  Random Committee classifier 

The Random Committee classifier [1] is an ensemble classifier that uses the entire 

training set of instances to construct multiple classification models of a certain classifier 

with different random number seeds. In this study, the Random Tree classifier is used. The 

Random Tree classifier constructs a decision tree classification model that considers a 

random feature subset at each node controlled by the seed. The Random Committee 

classifier predicts the class label of new instances by aggregating the predictions of the 

constructed Random Tree classification models. 

 

2.4.8  Random Subspace classifier 

The Random Subspace classifier [15] is an ensemble classifier that uses the entire 

training set of instances to construct multiple classification models of a certain decision 

tree based classifier with different pseudo randomly selected feature subsets (subspaces). 

In this study, the REPTree classifier is used. The Random Subspace classifier predicts the 

class label of new instances by aggregating the predictions of the constructed REPTree 

classification models. 
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2.4.9  Rotation Forest classifier 

The Rotation Forest [16] classifier is an ensemble classifier that uses random samples of 

the training set of instances to construct multiple classification models of a certain decision 

tree based classifier with the principal components of different disjoint feature subsets. In 

this study, the J48 classifier is used. The Rotation Forest classifier predicts the class label of 

new instances by aggregating the predictions of the constructed J48 classification models. 

 

2.4.10 Threshold Selector classifier 

The Threshold Selector classifier [1] selects a mid-point threshold on the output of a 

probabilistic classifier such that a given performance measure is optimized. In this study, 

the Logistic classifier is used and the F-Measure [1] is optimized.  

 

2.4.11 Decision Table classifier 

The Decision Table classifier [17] is a simple decision table majority classifier. It predicts 

the class label of a new instance by the majority vote of any matching training instances in 

the decision table. If there are no matching training instances, it predicts the class label by 

the majority vote of all training instances in the decision table. 

 

2.4.12 Non-Nested Generalized Exemplars (NNge) classifier 

The NNge classifier [18] is an instance based classifier derived from the nearest 

neighbor algorithm. Instead of learning a classification model from the training set of 

instances, this classifier predicts the class label of a new instance based on the nearest non-

nested generalized exemplar. These exemplars are sets of if-then rules that accurately 
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classify a certain number of training instances. These exemplars can also be viewed as non-

overlapping hyper-rectangles in the feature space. 

 

2.4.13 Alternating Decision Tree (ADTree) classifier 

The ADTree classifier [19][20] is a decision tree based classifier where a new instance 

may follow multiple paths as opposed to a single path as is the case with other decision 

trees such as C4.5. An alternating decision tree consists of decision nodes which specify a 

condition, and prediction nodes which contain a single number. The class label of a new 

instance is predicted by following all paths that meet the conditions of the decision nodes 

and summing the number values of the prediction nodes. If the final sum is positive then 

the positive class is predicted. 

 

2.4.14 J48 classifier 

The J48 [1] classifier is an open source implementation of the C4.5 classifier [21] which 

is a decision tree based classifier where the decision nodes are generated according to the 

features with the highest normalized information gain. The class label of a new instance is 

predicted by following the path that meets the conditions of the decision nodes. 

 

2.4.15 Random Forest classifier 

The Random Forest classifier [22] uses random samples of the training set of instances 

to construct multiple Random Tree classification models with a fixed number of randomly 

selected features. The Random Forest classifier predicts the class label of new instances by 

aggregating the predictions of the constructed Random Tree classification models.  
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CHAPTER 3: IMPLEMENTATION 
 
 

3.1 DCFD Toolkit Overview  
 

Figure 3-1 provides an overview of the tools – highlighted in blue – available in the 

DCFD toolkit. The following sections describe each tool. 

 

Figure  3-1: DCFD Toolkit Overview 

 

3.2 Combined Features Generation (CombFeatGen) Tool  
 

The Combined Features Generation Tool is an executable command line interface (CLI) 

program developed in the C programming language, and utilizes the uthash [23] header file 

for efficient search and the OpenMp [24] library for parallel processing. Given a binary 

class data set in a Weka compatible Attribute-Relation File Format (ARFF), the program 
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outputs the same data set with the original features plus generated combined features of a 

desired maximum combination size. The mandatory and optional parameters are listed in 

the following usage printout:  

 

Program version: 1.1 9 

 

usage: CombFeat Gen label  data [ - s size] [ - m method] [ - o percent] [ - d percent] [ - w 

wdir] [ - p]  

    label:            output label (alphanumeric, max 20 chars)  

    data:             data file  (arff format, max 200 chars)  

    - s size:          max combination size (1 - 4, default 2)  

    - m method:        combined features value calculation method (add/mult, default 

mult)  

    - o percent:       apply occurrence cutoff percent (1 - 99)  

    - d percent:        apply difference cutoff percent (1 - 99)  

    - w wdir:          working directory (max 200 chars)  

    - p:               pause at the end of the program  

 

 

3.3 Feature Selection (FeatSel) Tool 

The Feature Selection Tool is also an executable CLI program developed in the C 

programming language and also utilizes the uthash header file for efficient search and the 

OpenMP library for parallel processing. Given a binary class data set in a Weka compatible 

ARFF, the program outputs the same data set with the original features replaced by the 

desired number of top ranked features by LEP, ADP, DIP, or p-value. The mandatory and 

optional parameters are listed in the following usage printout:  

 

Program version: 1.2 5 

 

usage: FeatSel label data num [ - m method] [ - z th reshold] [ - t features] [ - w wdir] [ - p]  

    label:            output label (alphanumeric, max 20 chars)  

    data:             data file (arff format, max 200 chars)  

    num:              number of features to select  

    - m method:        feature selection me thod (le/ad/ dip /pv, default le)  

    - z threshold:     fixed threshold (default exhaustive threshold search)  

    - t features:      write sorted comparison table with (all/sel) features  

    - w wdir:          working directory (max 200 chars)  

    - p:               pause at the end of the program  
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3.4 KAUST Weka Initial Classification (KWIC) Tool  
 

The KAUST Weka Initial Classification (KWIC) Tool is an executable Java Archive (JAR) 

file that provides a Graphical User Interface (GUI) for running and reporting the results of 

multiple Weka classifiers using default parameters. The tool also provides various 

functions that are convenient to use when conducting experiments with original and 

generated combined features. Figure 3-2 shows the main user interface. The run button 

applies any selected Weka classifier implementations on the given data set either with 

cross validation or against a given test data set and writes the results summary to a 

generated <output label>_Results text file. Runtime output is displayed in the Output text 

area and any occurring errors, exceptions, or warnings are displayed in the Errors text 

area. 
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Figure  3-2: KWIC: Main User Interface 

 

Figure  3-3: KWIC: File Menu 

 

The following additional functions may be accessed from the File menu as shown in 

Figure 3-3: 

1) Convert CSV to ARFF: Allows the user to convert data files from the comma- 

separated values (CSV) file format to the Weka compatible ARFF file format. The 

associated user interface is shown in Figure 3-4. 

 

Figure  3-4: KWIC: Convert CSV to ARFF User Interface 

2) Merge ARFF: Allows the user to merge two ARFF files that contain the same data set 

with different feature sets into a new ARFF file containing the same data set with 

both feature sets. This function was commonly used to merge original features with 
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generated combined features. Note that any common features must first be removed 

from one of the files. The associated user interface is shown in Figure 3-5. 

 

Figure  3-5: KWIC: Merge ARFF User Interface 

3) Remove Features from ARFF: Allows the user to remove a certain number of 

features from the start or end of the features list. This function was commonly used 

to extract a smaller number of the top ranked features without the need to rerun the 

FeatSel tool. The associated user interface is shown in Figure 3-6. 

 

Figure  3-6: KWIC: Remove Features from ARFF User Interface 

3.5 Split Tool  
 

The Split Tool is an executable CLI program developed in the C programming language 

and utilizes the uthash header file for efficient search. Given a binary class data set in a 

Weka compatible ARFF, the program randomly splits the data set into training and test 

data sets according to a given test percentage. The resulting training data set is written to a 

<data filename>_<percentage>TRN ARFF file, and the resulting test data set is written to a 

<data filename>_<percentage>TST ARFF file. Given two binary class data sets representing 

the same instances, the program performs the same random split on both data sets. The 

mandatory and optional parameters are listed in the following usage printout: 
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Program version: 1.0 6 

 

usage: Split data1 [ - d data2] [ - t percent] [ - s seed] [ - w wdir] [ - p]  

    data1:           data file to split (arff format, max 200 chars)  

    - d data2:        2nd data file to split (arff format, max 200 chars)  

    - t percent:      percentage of data marked for testing (1 - 99, default 10)  

    - s seed:         random seed (default 1)  

    - w wdir:         working directory (max 200 chars)  

    - p:              pause at the end of the program  

 

 

3.6 Feature Transformation (FeatTrans) Tool  
 

The Feature Transformation Tool is an executable CLI program developed in the C 

programming language and utilizes the uthash header file for efficient search. Given two 

binary class data sets in Weka compatible ARFF where the features in the first data set are 

individual components of the combined features in the second data set, the program 

outputs the first data set with same combined features of the second data set. This is 

commonly used to transform the features in the test data set to the selected combined 

features in the training data set. This is necessary in order to perform classification on the 

same features for both the training and test instances. The mandatory and optional 

parameters are listed in the following usage printout: 

 

Program version: 1.02  

 

usage: FeatTrans label data feat [ - m method] [ - w wdir] [ - p]  

    label:            output label (alphanumeric, max 50 chars)  

    data:             data file (arff format, max 250 chars)  

    feat:             combined features file (arff format, max 250 chars)  

    - m method:        combined features value calculation m ethod (add/mult, default 

mult)  

    - w wdir:          working directory (max 250 chars)  

    - p:               pause at the end of the program  
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CHAPTER 4: EXPERIMENTS AND RESULTS 

 

4.1 Experiment 0: Artificial Data Set 

The small artificial data set shown in Table 4-1 was developed to provide a simple, 

compelling, reproducible, and efficiently executable example of the potential benefits of 

considering combined features in classification problems. It is also convenient to use it as 

an introductory example to better understand the different tools made available in the 

DCFD toolkit. 

Table  4-1: Experiment 0: Artificial Data Set 

 

4.1.1  Experiment 0: Data 

The artificial data set consists of 50 instances and 5 features (F1, F2, F3, F4, F5) whose 

values range between 0 and 6. The instances are evenly divided into 25 positive and 25 

1 2 3 4 5 0 1 4 3 5

5 1 2 3 4 4 0 1 2 3

4 5 0 2 3 3 4 0 0 2

3 4 5 1 2 2 3 4 6 1

4 5 1 2 3 1 2 5 4 0

5 1 2 3 4 5 0 1 4 3

4 5 1 2 3 3 4 0 1 2

3 4 5 0 2 2 3 4 0 0

2 3 4 5 1 1 2 3 4 6

3 4 5 1 2 0 1 2 5 4

4 5 1 2 3 3 5 0 1 4

3 4 5 1 2 2 3 4 0 1

2 3 4 5 0 0 2 3 4 0

1 2 3 4 5 6 1 2 3 4

2 3 4 5 1 4 0 1 2 5

3 4 5 1 2 4 3 5 0 1

2 3 4 5 1 1 2 3 4 0

0 2 3 4 5 0 0 2 3 4

5 1 2 3 4 4 6 1 2 3

4 5 1 2 3 5 4 0 1 2

2 3 4 5 1 1 4 3 5 0

1 2 3 4 5 0 1 2 3 4

5 0 2 3 4 4 0 0 2 3

4 5 1 2 3 3 4 6 1 2

5 1 2 3 4 2 5 4 0 1

positive negative
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negative instances. The negative instances are slightly sparser than the positive, i.e. they 

contain more 0 feature values. 

4.1.2  Experiment 0: Steps 

Step 1: Split 

The original features data set was randomly split into 80% training and 20% test data 

sets. The runtime printout of the Split tool is shown below: 

 

>Split Exp0.arff - t 20  

 

Program (v1.0 6) launched with:  

  Test Percentage: 20%  

  Random Seed: 1  

 

=================================================================  

Data File: Exp0.a rff  

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 5 features  

              50 instances  

Randomly shuffling data & assigning to test/train..     done <0s>  

  10 test instances  

  40 train instances  

Splitting data & writing files..                        done <0s>  

=================================================================  

 

Generated Files:  

Exp0_20TST.arff  

Exp0_80TRN.arff  

 

Program completed successfully <0s > 

 

 

Step 2: Generate Combined Features 

Using the CombFeatGen tool, a total of 30 combined features were generated from the 

original 5 features training data set using a maximum combination size of four. Note that 

the original 5 features are included in the total of 30 combined features. The runtime 

printout of the CombFeatGen tool is shown below: 

 

>CombFeatGen Exp0_4m_80TRN Exp0_80TRN.arff - s 4  

 

Program (v1.1 9) launched with:  

  Max Combination Size: 4  
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  Combined Features Value Calculation Method: multiplic ation  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 5 features  

              22 positive instances  

              18 negative instances  

Reading data (loadin g into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <0s>  

  5 features  

Writing features to output ARFF..                       done <0s>  

=================================================================  

 

================== ===============================================  

Generating 2 - feature combinations..                     done <0s>  

  10 2 - features  

Generating positive 2 - feature vectors..                 done <0s>  

Updating 2 - feature comparison table positive column..   done  <0s>  

Generating negative 2 - feature vectors..                 done <0s>  

Updating 2 - feature comparison table negative column..   done <0s>  

Appending 2 - features to output ARFF..                   done <0s>  

Writing 2 - feature vectors to temporary file..           done <0s>  

=================================================================  

 

=================================================================  

Generating 3 - feature combinations..                     done <0s>  

  10 3 - features  

Generating positive 3 - featu re vectors..                 done <0s>  

Updating 3 - feature comparison table positive column..   done <0s>  

Generating negative 3 - feature vectors..                 done <0s>  

Updating 3 - feature comparison table negative column..   done <0s>  

Appending 3 - feature s to output ARFF..                   done <0s>  

Writing 3 - feature vectors to temporary file..           done <0s>  

=================================================================  

 

=================================================================  

Generating  4- feature combinations..                     done <0s>  

  5 4 - features  

Generating positive 4 - feature vectors..                 done <0s>  

Updating 4 - feature comparison table positive column..   done <0s>  

Generating negative 4 - feature vectors..                 done <0s>  

Updating 4 - feature comparison table negative column..   done <0s>  

Appending 4 - features to output ARFF..                   done <0s>  

Writing 4 - feature vectors to temporary file..           done <0s>  

============================================= ====================  

 

Appending all feature vectors to output ARFF..          done <0s>  

 

Total Extracted Features: 30  

 

Generated Files:  

Exp0_4m_80TRN.arff  

 

Program completed successfully <0s>  
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Step 3: Select Features 

Several feature selection methods were applied on the generated combined features 

training data set using the FeatSel tool. Each of the resulting selected feature subsets were 

tested via cross validation using the KWIC tool. The best results were obtained from the top 

10 features ranked by LEP according to an exhaustive threshold search. Tables 4-2, 4-3, 

and 4-4 show comparisons of the top ranked combined features versus the top ranked 

original features by LEP, DIP, and ADP, respectively. The runtime printout of the FeatSel 

tool is shown below: 

 

>FeatSel Exp0_4m_10le_80TRN Exp0_4m_80TRN.arff 10 - m le - t sel  

 

Program (v1.2 5) launched with:  

  Number of Features to Select: 10  

  Selection Method: least error with exhaustive threshold search  

 

========================================================= ========  

Reading data (counting features & instances)..          done <0s>  

  Identified: 30 features  

              22 positive instances  

              18 negative instances  

Reading data (loading into memory)..  

  Reading features..                                    done <0s>  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table ..                 done <0s>  

Updating feature comparison table..                     done <0s>  

Sorting feature comparison table..                      done <0s>  

Writing feature comparison table..                      done <0s>  

Selecting top records of feat ure comparison table..     done <0s>  

  10 selected features  

Generating positive selected feature vectors..          done <0s>  

Generating negative selected feature vectors..          done <0s>  

================================================================ = 

 

Writing output ARFF..                                   done <0s>  

 

Total Selected Features: 10  

 

Generated Files:  

Exp0_4m_10le_80TRN.arff  

Exp0_4m_10le_80TRN_FeatCompTable.txt  

 

Program completed successfully <0s>  
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Table  4-2: Experiment 0: Top Features Ranked by LEP on Training Data 

 

Table  4-3: Experiment 0: Top Features Ranked by DIP on Training Data 

 

Table  4-4: Experiment 0: Top Features Ranked by ADP on Training Data 
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Step 4: Transform Features 

The original features in the test data set were transformed to the selected combined 

features in the training data set using the FeatTrans tool. The runtime printout of the 

FeatTrans tool is shown below: 

 

>FeatTrans Exp0_4m_l0le_20TST Exp0_20TST.arff Exp0_4m_10le_80TRN.arff  

 

Program (v1.0 2) launched with:  

  Data File: Exp0_20TST.arff  

  Features File: Exp0_4m_10le_80TRN.arff  

  Combined Features Value Calculation Method:  multiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 5 features  

              3 positive instances  

              7 negative instances  

Reading data  (loading into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

=================================================================  

Reading target combined features ..                      done <0s>  

  10 target combined features  

=================================================================  

 

=================================================================  

Writing output file..                                   don e <0s>  

=================================================================  

 

Generated Files:  

Exp0_4m_l0le_20TST.arff  

 

Program completed successfully <0s>  

 

 

Step 5: Obtain Classification Results 

The KWIC tool was used to obtain the classification results when using the original 

features and when using the selected combined features. Figures 4-1 and 4-2 show the 

associated KWIC screenshots. 
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Figure  4-1: Experiment 0: KWIC Results Screenshots for Original and Combined Features 

4.1.3  Experiment 0: Classification Results Comparison 

Table 4-5 compares the classification results obtained with the original features versus 

those obtained with the selected combined features. In general we see a clear improvement 

in the classification results for the majority of classifiers. The Rotation Forest classifier 

provided the best results (ACC 80%) for the 5 original features, but perfect results (ACC 

100%) were obtained from the SVM classifier using the 10 selected combined features. 

Of course this is a biased artificially constructed example, but it demonstrates the 

potential benefits of considering combined features when addressing certain classification 

problems.  
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Table  4-5: Experiment 0: Classification Results Comparison 

 
 

4.2 Experiment 1: Gene Expression Prediction 

4.2.1  Experiment 1: Data 

Annotated feature vectors for this experiment were provided by Ghofran Othoum, fellow 

colleague at KAUST and they are obtained as follows. Dragon Database for Exploration of 

Ovarian Cancer Genes [25] contains information about genes implicated in ovarian cancer 

that are collected using reliable experimental evidence. This database was used to extract 

information about genes that are over-expressed and genes that are under-expressed in 

ovarian cancer. In total, 227 over-expressed genes and 41 under-expressed ones were 

identified from the database. Each gene is considered an instance, while the labels were 

over-expressed and under-expressed. For each of the genes, a DNA region covering 2000 

bp (base pairs) upstream and 2000 bp downstream of the gene end was extracted. To 

generate the features that can describe this dataset, 800 DNA motifs were generated using 

DMF tool [26] [27]. Of these, 400 were generated using 206 over-expressed genes as the 

target set, while 20 under-expressed genes were considered as the background set. The 

remaining 400 DNA motifs were identified using 20 under-expressed genes as the target, 

Classifier ACC TPR TNR PRC F-M ACC TPR TNR PRC F-M ACC TPR TNR PRC F-M

NaiveBayes 50.0 33.3 57.1 25.0 28.6 60.0 33.3 71.4 33.3 33.3 10.0 0.0 14.3 8.3 4.8

BayesNet 30.0 100.0 0.0 30.0 46.2 60.0 100.0 42.9 42.9 60.0 30.0 0.0 42.9 12.9 13.8

LibSVM 40.0 33.3 42.9 20.0 25.0 100.0 100.0 100.0 100.0 100.0 60.0 66.7 57.1 80.0 75.0

Logistic 70.0 100.0 57.1 50.0 66.7 40.0 33.3 42.9 20.0 25.0 -30.0 -66.7 -14.3 -30.0 -41.7

IBk 50.0 100.0 28.6 37.5 54.5 70.0 100.0 57.1 50.0 66.7 20.0 0.0 28.6 12.5 12.1

Bagging 30.0 33.3 28.6 16.7 22.2 60.0 100.0 42.9 42.9 60.0 30.0 66.7 14.3 26.2 37.8

RandomCommittee 50.0 100.0 28.6 37.5 54.5 60.0 100.0 42.9 42.9 60.0 10.0 0.0 14.3 5.4 5.5

RandomSubSpace 20.0 33.3 14.3 14.3 20.0 80.0 100.0 71.4 60.0 75.0 60.0 66.7 57.1 45.7 55.0

RotationForest 80.0 100.0 71.4 60.0 75.0 80.0 100.0 71.4 60.0 75.0 0.0 0.0 0.0 0.0 0.0

ThresholdSelector 60.0 33.3 71.4 33.3 33.3 30.0 100.0 0.0 30.0 46.2 -30.0 66.7 -71.4 -3.3 12.8

DecisionTable 30.0 100.0 0.0 30.0 46.2 60.0 100.0 42.9 42.9 60.0 30.0 0.0 42.9 12.9 13.8

NNge 50.0 100.0 28.6 37.5 54.5 40.0 100.0 14.3 33.3 50.0 -10.0 0.0 -14.3 -4.2 -4.5

ADTree 30.0 33.3 28.6 16.7 22.2 60.0 100.0 42.9 42.9 60.0 30.0 66.7 14.3 26.2 37.8

J48 30.0 33.3 28.6 16.7 22.2 40.0 33.3 42.9 20.0 25.0 10.0 0.0 14.3 3.3 2.8

RandomForest 40.0 100.0 14.3 33.3 50.0 60.0 100.0 42.9 42.9 60.0 20.0 0.0 28.6 9.5 10.0

Original Features Combined Features Difference
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while 206 over-expressed genes were used as the background set. These motifs were 

mapped back to the two remaining sets of 21 over-expressed genes and 21 under-

expressed genes to create the feature vectors for each instance. Each feature value 

represents the frequency of the associated motifs in each of the instances. An instance is 

labeled positive if the associated gene is over-expressed, and negative otherwise.  

4.2.2  Experiment 1: Steps 

Step 1: Split 

The original data set of 42 instances (21 over-expressed and 21 under-expressed genes) 

was randomly split into 60% training and 40% test data sets. The runtime printout of the 

Split tool is shown below: 

 

>Split Exp1.arff - t 40  

 

Program (v1.06) launched with:  

  Test Percentage: 40%  

  Random Seed: 1  

 

=========================================================== ====== 

Data File: Exp1.arff  

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 800 features  

              42 instances  

Randomly shuffling data & assigning to tes t/train..     done <0s>  

  16 test instances  

  26 train instances  

Splitting data & writing files..                        done <0s>  

=================================================================  

 

Generated Files:  

Exp1_40TST.arff  

Exp1_60TRN.arff  

 

Program completed successfully <0s>  

 

 

Step 2: Generate Combined Features 

Using the CombFeatGen tool, a total of 35,812,175 combined features were generated 

from the original 800 features training data set using a maximum combination size of three, 
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an occurrence cutoff of 5%, and a difference cutoff of 5%. Without the specified cutoffs the 

tool would have attempted to extract over 85 million combined features. The values for the 

generated combined features were calculated by multiplying the individual feature values. 

The same occurrence and difference cutoffs were applied on the original features training 

data set which reduced the original 800 features to 706 features. The runtime printouts of 

the CombFeatGen tool are shown below: 

 

>CombFeatGen Exp1_3m55_60TRN Exp1 _60TRN.arff - s 3 - o 5 - d 5  

 

Program (v1.19) launched with:  

  Max Combination Size: 3  

  Occurrence Cutoff: 5%  

  Difference Cutoff: 5%  

  Combined Features Value Calculation Method: multiplication  

 

============================================================= ==== 

Reading data (counting features & instances)..          done <0s>  

  Identified: 800 features  

              14 positive instances  

              12 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vector s..    done <0s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <0s>  

  800 features  

Marking features to be ignored..                        done <0s>  

  800 -  94 = 706 features  

Reducing positive feature vectors..                     done <0s>  

Reducing negative feature vectors..                     d one <0s>  

Writing features to output ARFF..                       done <0s>  

=================================================================  

 

=================================================================  

Generating 2 - feature combinations..                     done <0s>  

  248865 2 - features  

Generating positive 2 - feature vectors..                 done <0s>  

Updating 2 - feature comparison table positive column..   done <0s>  

Generating negative 2 - feature vectors..                 done <0s>  

Updating 2 - feature c omparison table negative column..   done <0s>  

Marking 2 - features to be ignored..                      done <0s>  

  248865 -  31594 = 217271 2 - features  

Reducing positive 2 - feature vectors..                   done <0s>  

Reducing negative 2 - feature vectors..                   done <0s>  

Reducing 2 - feature comparison table..                   done <0s>  

Appending 2 - features to output ARFF..                   done <0s>  

Writing 2 - feature vectors to temporary file..           done <0s>  

================================= ================================  

 

=================================================================  
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Generating 3 - feature combinations..                     done <37s>  

  39685780 3 - features  

Generating positive 3 - feature vectors..                 done <13s>  

Updating 3 - feature comparison table positive column..   done <4s>  

Generating negative 3 - feature vectors..                 done <12s>  

Updating 3 - feature comparison table negative column..   done <4s>  

Marking 3 - features to be ignored..                      d one <0s>  

  39685780 -  4091582 = 35594198 3 - features  

Reducing positive 3 - feature vectors..                   done <7s>  

Reducing negative 3 - feature vectors..                   done <5s>  

Reducing 3 - feature comparison table..                   done <1s>  

Append ing 3 - features to output ARFF..                   done <32s>  

Writing 3 - feature vectors to temporary file..           done <128s>  

=================================================================  

 

Appending all feature vectors to output ARFF..          done  <26s>  

 

Total Extracted Features: 35812175  

 

Generated Files:  

Exp1_3m55_60TRN.arff  

 

Program completed successfully <282s>  

 

>CombFeatGen Exp1_1m55_60TRN Exp1_60TRN.arff - s 1 - o 5 - d 5  

 

Program (v1.19) launched with:  

  Max Combination Size: 1  

  Occurrence Cut off: 5%  

  Difference Cutoff: 5%  

  Combined Features Value Calculation Method: multiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 800 features  

              14 positive instances  

              12 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

================= ================================================  

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <0s>  

  800 features  

Marking features to be ignored..                        done  <0s>  

  800 -  94 = 706 features  

Reducing positive feature vectors..                     done <0s>  

Reducing negative feature vectors..                     done <0s>  

Writing features to output ARFF..                       done <0s>  

========================== =======================================  

 

Appending all feature vectors to output ARFF..          done <0s>  

 

Total Extracted Features: 706  

 

Generated Files:  

Exp1_1m55_60TRN.arff  

 

Program completed successfully <0s>  
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Step 2: Select Features 

Several feature selection methods were applied on the generated combined features 

training data set using the FeatSel tool. Each of the resulting selected feature subsets were 

tested via cross validation using the KWIC tool. The best results for the original features 

were obtained from the top 400 features ranked by DIP according to an exhaustive 

threshold search. The best results for the combined features were obtained from the top 

600 features ranked by DIP also according to an exhaustive threshold search. Table 4-6 

shows a comparison of the top 10 ranked combined features versus the top 10 ranked 

original features. The runtime printouts from selecting the top features ranked by DIP are 

shown below as a representative example: 

 

>FeatSel Exp1_3m55_ 1000 dip _60TRN Exp1_3m55_ 60TRN.arff 1000 - m dip  - t sel  

 

Program (v1.25) launched with:  

  Number of Features to Select: 1000  

  Selection Method: DIP  with exhaustive threshold search  

 

=================================================================  

Reading data (counting features &  instances)..          done <139s>  

  Identified: 35812175 features  

              14 positive instances  

              12 negative instances  

Reading data (loading into memory)..  

  Reading features..                                    done <16s>  

  Generating positive and negative feature vectors..    done <140s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table..                 done <24s>  

Updating feature comparison table..                     done <309s>  

Sorting feature comparison table..                      done <68s>  

Writing feature comparison table..                      done <0s>  

Selecting top records of feature comparison table..     done <0s>  

  1000 selected features  

Generating positive selected feature vectors..          done <0s>  

Generating negative selected feature vectors..          done <0s>  

=================================================================  

 

Writing output ARFF..                                   done <0s>  

 

Total Selected Features: 1000  
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Generated Files:  

Exp1_3m55_1000 dip _60TRN.arff  

Exp1_3m55_1000 dip _60TRN_FeatCompTable.txt  

 

Program completed successfully <710s>  

 

>FeatSel Exp1_1m55_ 706dip _60TRN Exp1_1m55_60TRN.arff  706 - m dip  - t sel  

 

Program (v1.25) launched with:  

  Number of Features to Select: 706  

  Selection Method : DIP  with exhaustive threshold search  

 

=================================================================  

Reading data (counting features & instances). .          done <0s>  

  Identified: 706 features  

              14 positive instances  

              12 negative instances  

Reading data (loading into memory)..  

  Reading features..                                    done <0s>  

  Generating positive and negativ e feature vectors..    done <0s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table..                 done <0s>  

Updating feature compari son table..                     done <0s>  

Sorting feature comparison table..                      done <0s>  

Writing feature comparison table..                      done <0s>  

Selecting top records of feature comparison table..     done <0s>  

  706 selected f eatures  

Generating positive selected feature vectors..          done <0s>  

Generating negative selected feature vectors..          done <0s>  

=================================================================  

 

Writing output ARFF..                                   done <0s>  

 

Total Selected Features: 706  

 

Generated Files:  

Exp1_1m55_706dip _60TRN.arff  

Exp1_1m55_706dip _60TRN_FeatCompTable.txt  

 

Program completed successfully <0s>  
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Table  4-6: Experiment 1: Top 10 Features Ranked by DIP on Training Data 

 

Step 4: Transform Features 

The features in the test data sets were transformed to the selected features in the 

training data sets using the FeatTrans tool. The runtime printouts of the FeatTrans tool are 

shown below: 

 

>FeatTrans Exp1_3m55_1000 dip _40TST Exp1_40TST.arff Exp1_3m55_1000 dip _60TRN.arff  

 

Program (v1.02) launched with:  

  Data File: Exp1_40TST.arff  

  Features File: Exp1_3m55_1000 dip _60TRN.arff  

  Combin ed Features Value Calculation Method: multiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 800 features  

              7 positive instances  

              9 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

=========================================================== ====== 

Reading target combined features..                      done <0s>  

  1000 target combined features  

=================================================================  

 

=================================================================  

Writing output fil e..                                   done <0s>  

=================================================================  

 

Generated Files:  

Exp1_3m55_1000 dip _40TST.arff  

 

Program completed successfully <0s>  

 

>FeatTrans Exp1_1m55_706 dip _40TST Exp1_40TST.arff Exp1_1m 55_706 dip _60TRN.arff  
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Program (v1.02) launched with:  

  Data File: Exp1 _40TST.arff  

  Features File: Exp1_1m55_706 dip _60TRN.arff  

  Combined Features Value Calculation Method: multiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 800 features  

              7 positive instances  

              9 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vectors..    d one <0s>  

=================================================================  

 

=================================================================  

Reading target combined features..                      done <0s>  

  706 target combined features  

================= ================================================  

 

=================================================================  

Writing output file..                                   done <0s>  

=================================================================  

 

Generat ed Files:  

Exp1_1m55_706dip _40TST.arff  

 

Program completed successfully <0s>  

 

 

Step 5: Obtain Classification Results 

The KWIC tool was used to obtain the classification results when using the original 

features and when using the selected combined features. Figures 4-2 shows the associated 

KWIC screenshots. 
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Figure  4-2: Experiment 1: KWIC Results Screenshots for Original and Combined Features 

4.2.3  Experiment 1: Classification Results Comparison 

Table 4-5 compares the classification results obtained with the selected original features 

versus those obtained with the selected combined features. The Random Forest classifier 

provided the best results for the selected original features (ACC 75%), but better results 

were obtained by the Random Subspace classifier using the selected combined features 

(ACC 81.3%). 
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Table  4-7: Experiment 1: Classification Results Comparison 

 
 

4.3 Experiment 2: Promoter Region Recognition 

4.3.1  Experiment 2: Data 

Annotated feature vectors for this experiment were provided by Haitham Ashoor, fellow 

colleague at KAUST and they are obtained as follows. Data were retrieved from the 

ENCODE Consortium [28] and relates to ChIP-Seq data (ChIP-Seq data points to region 

where TF is more likely to bind, and it represents the positive class) for NF-kB (Nuclear 

Factor kappa-light-chain-enhancer of activated B cells) transcription factor binding to DNA 

in Gm12878 cell line. Raw ChIP-Seq data were processed by MACS program [29] to get the 

ChIP-Seq peaks. Top 1000 peaks were selected, with 500 used for training and 500 for 

testing. These peak sequences were annotated by motifs obtained using ChIPDragon 

pipeline [30] based on DMF software. The training data was used as the target set, while 

the background set was obtained by randomly selecting genomic regions of the same size 

and number that do not belong to the generated ChIP-Seq peaks. Features are selected as 

overrepresented motifs in the ChIP-Seq peaks over the random data. These motifs were 
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mapped to the testing data, which included additional 500 background sequences not used 

for motif generation. In total 313 features represented motif families that are found in 

those regions. Each feature value represents the frequency of the associated motifs. An 

instance is labeled positive if it represents a promoter that binds with the NF-kB 

transcription factor, and it is labeled negative otherwise (represents a random genomic 

region).  

4.3.2  Experiment 2: Steps 

Step 1: Split 

As described in the previous section, the data is already split into 50% training and 50% 

test data sets, so there was no need to run the Split tool. 

Step 2: Generate Combined Features 

Using the CombFeatGen tool, a total of 325,623 combined features were generated from 

the original 313 features training data set using a maximum combination size of three and 

an occurrence cutoff of 1%. The values for the generated combined features were 

calculated by multiplying the individual feature values. The same occurrence cutoff was 

applied on the original features training data set which reduced the original 313 features to 

125 features. The runtime printouts of the CombFeatGen tool are shown below: 

 

>CombFeatGen Exp2_3m1_50TRN Exp2_50TRN.arff - s 3 - o 1  

 

Program (v1.19) launched with:  

  Max Combination Size: 3  

  Occurrence Cutoff: 1%  

  Combined Features Value Calculation Method: mu ltiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 313 features  

              500 positive instances  

              500 negative instances  

Reading d ata (loading into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  
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=================================================================  

Initializing feature comparis on table..                 done <0s>  

Updating feature comparison table..                     done <0s>  

  313 features  

Marking features to be ignored..                        done <0s>  

  313 -  188 = 125 features  

Reducing positive feature vectors..                     done <0s>  

Reducing negative feature vectors..                     done <0s>  

Writing features to output ARFF..                       done <0s>  

=================================================================  

 

==================================== =============================  

Generating 2 - feature combinations..                     done <0s>  

  7750 2 - features  

Generating positive 2 - feature vectors..                 done <0s>  

Updating 2 - feature comparison table positive column..   done <0s>  

Generating  negative 2 - feature vectors..                 done <0s>  

Updating 2 - feature comparison table negative column..   done <0s>  

Marking 2 - features to be ignored..                      done <0s>  

  7750 -  0 = 7750 2 - features  

Appending 2 - features to output ARFF..                   done <0s>  

Writing 2 - feature vectors to temporary file..           done <1s>  

=================================================================  

 

=================================================================  

Generating 3 - feature combinati ons..                     done <0s>  

  317750 3 - features  

Generating positive 3 - feature vectors..                 done <3s>  

Updating 3 - feature comparison table positive column..   done <0s>  

Generating negative 3 - feature vectors..                 done <3s>  

Updating 3 - feature comparison table negative column..   done <0s>  

Marking 3 - features to be ignored..                      done <0s>  

  317750 -  2 = 317748 3 - features  

Reducing positive 3 - feature vectors..                   done <0s>  

Reducing negative 3 - feature  vectors..                   done <0s>  

Reducing 3 - feature comparison table..                   done <0s>  

Appending 3 - features to output ARFF..                   done <0s>  

Writing 3 - feature vectors to temporary file..           done <48s>  

================== ===============================================  

 

Appending all feature vectors to output ARFF..          done <9s>  

 

Total Extracted Features: 325623  

 

Generated Files:  

Exp2_3m1_50TRN.arff  

 

Program completed successfully <69s>  

 

>CombFeatGen Exp2_1m1_50TRN E xp2_50TRN.arff - s 1 - o 1  

 

Program (v1.19) launched with:  

  Max Combination Size: 1  

  Occurrence Cutoff: 1%  

  Combined Features Value Calculation Method: multiplication  

 

=================================================================  

Reading data (countin g features & instances)..          done <0s>  

  Identified: 313 features  

              500 positive instances  

              500 negative instances  

Reading data (loading into memory)..  
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  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

=================================================================  

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <0s > 

  313 features  

Marking features to be ignored..                        done <0s>  

  313 -  188 = 125 features  

Reducing positive feature vectors..                     done <0s>  

Reducing negative feature vectors..                     done <0s>  

Writing featur es to output ARFF..                       done <0s>  

=================================================================  

 

Appending all feature vectors to output ARFF..          done <0s>  

 

Total Extracted Features: 125  

 

Generated Files:  

Exp2_1m1_50TRN.arff  

 

Program completed successfully <0s>  

 

 

Step 3: Select Features 

Several feature selection methods were applied on the generated combined features 

training data set using the FeatSel tool. Each of the resulting selected feature subsets were 

tested via cross validation using the KWIC tool. The best results for the combined features 

were obtained from the top 400 features ranked by LEP according to an exhaustive 

threshold search. The best results for the original features were obtained from the top 50 

features ranked by LEP also according to an exhaustive threshold search. Table 4-8 shows a 

comparison of the top ten ranked selected combined features versus the top ten ranked 

original features by LEP. The runtime printouts from selecting the top features ranked by 

LEP are shown below as a representative example: 

 

>FeatSel Exp2_3m1_1000le_50TRN Exp2_3m1_50TRN.arff 1000 - m le - t sel  

 

Program (v1.26) launched with:  

  Number of Features to Select: 1000  

  Selection Method: least error with exhaustive threshold search  

 

=================================================================  

Reading data (counting features & instances)..          done <37s>  

  Identified: 325623 features  
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              500 positive instances  

              500 negative instances  

Reading data (loadin g into memory)..  

  Reading features..                                    done <0s>  

  Generating positive and negative feature vectors..    done <57s>  

=================================================================  

 

======================================= ==========================  

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <1304s>  

Sorting feature comparison table..                      done <0s>  

Writing feature comparison t able..                      done <0s>  

Selecting top records of feature comparison table..     done <0s>  

  1000 selected features  

Generating positive selected feature vectors..          done <0s>  

Generating negative selected feature vectors..          done <0s>  

=================================================================  

 

Writing output ARFF..                                   done <0s>  

 

Total Selected Features: 1000  

 

Generated Files:  

Exp2_3m1_1000le_50TRN.arff  

Exp2_3m1_1000le_50TRN_FeatCompTable.txt  

 

Program completed successfully <1400s>  

 

>FeatSel Exp2_1m1_125le_50TRN Exp2_1m1_50TRN.arff 125 - m le - t sel  

 

Program (v1.26) launched with:  

  Number of Features to Select: 125  

  Selection Method: least error with exhaustive threshold search  

 

=============== ==================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 125 features  

              500 positive instances  

              500 negative instances  

Reading data (loading into memory)..  

  Reading features..                                    done <0s>  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

========================================================== ======= 

Initializing feature comparison table..                 done <0s>  

Updating feature comparison table..                     done <0s>  

Sorting feature comparison table..                      done <0s>  

Writing feature comparison table..                      done <0s>  

Selecting top records of feature comparison table..     done <0s>  

  125 selected features  

Generating positive selected feature vectors..          done <0s>  

Generating negative selected feature vectors..          done <0s>  

================== ===============================================  

 

Writing output ARFF..                                   done <0s>  

 

Total Selected Features: 125  

 

Generated Files:  

Exp2_1m1_125le_50TRN.arff  

Exp2_1m1_125le_50TRN_FeatCompTable.txt  
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Program completed successfu lly <0s>  

 
 

Table  4-8: Experiment 2: Top 10 Features Ranked by LEP on Training Data 

 

Step 4: Transform Features 

The features in the test data sets were transformed to the selected features in the 

training data sets using the FeatTrans tool. The runtime printouts of the FeatTrans tool are 

shown below: 

 

>FeatTrans Exp2_3m1_1000le_50TST Exp2_50TST.arff Exp2_3m1_1000le_50TRN.arff  

 

Program (v1.03) launched with:  

  Data File: Exp2_50TST.arff  

  Features File: Exp2_3m1_1000le_50TRN.arff  

  Combined Fea tures Value Calculation Method: multiplication  

 

=================================================================  

Reading data (counting features & instances)..          done <0s>  

  Identified: 313 features  

              500 positive instances  

              500 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vectors..    done <0s>  

=================================================================  

 

============================================================= ==== 

Reading target combined features..                      done <0s>  

  1000 target combined features  

=================================================================  

 

=================================================================  

Writing output file. .                                   done <0s>  

=================================================================  

 

Generated Files:  

Exp2_3m1_1000le_50TST.arff  

 

Program completed successfully <0s>  
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>FeatTrans Exp2_1m1_125le_50TST Exp2_50TST.arff Exp2_1m1_125l e_50TRN.arff  

 

Program (v1.03) launched with:  

  Data File: Exp2_50TST.arff  

  Features File: Exp2_1m1_125le_50TRN.arff  

  Combined Features Value Calculation Method: multiplication  

 

=================================================================  

Reading dat a (counting features & instances)..          done <0s>  

  Identified: 313 features  

              500 positive instances  

              500 negative instances  

Reading data (loading into memory)..  

  Generating positive and negative feature vectors..    done <0 s> 

=================================================================  

 

=================================================================  

Reading target combined features..                      done <0s>  

  125 target combined features  

======================= ==========================================  

 

=================================================================  

Writing output file..                                   done <0s>  

=================================================================  

 

Generated Fil es:  

Exp2_1m1_125le_50TST.arff  

 

Program completed successfully <0s>  

 

 

Step 5: Obtain Classification Results 

The KWIC tool was used to obtain the classification results when using the selected 

original features and when using the selected combined features. Figure 4-3 shows the 

associated KWIC screenshots. 
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Figure  4-3: Experiment 2: KWIC Results Screenshots for Original and Combined Features 

4.3.3  Experiment 2: Classification Results Comparison 

Table 4-9 compares the classification results obtained with the selected original features 

versus those obtained with the selected combined features. The Bagging classifier provided 

the best results (ACC 72.3%) for the 50 selected original features, but slightly better results 

(ACC 74%) were obtained from the same classifier using the 400 selected combined 

features. 
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Table  4-9: Experiment 2: Classification Results Comparison 
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CHAPTER 5: CONCLUSION 
 
 

5.1 Future Work 
 

The natural next step is to provide a strong and unequivocal example of the beneficial 

use of combined features in a classification problem, including an analysis of the discovered 

combined features in terms of what they represent and why they improve the classification 

results of the problem being addressed. 

From a functional perspective there is much room for improvement, perhaps the most 

prominent of which is the efficient implementation of more sophisticated feature selection 

options. 

From a technical implementation perspective, there is also room for improvement. 

Although great care was taken to maximize the performance of developed tools in terms of 

processing time and memory utilization, there are likely untapped opportunities for 

further parallelization and more efficient designs. The introduction of web-based services 

for the developed tools would also be of great convenience to users. 

5.2 Summary 
 

This study has developed a methodology that enriches the description of the data by 

generation of new features from the original feature set. The methodology offers the use of 

a combination of original and newly derived features from which filter type selection of 

potentially useful combination of features is made. The filtering methods used some very 

simple performance assessment techniques to mitigate the explosion of the number of 

newly created features. In spite these simplifications, it is convincingly demonstrated that 

the new methodology can produce sometimes significantly better results. These are of 
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course data and problem dependent. Overall, this method contributes new approach that 

can be used for potentially improving classification performance.  

The DCFD toolkit provides an efficient and convenient way to explore the use of 

combined features in binary classification problems. The experimental results described in 

this study also demonstrate the potential benefits of such exploration. Even a relatively 

simple implementation such as that provided in the DCFD toolkit can lead to the discovery 

of useful combined features that contain new discriminating information. A more robust 

implementation that takes advantage of the suggested future work described in the 

previous section would increase the possibility of discovering such combined features that 

may lead to improved classification results and to potentially deeper insights into the 

nature of the classification problems being addressed. 
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