
Efficient Generation and Selection of Combined Features
for Improved Classification

Thesis By
Ahmad Shono

In Partial Fulfillment of the Requirements
For the Degree of

Master of Science in Computer Science

King Abdullah University of Science and Technology
Thuwal, Kingdom of Saudi Arabia

May 2014

2

 EXAMINATION COMMITTEE APPROVAL

The thesis of Ahmad Shono is approved by the examination committee.

Committee Chairperson: Vladimir Bajic
Committee Member: Mikhail Moshkov
Committee Member: Xin Gao

3

 COPYRIGHT

Copyright © 2014
Ahmad Shono

All Rights Reserved

4

 ABSTRACT

Efficient Generation and Selection of Combined Features
for Improved Classification

Ahmad Shono

This study contributes a methodology and associated toolkit developed to allow users to

experiment with the use of combined features in classification problems. Methods are

provided for efficiently generating combined features from an original feature set, for

efficiently selecting the most discriminating of these generated combined features, and for

efficiently performing a preliminary comparison of the classification results when using the

original features exclusively against the results when using the selected combined features.

The potential benefit of considering combined features in classification problems is

demonstrated by applying the developed methodology and toolkit to three sample data

sets where the discovery of combined features containing new discriminating information

led to improved classification results.

5

 ACKNOWLEDGEMENTS

I would like to acknowledge the Saudi Aramco company for sponsoring my studies at

KAUST, and to thank my Saudi Aramco colleagues who made it possible. I am greatly and

particularly thankful to my supervisor, Professor Vladimir Bajic, as this thesis would not

have been possible from conception to conclusion without his continuous support and

encouragement.

I would also like to thank my thesis committee members Professor Mikhail Moshkov,

and Professor Xin Gao. I consider myself fortunate for having benefited from their core

courses in my first semester at KAUST. I would also like to thank Professor Xiangliang

Zhang for teaching me most of what I know about data mining methods and algorithms

during my attendance of one of her excellent courses.

Thanks are also due to my fellow graduate students Ghofran Othoum and Haitham

Ashoor for providing the data samples and to Othman Soufan for his plentiful and valuable

advice.

I am also thankful for the great fortune of having unconditionally loving and supportive

parents without whom I wouldn’t be the thesis-writing man I am today. Finally, I offer my

deepest thanks to my wife, Dimah Abu-Daff, for her unwavering and steadfast belief in me

despite all my doubts, for her unquestionably greater contribution to raising our two

wonderful daughters, Jenna and Judy, despite her demanding full time work and my

irregular hours, and for helping them with their homework while I was busy doing mine.

6

TABLE OF CONTENTS

EXAMINATION COMMITTEE APPROVAL ... 2

COPYRIGHT .. 3

ABSTRACT .. 4

ACKNOWLEDGEMENTS ... 5

LIST OF ABBREVIATIONS ... 8

LIST OF FIGURES .. 9

LIST OF TABLES .. 10

CHAPTER 1: INTRODUCTION ... 11

1.1 A Brief Review of Binary Classification .. 11

1.2 Generation of Combined Features ... 12

1.3 Dragon Combined Features Discovery (DCFD) Toolkit ... 15

CHAPTER 2: METHODOLOGY .. 16

2.1 Problem Formulation .. 16

2.2 Generation of Combined Features ... 16

2.2.1 Occurrence Percentage Cutoff .. 17

2.2.2 Absolute Difference Percentage (ADP) Cutoff .. 17

2.3 Feature Selection .. 19

2.3.1 Rank by Least Error Percentage (LEP) ... 19

2.3.2 Rank by Absolute Difference Percentage (ADP) ... 19

2.3.3 Rank by Distance from Ideal Predictor (DIP) ... 20

2.3.4 Rank by P-Value .. 21

2.4 Classification Results Comparison .. 21

2.4.1 Naïve Bayes classifier ... 22

2.4.2 Bayesian Network classifier ... 22

2.4.3 Support Vector Machines (SVM) classifier ... 23

2.4.4 Logistic classifier ... 23

2.4.5 Instance-Based K-Nearest Neighbors (IBk) classifier ... 23

2.4.6 Bagging classifier .. 23

2.4.7 Random Committee classifier .. 24

2.4.8 Random Subspace classifier ... 24

2.4.9 Rotation Forest classifier .. 25

2.4.10 Threshold Selector classifier ... 25

7

2.4.11 Decision Table classifier .. 25

2.4.12 Non-Nested Generalized Exemplars (NNge) classifier .. 25

2.4.13 Alternating Decision Tree (ADTree) classifier ... 26

2.4.14 J48 classifier .. 26

2.4.15 Random Forest classifier ... 26

CHAPTER 3: IMPLEMENTATION .. 27

3.1 DCFD Toolkit Overview ... 27

3.2 Combined Features Generation (CombFeatGen) Tool ... 27

3.3 Feature Selection (FeatSel) Tool ... 28

3.4 KAUST Weka Initial Classification (KWIC) Tool .. 29

3.5 Split Tool ... 31

3.6 Feature Transformation (FeatTrans) Tool ... 32

CHAPTER 4: EXPERIMENTS AND RESULTS ... 33

4.1 Experiment 0: Artificial Data Set ... 33

4.1.1 Experiment 0: Data .. 33

4.1.2 Experiment 0: Steps ... 34

4.1.3 Experiment 0: Classification Results Comparison .. 39

4.2 Experiment 1: Gene Expression Prediction ... 40

4.2.1 Experiment 1: Data .. 40

4.2.2 Experiment 1: Steps ... 41

4.2.3 Experiment 1: Classification Results Comparison .. 48

4.3 Experiment 2: Promoter Region Recognition ... 49

4.3.1 Experiment 2: Data .. 49

4.3.2 Experiment 2: Steps ... 50

4.3.3 Experiment 2: Classification Results Comparison .. 56

CHAPTER 5: CONCLUSION ... 58

5.1 Future Work .. 58

5.2 Summary ... 58

REFERENCES .. 60

8

 LIST OF ABBREVIATIONS

ACC Accuracy
ADP Absolute Difference Percentage
API Application Programming Interface
ARFF Attribute-Relation File Format
BP Base Pairs
CLI Command Line Interface
CSV Comma Separated Values
DCFD Dragon Combined Features Discovery Toolkit
DIP Distance from the Ideal Predictor
F-M F-Measure
FN False Negative
FP False Positive
GUI Graphical User Interface
JAR Java Archive
KAUST King Abdullah University of Science and Technology
KNN K-Nearest Neighbors
KWIC KAUST Weka Initial Classification Tool
LEP Least Error Percentage
NF-kB Nuclear Factor kappa-light-chain-enhancer of activated B cells
NNGE Non-Nested Generalized Exemplars classifier
PRC Precision
SENS Sensitivity
SPEC Specificity
SVM Support Vector Machines
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
WEKA Waikato Environment for Knowledge Analysis

9

 LIST OF FIGURES

Figure 1-1: Combined Features Interpretability Example .. 14

Figure 2-1: Distance from the Ideal Predictor (DIP) ... 20

Figure 3-1: DCFD Toolkit Overview ... 27

Figure 3-2: KWIC: Main User Interface ... 30

Figure 3-3: KWIC: File Menu ... 30

Figure 3-4: KWIC: Convert CSV to ARFF User Interface .. 30

Figure 3-5: KWIC: Merge ARFF User Interface .. 31

Figure 3-6: KWIC: Remove Features from ARFF User Interface ... 31

Figure 4-1: Experiment 0: KWIC Results Screenshots for Original and Combined Features 39

Figure 4-2: Experiment 1: KWIC Results Screenshots for Original and Combined Features 48

Figure 4-3: Experiment 2: KWIC Results Screenshots for Original and Combined Features 56

10

 LIST OF TABLES

Table 1-1: Data Set (before feature generation) .. 12

Table 1-2: Data Set (after generating new features by multiplication) 13

Table 1-3: Data Set (after generating new features by addition) .. 13

Table 2-1: Difference Percentage Cutoff Example ... 18

Table 4-1: Experiment 0: Artificial Data Set ... 33

Table 4-2: Experiment 0: Top Features Ranked by LEP on Training Data 37

Table 4-3: Experiment 0: Top Features Ranked by DIP on Training Data 37

Table 4-4: Experiment 0: Top Features Ranked by ADP on Training Data 37

Table 4-5: Experiment 0: Classification Results Comparison ... 40

Table 4-6: Experiment 1: Top 10 Features Ranked by DIP on Training Data 46

Table 4-7: Experiment 1: Classification Results Comparison ... 49

Table 4-8: Experiment 2: Top 10 Features Ranked by LEP on Training Data 54

Table 4-9: Experiment 2: Classification Results Comparison ... 57

11

CHAPTER 1: INTRODUCTION

1.1 A Brief Review of Binary Classification

In bioinformatics and in other fields, a common problem that arises is finding a way to

distinguish between two data sets so that given any data item we can reliably determine to

which data set it belongs. This is known as the binary classification problem [1] where the

data items are called instances and the data sets are called classes. For example, the

problem of determining whether a patient has a certain disease or not can be considered a

binary classification problem where the patient is an instance and the classes are ‘diseased’

and ‘not diseased’.

Machine learning algorithms known as classifiers [1] address the binary classification

problem by learning a classification model from a training set of instances. This trained

model can then be used to map new instances to the classes. Classifiers train a model by

analyzing a chosen number of measurable or observable characteristics of the instances.

Depending on context, these characteristics may be called variables, attributes, or features

[1]. For the remainder of this document, we will refer to these characteristics as features.

The performance of each classifier varies depending on the nature of the available

training set of instances and the chosen features. Although there is no general methodology

that always works well, significant improvement in classifier performance may be attained

by optimizing the choice of features. This is known as feature selection [1] and can be done

through the removal of redundant or irrelevant features, the selection of the best

discriminating subset of features, or the discovery and use of new features that contain

additional discriminating information.

12

1.2 Generation of Combined Features

As mentioned at the end of the previous section, one way to possibly attain significant

improvement in classifier performance is through the discovery and use of new features

that contain additional discriminating information. One method of feature discovery is the

generation of new features derived from the original features, as is done for example by the

Support Vector Machines (SVM) classifier [2]. This study also generates new features but

through a different methodology that is based on the construction of combinations of the

original features up to a certain maximum combination size. The intuition is that these

combinations of features – hereafter referred to as combined features – may contain

additional discriminating information, and classifiers that are capable of taking advantage

of any such additional information may show significantly improved results.

As an illustrative example, consider the small data set shown in Table 1-1. By

considering only the original features A and B, we cannot intuitively discern a good

solution, especially since the features appear to have similar value ranges and distributions

in both the positive and negative classes. However, if we generate the combined 2-feature

AB with values A×B as shown in Table 1-2, then a perfect solution becomes apparent based

on the following rule:

ὭὪ ὃὄ ςȟὸὬὩὲ ὧὰὥίί Ὥί ὴέίὭὸὭὺὩ

Table 1-1: Data Set (before feature generation)

Positive Negative
Instance Feature A Feature B Instance Feature A Feature B

1 3 1 1 1 2
2 2 2 2 3 0
3 1 3 3 2 1
4 3 2 4 0 3

13

Table 1-2: Data Set (after generating new features by multiplication)

Positive Negative
Instance Feature AB (A×B) Instance Feature AB (A×B)

1 3 1 2
2 4 2 0
3 3 3 2
4 6 4 0

Note that in this example, calculating the value of the generated combined feature

through addition instead of multiplication, as shown in Table 1-3, would also provide a

perfect solution based on the following rule:

ὭὪ ὃὄ σȟὸὬὩὲ ὧὰὥίί Ὥί ὴέίὭὸὭὺὩ

Table 1-3: Data Set (after generating new features by addition)

Positive Negative
Instance Feature AB (A+B) Instance Feature AB (A+B)

1 4 1 3
2 4 2 3
3 4 3 3
4 5 4 3

Ultimately, the choice of a method used to calculate the values of generated combined

features should be guided by the nature of the data and the original features in order to

preserve interpretability and hopefully gain better insight into the specific classification

problem being addressed. For example, if feature A and B from Table 1-1 represent the

height and width of an instance, then feature AB (A×B) from Table 1-2 would represent the

area of that instance, and the classification results would provide the insight that the

positive instances have larger areas compared to the negative instances.

To clarify these ideas further in a more common framework, consider data sets where

the feature values represent the number of occurrences or frequency of the features. In that

case, the value of a combination of two features through multiplication can be interpreted

14

as the number of paired occurrences of the two features. Figure 1-1 shows an example of

an instance where the value of the combined feature AB (A×B) represents six paired

occurrences of feature A (occurring 3 times) and feature B (occurring 2 times).

Figure 1-1: Combined Features Interpretability Example

Another notable aspect of generation of combination of feature is that the additional

discriminating information – if it exists – may be found in combinations of more than two

features. It is therefore desirable to generate feature combinations of size two, three, four,

and so on. For explanation, here, a feature combination of size 3 means a new feature

generated from a combination of 3 original features. We highlight here that the way of

combining original features into new one can take various forms, e.g. addition of values,

multiplication of values, or in general any nonlinear combination of values.

However, the computational cost of generating combined features can grow very rapidly

due to combinatorial explosion, depending on the number of original features, the way how

they are combined, and the desired maximum combination size. For example, for a data set

with 100 original features and a desired maximum combination size of four, there are over

four million combined features to generate:

ὔόάὦὩὶ έὪ ὧέάὦὭὲὩὨ ὪὩὥὸόὶὩί ὸέ ὫὩὲὩὶὥὸὩ
ρππ
ς

ρππ
σ

ρππ
τ

ρππȦ

ςȦρππςȦ

ρππȦ

σȦρππσȦ

ρππȦ

τȦρππτȦ

τωυπρφρȟχππσȟωςρȟςςυτȟπψχȟψχυ

15

1.3 Dragon Combined Features Discovery (DCFD) Toolkit

This study contributes a methodology and associated toolkit (DCFD) developed to allow

users to experiment with the use of combined features in classification problems. The

DCFD toolkit provides efficient tools for generating combined features from an original

feature set, for selecting the most discriminating of these generated combined features, and

for performing a preliminary comparison of the classification results when using the

original features exclusively against the results when using the selected combined features.

This study also reports the results of the practical application of the DCFD toolkit on three

sample data sets.

16

CHAPTER 2: METHODOLOGY

2.1 Problem Formulation

In order to investigate the effect of using combined features in binary classification

problems, the following tasks are essential:

1) Efficient Generation of Combination of Features: The efficient generation of as

many combined features as possible is essential since generating more combined

features increases the chance of finding additional discriminating information.

2) Efficient Feature Selection: The efficient selection of the best discriminating

subset of original and generated combined features is essential since the number of

generated combined features tends to be significantly large due to combinatorial

explosion.

3) Fair Comparison of Classification Results: In order to properly investigate the

effect of using combined features, it is essential to perform fair comparisons of

classification results obtained with the original features versus those obtained with

the selected combined features across a wide variety of different types of classifiers.

2.2 Generation of Combined Features

Given any binary class data set with numeric features, a maximum combination size, and

a method for calculating combined feature values, the objective is to generate a new data

set with all possible combined features. In order to generate combined features from data

sets that include non-numeric features, the non-numeric features must first be converted

into numeric features.

17

In order to mitigate the effects of combinatorial explosion, two optional and mutually

non-exclusive methods can be used for reducing the number of original features and the

number of generated combined features. They are described in the following two sections.

2.2.1 Occurrence Percentage Cutoff

A feature is said to occur in an instance if its value is greater than zero. Any feature that

has an occurrence percentage less than a certain value in both the positive and negative

classes is ignored. The occurrence percentage in a class (positive/negative) is calculated as

follows:

ὕὧὧόὶὶὩὲὧὩ ὖὩὶὧὩὲὸὥὫὩ Ὥὲ ὅὰὥίί
Π έὪ ὕὧὧόὶὶὩὲὧὩί Ὥὲ ὅὰὥίί

Π έὪ ὅὰὥίί ὍὲίὸὥὲὧὩί
ρππ

The intuition behind this cutoff is that any feature with a low occurrence percentage in

both classes is less likely to be part of any significantly discriminating combined feature.

Selecting the occurrence percentage cutoff is a tradeoff between efficient computation and

the size of the combined feature search space. Typically, a small occurrence cutoff of 1% –

5% is used since a larger cutoff would acutely increase the chance of overlooking

significantly discriminating combined features.

2.2.2 Absolute Difference Percentage (ADP) Cutoff

A feature is said to occur in an instance if its value is greater than zero. Any feature that

occurs in both the positive and negative classes with an absolute difference percentage less

than a certain value is ignored. The absolute difference percentage may be calculated in

many different ways, but here it is calculated as follows:

18

ὃὦίέὰόὸὩ ὈὭὪὪὩὶὲὩὧὩ ὖὩὶὧὩὲὸὥὫὩ

ȿΠ ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίΠ ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίȿ

ÍÁØ Π ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩίȟΠ ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί
ρππ

This parameter generally works fine for approximately balanced data sets, but for highly

imbalanced data sets should be replaced by:

ὃὦίέὰόὸὩ ὈὭὪὪὩὶὲὩὧὩ ὖὩὶὧὩὲὸὥὫὩȿ
Π ὖέίὭὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί

Π ὖέίὭὸὭὺὩ ὍὲίὸὥὲὧὩί

Π ὔὩὫὥὸὭὺὩ ὕὧὧόὶὶὩὲὧὩί

Π ὔὩὫὥὸὭὺὩ ὍὲίὸὥὲὧὩί
ȿ ρππ

The intuition behind this cutoff is that any feature with a similar number of occurrences

in the positive and negative classes is less likely to contain discriminating information, and

therefore less likely to be part of any significantly discriminating combined feature.

However, this intuition can be misleading for some data sets. As an illustrative example,

consider the data set depicted in Table 2-1 where feature A and B occur 50 times in the

same positive instances and occur 50 times each in different negative instances. Since

features A and B have zero difference percentages, they will be ignored according to the

absolute difference percentage cutoff rule, and the significantly discriminating combined

feature AB is never discovered.

Table 2-1: Difference Percentage Cutoff Example

 Positive Negative

Feature A Occurrences 50 50

Feature B Occurrences 50 50

Feature AB Occurrences 50 0

Therefore, although the absolute difference percentage cutoff is similar to the

occurrence percentage cutoff in that it mitigates combinatorial explosion, it also introduces

an additional and distinct possibility for overlooking significantly discriminating combined

19

features, and should consequently only be used when the occurrence percentage cutoff

does not provide enough combinatorial explosion mitigation on its own.

2.3 Feature Selection

Due to the typically large number of generated combined features, it is necessary to

apply feature selection methods that are capable of efficiently processing a large number of

features. Since wrapper and advanced filter methods are prohibitively expensive from a

computational perspective for such a task, the use of less sophisticated feature ranking

methods is warranted. The following sections describe the feature ranking methods used in

this study.

2.3.1 Rank by Least Error Percentage (LEP)

The error percentage per feature is calculated as follows:

Ὁὶὶέὶ ὖὩὶὧὩὲὸὥὫὩ
Ὂὖ Ὂὔ

Π έὪ ὍὲίὸὥὲὧὩί
ρππ

The confusion matrix [1] – which includes the number of False Positives (FP) and False

Negatives (FN) – is determined based on a certain threshold, which is either given as a

parameter or found through exhaustive search for the best associated error percentage.

For each feature, the exhaustive search considers all possible thresholds between the

largest minimum value and the smallest maximum value.

2.3.2 Rank by Absolute Difference Percentage (ADP)

Features could be ranked based on the decreasing value of this parameter, described

previously in section 2.2.2.

20

2.3.3 Rank by Distance from Ideal Predictor (DIP)

Following ideas from (Bajic 2000, Briefings in Bioinformatics) [3] we can use the

concept of distance to represent the quality of our predictor when we use the selected

feature. This approach, based on two or more measurements of prediction quality and any

type of distance measure, is particularly useful when dealing with highly imbalanced

classes of data and can be applied to any set of features and any predictor. This study uses

the True Positive Rate (TPR) and True Negative Rate (TNR) prediction quality

measurements and Euclidean distance. Since an ideal predictor would classify the entire

data set with 100% TPR (sensitivity) and 100% TNR (specificity), we can represent this

ideal predictor as the point (1,1) in the plane (TPR,TNR) as depicted in Figure 2-1. Features

can then be ranked by their Euclidean “distance from the ideal predictor” (DIP) according

to the following calculation:

ὈὭίὸὥὲὧὩ Ὢὶέά ὍὨὩὥὰ ὖὶὩὨὭὧὸέὶρ ὝὖὙ ρ ὝὔὙ

The confusion matrix is determined based on a certain threshold, which is either given

as a parameter or found through exhaustive search for the best associated DIP. For each

feature, the exhaustive search considers all possible thresholds between the largest

minimum value and the smallest maximum value.

Figure 2-1: Distance from the Ideal Predictor (DIP)

21

2.3.4 Rank by P-Value

The p-value [4] per feature is calculated according to the Numerical Recipes [5]

computation for two-tailed T distribution test statistic as implemented in [6]. Assuming

unequal variance, the t-score and degrees of freedom per feature are calculated as follows:

ὸ ίὧέὶὩ
ὢ ὢ

ί
ὲ

ί
ὲ

ὨὩὫὶὩὩί έὪ ὪὶὩὩὨέά

ί
ὲ

ί
ὲ

ί
ὲ
ὲ ρ

ί
ὲ
ὲ ρ

Where:

ὲ Π ὴέίὭὸὭὺὩ ὭὲίὸὥὲὧὩί ὲ Π ὲὩὫὥὸὭὺὩ ὭὲίὸὥὲὧὩί

ὢ ὥὺὩὶὥὫὩ ὴέίὭὸὭὺὩ ὺὥὰόὩ ὢ ὥὺὩὶὥὫὩ ὲὩὫὥὸὭὺὩ ὺὥὰόὩ

ί ὴέίὭὸὭὺὩ ὺὥὶὭὥὲὧὩ ί ὲὩὫὥὸὭὺὩ ὺὥὶὭὥὲὧὩ

2.4 Classification Results Comparison

In order to ensure fair comparison between classification results obtained with the

original features versus those obtained with the selected combined features, the following

guidelines should be followed:

1) Any occurrence or difference percentage cutoffs applied in the generation of the

combined features should also be applied on the original features. This ensures that

any improvement in the classification results can be attributed to new

discriminating information gained from the combined features and not to the

removal of irrelevant or redundant original features.

22

2) Feature selection methods applied on the generated combined features should also

be applied on the original features. This ensures that any improvement in the

classification results can be attributed to new discriminating information gained

from the combined features and not to any optimization gained through feature

selection.

3) Since classifier performance varies greatly depending on the nature of the data set, a

wide variety of different types of classifiers should be used for each experiment,

thereby ensuring a fair overall comparison.

The following sections provide brief descriptions of the 15 classifiers used in the

experiments described in this study. All classifiers were applied using the implementations

available in the Weka [7] toolkit.

2.4.1 Naïve Bayes classifier

The Naïve Bayes classifier [8] is a probabilistic classifier based on Bayes’ theorem:

ὖὃȿὄ
ὖὄȿὃὖὃ

ὖὄ

The classification problem is transformed into the problem of finding the probability of

the instance B belonging to the class A. The classifier is considered naïve because it

assumes that the features are statistically independent.

2.4.2 Bayesian Network classifier

The Bayesian Network classifier [9] searches for a Bayesian Network that best matches

the feature probability distribution in the training set of instances. This classifier therefore

23

avoids the naïve assumption that the features are statistically independent. Once a suitable

network is found, it can be used to predict the class label of new instances.

2.4.3 Support Vector Machines (SVM) classifier

The SVM classifier [2] projects instances to a higher dimensional space by using a kernel

function, and searches for a hyper-surface that separates the training set of instances into

the two classes with the widest possible margin between the boundary instances of the two

classes. These boundary instances are called support vectors. Once a suitable hyper-surface

is found, it can be used to predict the class label of new instances. In this study, the SVM

classifier was applied using the Weka integrated LIBSVM [10] implementation.

2.4.4 Logistic classifier

The Logistic classifier [11] is a probabilistic classifier based on logistic regression with a

ridge estimator. Logistic regression measures the relationship between the class label and

the features by using probability scores.

2.4.5 Instance-Based K-Nearest Neighbors (IBk) classifier

The IBk classifier [12] is a lazy instance-based learning classifier derived from the

nearest neighbors algorithm [13]. Instead of learning a classification model from the

training set of instances, this classifier predicts the class label of a new instance based on

the proximity of that instance to a certain number (k) of training instances.

2.4.6 Bagging classifier

The Bagging classifier [14] is an ensemble classifier that uses random samples of the

training set of instances to construct multiple classification models of a certain classifier. In

24

this study, the Reduced-Error Pruning Tree (REPTree) classifier is used. The REPTree

classifier uses information gain as the splitting criterion. The Bagging classifier predicts the

class label of new instances by aggregating the predictions of the constructed REPTree

classification models.

2.4.7 Random Committee classifier

The Random Committee classifier [1] is an ensemble classifier that uses the entire

training set of instances to construct multiple classification models of a certain classifier

with different random number seeds. In this study, the Random Tree classifier is used. The

Random Tree classifier constructs a decision tree classification model that considers a

random feature subset at each node controlled by the seed. The Random Committee

classifier predicts the class label of new instances by aggregating the predictions of the

constructed Random Tree classification models.

2.4.8 Random Subspace classifier

The Random Subspace classifier [15] is an ensemble classifier that uses the entire

training set of instances to construct multiple classification models of a certain decision

tree based classifier with different pseudo randomly selected feature subsets (subspaces).

In this study, the REPTree classifier is used. The Random Subspace classifier predicts the

class label of new instances by aggregating the predictions of the constructed REPTree

classification models.

25

2.4.9 Rotation Forest classifier

The Rotation Forest [16] classifier is an ensemble classifier that uses random samples of

the training set of instances to construct multiple classification models of a certain decision

tree based classifier with the principal components of different disjoint feature subsets. In

this study, the J48 classifier is used. The Rotation Forest classifier predicts the class label of

new instances by aggregating the predictions of the constructed J48 classification models.

2.4.10 Threshold Selector classifier

The Threshold Selector classifier [1] selects a mid-point threshold on the output of a

probabilistic classifier such that a given performance measure is optimized. In this study,

the Logistic classifier is used and the F-Measure [1] is optimized.

2.4.11 Decision Table classifier

The Decision Table classifier [17] is a simple decision table majority classifier. It predicts

the class label of a new instance by the majority vote of any matching training instances in

the decision table. If there are no matching training instances, it predicts the class label by

the majority vote of all training instances in the decision table.

2.4.12 Non-Nested Generalized Exemplars (NNge) classifier

The NNge classifier [18] is an instance based classifier derived from the nearest

neighbor algorithm. Instead of learning a classification model from the training set of

instances, this classifier predicts the class label of a new instance based on the nearest non-

nested generalized exemplar. These exemplars are sets of if-then rules that accurately

26

classify a certain number of training instances. These exemplars can also be viewed as non-

overlapping hyper-rectangles in the feature space.

2.4.13 Alternating Decision Tree (ADTree) classifier

The ADTree classifier [19][20] is a decision tree based classifier where a new instance

may follow multiple paths as opposed to a single path as is the case with other decision

trees such as C4.5. An alternating decision tree consists of decision nodes which specify a

condition, and prediction nodes which contain a single number. The class label of a new

instance is predicted by following all paths that meet the conditions of the decision nodes

and summing the number values of the prediction nodes. If the final sum is positive then

the positive class is predicted.

2.4.14 J48 classifier

The J48 [1] classifier is an open source implementation of the C4.5 classifier [21] which

is a decision tree based classifier where the decision nodes are generated according to the

features with the highest normalized information gain. The class label of a new instance is

predicted by following the path that meets the conditions of the decision nodes.

2.4.15 Random Forest classifier

The Random Forest classifier [22] uses random samples of the training set of instances

to construct multiple Random Tree classification models with a fixed number of randomly

selected features. The Random Forest classifier predicts the class label of new instances by

aggregating the predictions of the constructed Random Tree classification models.

27

CHAPTER 3: IMPLEMENTATION

3.1 DCFD Toolkit Overview

Figure 3-1 provides an overview of the tools – highlighted in blue – available in the

DCFD toolkit. The following sections describe each tool.

Figure 3-1: DCFD Toolkit Overview

3.2 Combined Features Generation (CombFeatGen) Tool

The Combined Features Generation Tool is an executable command line interface (CLI)

program developed in the C programming language, and utilizes the uthash [23] header file

for efficient search and the OpenMp [24] library for parallel processing. Given a binary

class data set in a Weka compatible Attribute-Relation File Format (ARFF), the program

28

outputs the same data set with the original features plus generated combined features of a

desired maximum combination size. The mandatory and optional parameters are listed in

the following usage printout:

Program version: 1.1 9

usage: CombFeat Gen label data [- s size] [- m method] [- o percent] [- d percent] [- w

wdir] [- p]

 label: output label (alphanumeric, max 20 chars)

 data: data file (arff format, max 200 chars)

 - s size: max combination size (1 - 4, default 2)

 - m method: combined features value calculation method (add/mult, default

mult)

 - o percent: apply occurrence cutoff percent (1 - 99)

 - d percent: apply difference cutoff percent (1 - 99)

 - w wdir: working directory (max 200 chars)

 - p: pause at the end of the program

3.3 Feature Selection (FeatSel) Tool

The Feature Selection Tool is also an executable CLI program developed in the C

programming language and also utilizes the uthash header file for efficient search and the

OpenMP library for parallel processing. Given a binary class data set in a Weka compatible

ARFF, the program outputs the same data set with the original features replaced by the

desired number of top ranked features by LEP, ADP, DIP, or p-value. The mandatory and

optional parameters are listed in the following usage printout:

Program version: 1.2 5

usage: FeatSel label data num [- m method] [- z th reshold] [- t features] [- w wdir] [- p]

 label: output label (alphanumeric, max 20 chars)

 data: data file (arff format, max 200 chars)

 num: number of features to select

 - m method: feature selection me thod (le/ad/ dip /pv, default le)

 - z threshold: fixed threshold (default exhaustive threshold search)

 - t features: write sorted comparison table with (all/sel) features

 - w wdir: working directory (max 200 chars)

 - p: pause at the end of the program

29

3.4 KAUST Weka Initial Classification (KWIC) Tool

The KAUST Weka Initial Classification (KWIC) Tool is an executable Java Archive (JAR)

file that provides a Graphical User Interface (GUI) for running and reporting the results of

multiple Weka classifiers using default parameters. The tool also provides various

functions that are convenient to use when conducting experiments with original and

generated combined features. Figure 3-2 shows the main user interface. The run button

applies any selected Weka classifier implementations on the given data set either with

cross validation or against a given test data set and writes the results summary to a

generated <output label>_Results text file. Runtime output is displayed in the Output text

area and any occurring errors, exceptions, or warnings are displayed in the Errors text

area.

30

Figure 3-2: KWIC: Main User Interface

Figure 3-3: KWIC: File Menu

The following additional functions may be accessed from the File menu as shown in

Figure 3-3:

1) Convert CSV to ARFF: Allows the user to convert data files from the comma-

separated values (CSV) file format to the Weka compatible ARFF file format. The

associated user interface is shown in Figure 3-4.

Figure 3-4: KWIC: Convert CSV to ARFF User Interface

2) Merge ARFF: Allows the user to merge two ARFF files that contain the same data set

with different feature sets into a new ARFF file containing the same data set with

both feature sets. This function was commonly used to merge original features with

31

generated combined features. Note that any common features must first be removed

from one of the files. The associated user interface is shown in Figure 3-5.

Figure 3-5: KWIC: Merge ARFF User Interface

3) Remove Features from ARFF: Allows the user to remove a certain number of

features from the start or end of the features list. This function was commonly used

to extract a smaller number of the top ranked features without the need to rerun the

FeatSel tool. The associated user interface is shown in Figure 3-6.

Figure 3-6: KWIC: Remove Features from ARFF User Interface

3.5 Split Tool

The Split Tool is an executable CLI program developed in the C programming language

and utilizes the uthash header file for efficient search. Given a binary class data set in a

Weka compatible ARFF, the program randomly splits the data set into training and test

data sets according to a given test percentage. The resulting training data set is written to a

<data filename>_<percentage>TRN ARFF file, and the resulting test data set is written to a

<data filename>_<percentage>TST ARFF file. Given two binary class data sets representing

the same instances, the program performs the same random split on both data sets. The

mandatory and optional parameters are listed in the following usage printout:

32

Program version: 1.0 6

usage: Split data1 [- d data2] [- t percent] [- s seed] [- w wdir] [- p]

 data1: data file to split (arff format, max 200 chars)

 - d data2: 2nd data file to split (arff format, max 200 chars)

 - t percent: percentage of data marked for testing (1 - 99, default 10)

 - s seed: random seed (default 1)

 - w wdir: working directory (max 200 chars)

 - p: pause at the end of the program

3.6 Feature Transformation (FeatTrans) Tool

The Feature Transformation Tool is an executable CLI program developed in the C

programming language and utilizes the uthash header file for efficient search. Given two

binary class data sets in Weka compatible ARFF where the features in the first data set are

individual components of the combined features in the second data set, the program

outputs the first data set with same combined features of the second data set. This is

commonly used to transform the features in the test data set to the selected combined

features in the training data set. This is necessary in order to perform classification on the

same features for both the training and test instances. The mandatory and optional

parameters are listed in the following usage printout:

Program version: 1.02

usage: FeatTrans label data feat [- m method] [- w wdir] [- p]

 label: output label (alphanumeric, max 50 chars)

 data: data file (arff format, max 250 chars)

 feat: combined features file (arff format, max 250 chars)

 - m method: combined features value calculation m ethod (add/mult, default

mult)

 - w wdir: working directory (max 250 chars)

 - p: pause at the end of the program

33

CHAPTER 4: EXPERIMENTS AND RESULTS

4.1 Experiment 0: Artificial Data Set

The small artificial data set shown in Table 4-1 was developed to provide a simple,

compelling, reproducible, and efficiently executable example of the potential benefits of

considering combined features in classification problems. It is also convenient to use it as

an introductory example to better understand the different tools made available in the

DCFD toolkit.

Table 4-1: Experiment 0: Artificial Data Set

4.1.1 Experiment 0: Data

The artificial data set consists of 50 instances and 5 features (F1, F2, F3, F4, F5) whose

values range between 0 and 6. The instances are evenly divided into 25 positive and 25

1 2 3 4 5 0 1 4 3 5

5 1 2 3 4 4 0 1 2 3

4 5 0 2 3 3 4 0 0 2

3 4 5 1 2 2 3 4 6 1

4 5 1 2 3 1 2 5 4 0

5 1 2 3 4 5 0 1 4 3

4 5 1 2 3 3 4 0 1 2

3 4 5 0 2 2 3 4 0 0

2 3 4 5 1 1 2 3 4 6

3 4 5 1 2 0 1 2 5 4

4 5 1 2 3 3 5 0 1 4

3 4 5 1 2 2 3 4 0 1

2 3 4 5 0 0 2 3 4 0

1 2 3 4 5 6 1 2 3 4

2 3 4 5 1 4 0 1 2 5

3 4 5 1 2 4 3 5 0 1

2 3 4 5 1 1 2 3 4 0

0 2 3 4 5 0 0 2 3 4

5 1 2 3 4 4 6 1 2 3

4 5 1 2 3 5 4 0 1 2

2 3 4 5 1 1 4 3 5 0

1 2 3 4 5 0 1 2 3 4

5 0 2 3 4 4 0 0 2 3

4 5 1 2 3 3 4 6 1 2

5 1 2 3 4 2 5 4 0 1

positive negative

34

negative instances. The negative instances are slightly sparser than the positive, i.e. they

contain more 0 feature values.

4.1.2 Experiment 0: Steps

Step 1: Split

The original features data set was randomly split into 80% training and 20% test data

sets. The runtime printout of the Split tool is shown below:

>Split Exp0.arff - t 20

Program (v1.0 6) launched with:

 Test Percentage: 20%

 Random Seed: 1

===

Data File: Exp0.a rff

===

Reading data (counting features & instances).. done <0s>

 Identified: 5 features

 50 instances

Randomly shuffling data & assigning to test/train.. done <0s>

 10 test instances

 40 train instances

Splitting data & writing files.. done <0s>

===

Generated Files:

Exp0_20TST.arff

Exp0_80TRN.arff

Program completed successfully <0s >

Step 2: Generate Combined Features

Using the CombFeatGen tool, a total of 30 combined features were generated from the

original 5 features training data set using a maximum combination size of four. Note that

the original 5 features are included in the total of 30 combined features. The runtime

printout of the CombFeatGen tool is shown below:

>CombFeatGen Exp0_4m_80TRN Exp0_80TRN.arff - s 4

Program (v1.1 9) launched with:

 Max Combination Size: 4

35

 Combined Features Value Calculation Method: multiplic ation

===

Reading data (counting features & instances).. done <0s>

 Identified: 5 features

 22 positive instances

 18 negative instances

Reading data (loadin g into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

===

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <0s>

 5 features

Writing features to output ARFF.. done <0s>

===

================== ===

Generating 2 - feature combinations.. done <0s>

 10 2 - features

Generating positive 2 - feature vectors.. done <0s>

Updating 2 - feature comparison table positive column.. done <0s>

Generating negative 2 - feature vectors.. done <0s>

Updating 2 - feature comparison table negative column.. done <0s>

Appending 2 - features to output ARFF.. done <0s>

Writing 2 - feature vectors to temporary file.. done <0s>

===

===

Generating 3 - feature combinations.. done <0s>

 10 3 - features

Generating positive 3 - featu re vectors.. done <0s>

Updating 3 - feature comparison table positive column.. done <0s>

Generating negative 3 - feature vectors.. done <0s>

Updating 3 - feature comparison table negative column.. done <0s>

Appending 3 - feature s to output ARFF.. done <0s>

Writing 3 - feature vectors to temporary file.. done <0s>

===

===

Generating 4- feature combinations.. done <0s>

 5 4 - features

Generating positive 4 - feature vectors.. done <0s>

Updating 4 - feature comparison table positive column.. done <0s>

Generating negative 4 - feature vectors.. done <0s>

Updating 4 - feature comparison table negative column.. done <0s>

Appending 4 - features to output ARFF.. done <0s>

Writing 4 - feature vectors to temporary file.. done <0s>

=== ====================

Appending all feature vectors to output ARFF.. done <0s>

Total Extracted Features: 30

Generated Files:

Exp0_4m_80TRN.arff

Program completed successfully <0s>

36

Step 3: Select Features

Several feature selection methods were applied on the generated combined features

training data set using the FeatSel tool. Each of the resulting selected feature subsets were

tested via cross validation using the KWIC tool. The best results were obtained from the top

10 features ranked by LEP according to an exhaustive threshold search. Tables 4-2, 4-3,

and 4-4 show comparisons of the top ranked combined features versus the top ranked

original features by LEP, DIP, and ADP, respectively. The runtime printout of the FeatSel

tool is shown below:

>FeatSel Exp0_4m_10le_80TRN Exp0_4m_80TRN.arff 10 - m le - t sel

Program (v1.2 5) launched with:

 Number of Features to Select: 10

 Selection Method: least error with exhaustive threshold search

=== ========

Reading data (counting features & instances).. done <0s>

 Identified: 30 features

 22 positive instances

 18 negative instances

Reading data (loading into memory)..

 Reading features.. done <0s>

 Generating positive and negative feature vectors.. done <0s>

===

===

Initializing feature comparison table .. done <0s>

Updating feature comparison table.. done <0s>

Sorting feature comparison table.. done <0s>

Writing feature comparison table.. done <0s>

Selecting top records of feat ure comparison table.. done <0s>

 10 selected features

Generating positive selected feature vectors.. done <0s>

Generating negative selected feature vectors.. done <0s>

== =

Writing output ARFF.. done <0s>

Total Selected Features: 10

Generated Files:

Exp0_4m_10le_80TRN.arff

Exp0_4m_10le_80TRN_FeatCompTable.txt

Program completed successfully <0s>

37

Table 4-2: Experiment 0: Top Features Ranked by LEP on Training Data

Table 4-3: Experiment 0: Top Features Ranked by DIP on Training Data

Table 4-4: Experiment 0: Top Features Ranked by ADP on Training Data

38

Step 4: Transform Features

The original features in the test data set were transformed to the selected combined

features in the training data set using the FeatTrans tool. The runtime printout of the

FeatTrans tool is shown below:

>FeatTrans Exp0_4m_l0le_20TST Exp0_20TST.arff Exp0_4m_10le_80TRN.arff

Program (v1.0 2) launched with:

 Data File: Exp0_20TST.arff

 Features File: Exp0_4m_10le_80TRN.arff

 Combined Features Value Calculation Method: multiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 5 features

 3 positive instances

 7 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

===

Reading target combined features .. done <0s>

 10 target combined features

===

===

Writing output file.. don e <0s>

===

Generated Files:

Exp0_4m_l0le_20TST.arff

Program completed successfully <0s>

Step 5: Obtain Classification Results

The KWIC tool was used to obtain the classification results when using the original

features and when using the selected combined features. Figures 4-1 and 4-2 show the

associated KWIC screenshots.

39

Figure 4-1: Experiment 0: KWIC Results Screenshots for Original and Combined Features

4.1.3 Experiment 0: Classification Results Comparison

Table 4-5 compares the classification results obtained with the original features versus

those obtained with the selected combined features. In general we see a clear improvement

in the classification results for the majority of classifiers. The Rotation Forest classifier

provided the best results (ACC 80%) for the 5 original features, but perfect results (ACC

100%) were obtained from the SVM classifier using the 10 selected combined features.

Of course this is a biased artificially constructed example, but it demonstrates the

potential benefits of considering combined features when addressing certain classification

problems.

40

Table 4-5: Experiment 0: Classification Results Comparison

4.2 Experiment 1: Gene Expression Prediction

4.2.1 Experiment 1: Data

Annotated feature vectors for this experiment were provided by Ghofran Othoum, fellow

colleague at KAUST and they are obtained as follows. Dragon Database for Exploration of

Ovarian Cancer Genes [25] contains information about genes implicated in ovarian cancer

that are collected using reliable experimental evidence. This database was used to extract

information about genes that are over-expressed and genes that are under-expressed in

ovarian cancer. In total, 227 over-expressed genes and 41 under-expressed ones were

identified from the database. Each gene is considered an instance, while the labels were

over-expressed and under-expressed. For each of the genes, a DNA region covering 2000

bp (base pairs) upstream and 2000 bp downstream of the gene end was extracted. To

generate the features that can describe this dataset, 800 DNA motifs were generated using

DMF tool [26] [27]. Of these, 400 were generated using 206 over-expressed genes as the

target set, while 20 under-expressed genes were considered as the background set. The

remaining 400 DNA motifs were identified using 20 under-expressed genes as the target,

Classifier ACC TPR TNR PRC F-M ACC TPR TNR PRC F-M ACC TPR TNR PRC F-M

NaiveBayes 50.0 33.3 57.1 25.0 28.6 60.0 33.3 71.4 33.3 33.3 10.0 0.0 14.3 8.3 4.8

BayesNet 30.0 100.0 0.0 30.0 46.2 60.0 100.0 42.9 42.9 60.0 30.0 0.0 42.9 12.9 13.8

LibSVM 40.0 33.3 42.9 20.0 25.0 100.0 100.0 100.0 100.0 100.0 60.0 66.7 57.1 80.0 75.0

Logistic 70.0 100.0 57.1 50.0 66.7 40.0 33.3 42.9 20.0 25.0 -30.0 -66.7 -14.3 -30.0 -41.7

IBk 50.0 100.0 28.6 37.5 54.5 70.0 100.0 57.1 50.0 66.7 20.0 0.0 28.6 12.5 12.1

Bagging 30.0 33.3 28.6 16.7 22.2 60.0 100.0 42.9 42.9 60.0 30.0 66.7 14.3 26.2 37.8

RandomCommittee 50.0 100.0 28.6 37.5 54.5 60.0 100.0 42.9 42.9 60.0 10.0 0.0 14.3 5.4 5.5

RandomSubSpace 20.0 33.3 14.3 14.3 20.0 80.0 100.0 71.4 60.0 75.0 60.0 66.7 57.1 45.7 55.0

RotationForest 80.0 100.0 71.4 60.0 75.0 80.0 100.0 71.4 60.0 75.0 0.0 0.0 0.0 0.0 0.0

ThresholdSelector 60.0 33.3 71.4 33.3 33.3 30.0 100.0 0.0 30.0 46.2 -30.0 66.7 -71.4 -3.3 12.8

DecisionTable 30.0 100.0 0.0 30.0 46.2 60.0 100.0 42.9 42.9 60.0 30.0 0.0 42.9 12.9 13.8

NNge 50.0 100.0 28.6 37.5 54.5 40.0 100.0 14.3 33.3 50.0 -10.0 0.0 -14.3 -4.2 -4.5

ADTree 30.0 33.3 28.6 16.7 22.2 60.0 100.0 42.9 42.9 60.0 30.0 66.7 14.3 26.2 37.8

J48 30.0 33.3 28.6 16.7 22.2 40.0 33.3 42.9 20.0 25.0 10.0 0.0 14.3 3.3 2.8

RandomForest 40.0 100.0 14.3 33.3 50.0 60.0 100.0 42.9 42.9 60.0 20.0 0.0 28.6 9.5 10.0

Original Features Combined Features Difference

41

while 206 over-expressed genes were used as the background set. These motifs were

mapped back to the two remaining sets of 21 over-expressed genes and 21 under-

expressed genes to create the feature vectors for each instance. Each feature value

represents the frequency of the associated motifs in each of the instances. An instance is

labeled positive if the associated gene is over-expressed, and negative otherwise.

4.2.2 Experiment 1: Steps

Step 1: Split

The original data set of 42 instances (21 over-expressed and 21 under-expressed genes)

was randomly split into 60% training and 40% test data sets. The runtime printout of the

Split tool is shown below:

>Split Exp1.arff - t 40

Program (v1.06) launched with:

 Test Percentage: 40%

 Random Seed: 1

=== ======

Data File: Exp1.arff

===

Reading data (counting features & instances).. done <0s>

 Identified: 800 features

 42 instances

Randomly shuffling data & assigning to tes t/train.. done <0s>

 16 test instances

 26 train instances

Splitting data & writing files.. done <0s>

===

Generated Files:

Exp1_40TST.arff

Exp1_60TRN.arff

Program completed successfully <0s>

Step 2: Generate Combined Features

Using the CombFeatGen tool, a total of 35,812,175 combined features were generated

from the original 800 features training data set using a maximum combination size of three,

42

an occurrence cutoff of 5%, and a difference cutoff of 5%. Without the specified cutoffs the

tool would have attempted to extract over 85 million combined features. The values for the

generated combined features were calculated by multiplying the individual feature values.

The same occurrence and difference cutoffs were applied on the original features training

data set which reduced the original 800 features to 706 features. The runtime printouts of

the CombFeatGen tool are shown below:

>CombFeatGen Exp1_3m55_60TRN Exp1 _60TRN.arff - s 3 - o 5 - d 5

Program (v1.19) launched with:

 Max Combination Size: 3

 Occurrence Cutoff: 5%

 Difference Cutoff: 5%

 Combined Features Value Calculation Method: multiplication

=== ====

Reading data (counting features & instances).. done <0s>

 Identified: 800 features

 14 positive instances

 12 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vector s.. done <0s>

===

===

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <0s>

 800 features

Marking features to be ignored.. done <0s>

 800 - 94 = 706 features

Reducing positive feature vectors.. done <0s>

Reducing negative feature vectors.. d one <0s>

Writing features to output ARFF.. done <0s>

===

===

Generating 2 - feature combinations.. done <0s>

 248865 2 - features

Generating positive 2 - feature vectors.. done <0s>

Updating 2 - feature comparison table positive column.. done <0s>

Generating negative 2 - feature vectors.. done <0s>

Updating 2 - feature c omparison table negative column.. done <0s>

Marking 2 - features to be ignored.. done <0s>

 248865 - 31594 = 217271 2 - features

Reducing positive 2 - feature vectors.. done <0s>

Reducing negative 2 - feature vectors.. done <0s>

Reducing 2 - feature comparison table.. done <0s>

Appending 2 - features to output ARFF.. done <0s>

Writing 2 - feature vectors to temporary file.. done <0s>

================================= ================================

===

43

Generating 3 - feature combinations.. done <37s>

 39685780 3 - features

Generating positive 3 - feature vectors.. done <13s>

Updating 3 - feature comparison table positive column.. done <4s>

Generating negative 3 - feature vectors.. done <12s>

Updating 3 - feature comparison table negative column.. done <4s>

Marking 3 - features to be ignored.. d one <0s>

 39685780 - 4091582 = 35594198 3 - features

Reducing positive 3 - feature vectors.. done <7s>

Reducing negative 3 - feature vectors.. done <5s>

Reducing 3 - feature comparison table.. done <1s>

Append ing 3 - features to output ARFF.. done <32s>

Writing 3 - feature vectors to temporary file.. done <128s>

===

Appending all feature vectors to output ARFF.. done <26s>

Total Extracted Features: 35812175

Generated Files:

Exp1_3m55_60TRN.arff

Program completed successfully <282s>

>CombFeatGen Exp1_1m55_60TRN Exp1_60TRN.arff - s 1 - o 5 - d 5

Program (v1.19) launched with:

 Max Combination Size: 1

 Occurrence Cut off: 5%

 Difference Cutoff: 5%

 Combined Features Value Calculation Method: multiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 800 features

 14 positive instances

 12 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

================= ==

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <0s>

 800 features

Marking features to be ignored.. done <0s>

 800 - 94 = 706 features

Reducing positive feature vectors.. done <0s>

Reducing negative feature vectors.. done <0s>

Writing features to output ARFF.. done <0s>

========================== =======================================

Appending all feature vectors to output ARFF.. done <0s>

Total Extracted Features: 706

Generated Files:

Exp1_1m55_60TRN.arff

Program completed successfully <0s>

44

Step 2: Select Features

Several feature selection methods were applied on the generated combined features

training data set using the FeatSel tool. Each of the resulting selected feature subsets were

tested via cross validation using the KWIC tool. The best results for the original features

were obtained from the top 400 features ranked by DIP according to an exhaustive

threshold search. The best results for the combined features were obtained from the top

600 features ranked by DIP also according to an exhaustive threshold search. Table 4-6

shows a comparison of the top 10 ranked combined features versus the top 10 ranked

original features. The runtime printouts from selecting the top features ranked by DIP are

shown below as a representative example:

>FeatSel Exp1_3m55_ 1000 dip _60TRN Exp1_3m55_ 60TRN.arff 1000 - m dip - t sel

Program (v1.25) launched with:

 Number of Features to Select: 1000

 Selection Method: DIP with exhaustive threshold search

===

Reading data (counting features & instances).. done <139s>

 Identified: 35812175 features

 14 positive instances

 12 negative instances

Reading data (loading into memory)..

 Reading features.. done <16s>

 Generating positive and negative feature vectors.. done <140s>

===

===

Initializing feature comparison table.. done <24s>

Updating feature comparison table.. done <309s>

Sorting feature comparison table.. done <68s>

Writing feature comparison table.. done <0s>

Selecting top records of feature comparison table.. done <0s>

 1000 selected features

Generating positive selected feature vectors.. done <0s>

Generating negative selected feature vectors.. done <0s>

===

Writing output ARFF.. done <0s>

Total Selected Features: 1000

45

Generated Files:

Exp1_3m55_1000 dip _60TRN.arff

Exp1_3m55_1000 dip _60TRN_FeatCompTable.txt

Program completed successfully <710s>

>FeatSel Exp1_1m55_ 706dip _60TRN Exp1_1m55_60TRN.arff 706 - m dip - t sel

Program (v1.25) launched with:

 Number of Features to Select: 706

 Selection Method : DIP with exhaustive threshold search

===

Reading data (counting features & instances). . done <0s>

 Identified: 706 features

 14 positive instances

 12 negative instances

Reading data (loading into memory)..

 Reading features.. done <0s>

 Generating positive and negativ e feature vectors.. done <0s>

===

===

Initializing feature comparison table.. done <0s>

Updating feature compari son table.. done <0s>

Sorting feature comparison table.. done <0s>

Writing feature comparison table.. done <0s>

Selecting top records of feature comparison table.. done <0s>

 706 selected f eatures

Generating positive selected feature vectors.. done <0s>

Generating negative selected feature vectors.. done <0s>

===

Writing output ARFF.. done <0s>

Total Selected Features: 706

Generated Files:

Exp1_1m55_706dip _60TRN.arff

Exp1_1m55_706dip _60TRN_FeatCompTable.txt

Program completed successfully <0s>

46

Table 4-6: Experiment 1: Top 10 Features Ranked by DIP on Training Data

Step 4: Transform Features

The features in the test data sets were transformed to the selected features in the

training data sets using the FeatTrans tool. The runtime printouts of the FeatTrans tool are

shown below:

>FeatTrans Exp1_3m55_1000 dip _40TST Exp1_40TST.arff Exp1_3m55_1000 dip _60TRN.arff

Program (v1.02) launched with:

 Data File: Exp1_40TST.arff

 Features File: Exp1_3m55_1000 dip _60TRN.arff

 Combin ed Features Value Calculation Method: multiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 800 features

 7 positive instances

 9 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

=== ======

Reading target combined features.. done <0s>

 1000 target combined features

===

===

Writing output fil e.. done <0s>

===

Generated Files:

Exp1_3m55_1000 dip _40TST.arff

Program completed successfully <0s>

>FeatTrans Exp1_1m55_706 dip _40TST Exp1_40TST.arff Exp1_1m 55_706 dip _60TRN.arff

47

Program (v1.02) launched with:

 Data File: Exp1 _40TST.arff

 Features File: Exp1_1m55_706 dip _60TRN.arff

 Combined Features Value Calculation Method: multiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 800 features

 7 positive instances

 9 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. d one <0s>

===

===

Reading target combined features.. done <0s>

 706 target combined features

================= ==

===

Writing output file.. done <0s>

===

Generat ed Files:

Exp1_1m55_706dip _40TST.arff

Program completed successfully <0s>

Step 5: Obtain Classification Results

The KWIC tool was used to obtain the classification results when using the original

features and when using the selected combined features. Figures 4-2 shows the associated

KWIC screenshots.

48

Figure 4-2: Experiment 1: KWIC Results Screenshots for Original and Combined Features

4.2.3 Experiment 1: Classification Results Comparison

Table 4-5 compares the classification results obtained with the selected original features

versus those obtained with the selected combined features. The Random Forest classifier

provided the best results for the selected original features (ACC 75%), but better results

were obtained by the Random Subspace classifier using the selected combined features

(ACC 81.3%).

49

Table 4-7: Experiment 1: Classification Results Comparison

4.3 Experiment 2: Promoter Region Recognition

4.3.1 Experiment 2: Data

Annotated feature vectors for this experiment were provided by Haitham Ashoor, fellow

colleague at KAUST and they are obtained as follows. Data were retrieved from the

ENCODE Consortium [28] and relates to ChIP-Seq data (ChIP-Seq data points to region

where TF is more likely to bind, and it represents the positive class) for NF-kB (Nuclear

Factor kappa-light-chain-enhancer of activated B cells) transcription factor binding to DNA

in Gm12878 cell line. Raw ChIP-Seq data were processed by MACS program [29] to get the

ChIP-Seq peaks. Top 1000 peaks were selected, with 500 used for training and 500 for

testing. These peak sequences were annotated by motifs obtained using ChIPDragon

pipeline [30] based on DMF software. The training data was used as the target set, while

the background set was obtained by randomly selecting genomic regions of the same size

and number that do not belong to the generated ChIP-Seq peaks. Features are selected as

overrepresented motifs in the ChIP-Seq peaks over the random data. These motifs were

50

mapped to the testing data, which included additional 500 background sequences not used

for motif generation. In total 313 features represented motif families that are found in

those regions. Each feature value represents the frequency of the associated motifs. An

instance is labeled positive if it represents a promoter that binds with the NF-kB

transcription factor, and it is labeled negative otherwise (represents a random genomic

region).

4.3.2 Experiment 2: Steps

Step 1: Split

As described in the previous section, the data is already split into 50% training and 50%

test data sets, so there was no need to run the Split tool.

Step 2: Generate Combined Features

Using the CombFeatGen tool, a total of 325,623 combined features were generated from

the original 313 features training data set using a maximum combination size of three and

an occurrence cutoff of 1%. The values for the generated combined features were

calculated by multiplying the individual feature values. The same occurrence cutoff was

applied on the original features training data set which reduced the original 313 features to

125 features. The runtime printouts of the CombFeatGen tool are shown below:

>CombFeatGen Exp2_3m1_50TRN Exp2_50TRN.arff - s 3 - o 1

Program (v1.19) launched with:

 Max Combination Size: 3

 Occurrence Cutoff: 1%

 Combined Features Value Calculation Method: mu ltiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 313 features

 500 positive instances

 500 negative instances

Reading d ata (loading into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

51

===

Initializing feature comparis on table.. done <0s>

Updating feature comparison table.. done <0s>

 313 features

Marking features to be ignored.. done <0s>

 313 - 188 = 125 features

Reducing positive feature vectors.. done <0s>

Reducing negative feature vectors.. done <0s>

Writing features to output ARFF.. done <0s>

===

==================================== =============================

Generating 2 - feature combinations.. done <0s>

 7750 2 - features

Generating positive 2 - feature vectors.. done <0s>

Updating 2 - feature comparison table positive column.. done <0s>

Generating negative 2 - feature vectors.. done <0s>

Updating 2 - feature comparison table negative column.. done <0s>

Marking 2 - features to be ignored.. done <0s>

 7750 - 0 = 7750 2 - features

Appending 2 - features to output ARFF.. done <0s>

Writing 2 - feature vectors to temporary file.. done <1s>

===

===

Generating 3 - feature combinati ons.. done <0s>

 317750 3 - features

Generating positive 3 - feature vectors.. done <3s>

Updating 3 - feature comparison table positive column.. done <0s>

Generating negative 3 - feature vectors.. done <3s>

Updating 3 - feature comparison table negative column.. done <0s>

Marking 3 - features to be ignored.. done <0s>

 317750 - 2 = 317748 3 - features

Reducing positive 3 - feature vectors.. done <0s>

Reducing negative 3 - feature vectors.. done <0s>

Reducing 3 - feature comparison table.. done <0s>

Appending 3 - features to output ARFF.. done <0s>

Writing 3 - feature vectors to temporary file.. done <48s>

================== ===

Appending all feature vectors to output ARFF.. done <9s>

Total Extracted Features: 325623

Generated Files:

Exp2_3m1_50TRN.arff

Program completed successfully <69s>

>CombFeatGen Exp2_1m1_50TRN E xp2_50TRN.arff - s 1 - o 1

Program (v1.19) launched with:

 Max Combination Size: 1

 Occurrence Cutoff: 1%

 Combined Features Value Calculation Method: multiplication

===

Reading data (countin g features & instances).. done <0s>

 Identified: 313 features

 500 positive instances

 500 negative instances

Reading data (loading into memory)..

52

 Generating positive and negative feature vectors.. done <0s>

===

===

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <0s >

 313 features

Marking features to be ignored.. done <0s>

 313 - 188 = 125 features

Reducing positive feature vectors.. done <0s>

Reducing negative feature vectors.. done <0s>

Writing featur es to output ARFF.. done <0s>

===

Appending all feature vectors to output ARFF.. done <0s>

Total Extracted Features: 125

Generated Files:

Exp2_1m1_50TRN.arff

Program completed successfully <0s>

Step 3: Select Features

Several feature selection methods were applied on the generated combined features

training data set using the FeatSel tool. Each of the resulting selected feature subsets were

tested via cross validation using the KWIC tool. The best results for the combined features

were obtained from the top 400 features ranked by LEP according to an exhaustive

threshold search. The best results for the original features were obtained from the top 50

features ranked by LEP also according to an exhaustive threshold search. Table 4-8 shows a

comparison of the top ten ranked selected combined features versus the top ten ranked

original features by LEP. The runtime printouts from selecting the top features ranked by

LEP are shown below as a representative example:

>FeatSel Exp2_3m1_1000le_50TRN Exp2_3m1_50TRN.arff 1000 - m le - t sel

Program (v1.26) launched with:

 Number of Features to Select: 1000

 Selection Method: least error with exhaustive threshold search

===

Reading data (counting features & instances).. done <37s>

 Identified: 325623 features

53

 500 positive instances

 500 negative instances

Reading data (loadin g into memory)..

 Reading features.. done <0s>

 Generating positive and negative feature vectors.. done <57s>

===

======================================= ==========================

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <1304s>

Sorting feature comparison table.. done <0s>

Writing feature comparison t able.. done <0s>

Selecting top records of feature comparison table.. done <0s>

 1000 selected features

Generating positive selected feature vectors.. done <0s>

Generating negative selected feature vectors.. done <0s>

===

Writing output ARFF.. done <0s>

Total Selected Features: 1000

Generated Files:

Exp2_3m1_1000le_50TRN.arff

Exp2_3m1_1000le_50TRN_FeatCompTable.txt

Program completed successfully <1400s>

>FeatSel Exp2_1m1_125le_50TRN Exp2_1m1_50TRN.arff 125 - m le - t sel

Program (v1.26) launched with:

 Number of Features to Select: 125

 Selection Method: least error with exhaustive threshold search

=============== ==

Reading data (counting features & instances).. done <0s>

 Identified: 125 features

 500 positive instances

 500 negative instances

Reading data (loading into memory)..

 Reading features.. done <0s>

 Generating positive and negative feature vectors.. done <0s>

===

== =======

Initializing feature comparison table.. done <0s>

Updating feature comparison table.. done <0s>

Sorting feature comparison table.. done <0s>

Writing feature comparison table.. done <0s>

Selecting top records of feature comparison table.. done <0s>

 125 selected features

Generating positive selected feature vectors.. done <0s>

Generating negative selected feature vectors.. done <0s>

================== ===

Writing output ARFF.. done <0s>

Total Selected Features: 125

Generated Files:

Exp2_1m1_125le_50TRN.arff

Exp2_1m1_125le_50TRN_FeatCompTable.txt

54

Program completed successfu lly <0s>

Table 4-8: Experiment 2: Top 10 Features Ranked by LEP on Training Data

Step 4: Transform Features

The features in the test data sets were transformed to the selected features in the

training data sets using the FeatTrans tool. The runtime printouts of the FeatTrans tool are

shown below:

>FeatTrans Exp2_3m1_1000le_50TST Exp2_50TST.arff Exp2_3m1_1000le_50TRN.arff

Program (v1.03) launched with:

 Data File: Exp2_50TST.arff

 Features File: Exp2_3m1_1000le_50TRN.arff

 Combined Fea tures Value Calculation Method: multiplication

===

Reading data (counting features & instances).. done <0s>

 Identified: 313 features

 500 positive instances

 500 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. done <0s>

===

=== ====

Reading target combined features.. done <0s>

 1000 target combined features

===

===

Writing output file. . done <0s>

===

Generated Files:

Exp2_3m1_1000le_50TST.arff

Program completed successfully <0s>

55

>FeatTrans Exp2_1m1_125le_50TST Exp2_50TST.arff Exp2_1m1_125l e_50TRN.arff

Program (v1.03) launched with:

 Data File: Exp2_50TST.arff

 Features File: Exp2_1m1_125le_50TRN.arff

 Combined Features Value Calculation Method: multiplication

===

Reading dat a (counting features & instances).. done <0s>

 Identified: 313 features

 500 positive instances

 500 negative instances

Reading data (loading into memory)..

 Generating positive and negative feature vectors.. done <0 s>

===

===

Reading target combined features.. done <0s>

 125 target combined features

======================= ==

===

Writing output file.. done <0s>

===

Generated Fil es:

Exp2_1m1_125le_50TST.arff

Program completed successfully <0s>

Step 5: Obtain Classification Results

The KWIC tool was used to obtain the classification results when using the selected

original features and when using the selected combined features. Figure 4-3 shows the

associated KWIC screenshots.

56

Figure 4-3: Experiment 2: KWIC Results Screenshots for Original and Combined Features

4.3.3 Experiment 2: Classification Results Comparison

Table 4-9 compares the classification results obtained with the selected original features

versus those obtained with the selected combined features. The Bagging classifier provided

the best results (ACC 72.3%) for the 50 selected original features, but slightly better results

(ACC 74%) were obtained from the same classifier using the 400 selected combined

features.

57

Table 4-9: Experiment 2: Classification Results Comparison

58

CHAPTER 5: CONCLUSION

5.1 Future Work

The natural next step is to provide a strong and unequivocal example of the beneficial

use of combined features in a classification problem, including an analysis of the discovered

combined features in terms of what they represent and why they improve the classification

results of the problem being addressed.

From a functional perspective there is much room for improvement, perhaps the most

prominent of which is the efficient implementation of more sophisticated feature selection

options.

From a technical implementation perspective, there is also room for improvement.

Although great care was taken to maximize the performance of developed tools in terms of

processing time and memory utilization, there are likely untapped opportunities for

further parallelization and more efficient designs. The introduction of web-based services

for the developed tools would also be of great convenience to users.

5.2 Summary

This study has developed a methodology that enriches the description of the data by

generation of new features from the original feature set. The methodology offers the use of

a combination of original and newly derived features from which filter type selection of

potentially useful combination of features is made. The filtering methods used some very

simple performance assessment techniques to mitigate the explosion of the number of

newly created features. In spite these simplifications, it is convincingly demonstrated that

the new methodology can produce sometimes significantly better results. These are of

59

course data and problem dependent. Overall, this method contributes new approach that

can be used for potentially improving classification performance.

The DCFD toolkit provides an efficient and convenient way to explore the use of

combined features in binary classification problems. The experimental results described in

this study also demonstrate the potential benefits of such exploration. Even a relatively

simple implementation such as that provided in the DCFD toolkit can lead to the discovery

of useful combined features that contain new discriminating information. A more robust

implementation that takes advantage of the suggested future work described in the

previous section would increase the possibility of discovering such combined features that

may lead to improved classification results and to potentially deeper insights into the

nature of the classification problems being addressed.

60

 REFERENCES

[1] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools
and Techniques, Third Edition. Morgan Kaufmann, 2011.

[2] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001.

[3] V. B. Bajić, “Comparing the success of different prediction software in sequence
analysis: a review.,” Brief. Bioinform., vol. 1, no. 3, pp. 214–28, Sep. 2000.

[4] W. Mendenhall and T. Sincich, Statistics for Engineering and the Sciences, Fourth
Edition. Prentice-Hall, 1995, p. 1182.

[5] W. H. Press, A. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007, p.
1235.

[6] A. Liekens, “Compute p-values for two-tailed T distribution test statistics in C.”
[Online]. Available: http://anthony.liekens.net/index.php/Computers/PValue.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
WEKA data mining software,” ACM SIGKDD Explor. Newsl., vol. 11, no. 1, p. 10, Nov.
2009.

[8] G. H. John and P. Langley, “Estimating continuous distributions in Bayesian
classifiers,” in Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, 1995, pp. 338–345.

[9] R. R. Bouckaert, “Bayesian Network Classifiers in Weka.” University of Waikato,
Department of Computer Science, pp. 1–23, 2004.

[10] C.-C. Chang and C.-J. Lin, “LIBSVM,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp.
1–27, Apr. 2011.

[11] A. H. Lee and M. J. Silvapulle, “Ridge estimation in logistic regression,” Commun. Stat. -
Simul. Comput., vol. 17, no. 4, pp. 1231–1257, Jan. 1988.

[12] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Mach.
Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.

[13] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Aug. 1992.

61

[14] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.

[15] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 1998.

[16] J. J. Rodríguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new classifier
ensemble method.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619–
1630, 2006.

[17] R. Kohavi, “The Power of Decision Tables,” in Proceedings of the European Conference
on Machine Learning, 1995, pp. 174–189.

[18] B. Martin, “Instance-based learning: nearest neighbour with generalisation.”
University of Waikato, Department of Computer Science, 01-May-1995.

[19] Y. Freund and L. Mason, “The Alternating Decision Tree Learning Algorithm,” in
ICML, 1999, pp. 124–133.

[20] B. Pfahringer, G. Holmes, and R. Kirkby, “Optimizing the Induction of Alternating
Decision Trees,” in Proc 5th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 2001, pp. 477–487.

[21] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993, p. 302.

[22] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.

[23] T. D. Hanson, “uthash: a hash table for C structures,” 2005. [Online]. Available:
http://troydhanson.github.io/uthash/.

[24] OpenMP Architecture Review Board, “OpenMP Application Program Interface
Version 3.1,” no. July. 2011.

[25] M. Kaur, A. Radovanovic, M. Essack, U. Schaefer, M. Maqungo, T. Kibler, S. Schmeier, A.
Christoffels, K. Narasimhan, M. Choolani, and V. B. Bajic, “Database for exploration of
functional context of genes implicated in ovarian cancer.,” Nucleic Acids Res., vol. 37,
no. Database issue, pp. D820–3, Jan. 2009.

[26] “Dragon Motif Finder .” [Online]. Available: http://www.cbrc.kaust.edu.sa/dmf/.
[Accessed: 04-May-2014].

[27] B. Marchand, V. B. Bajic, and D. K. Kaushik, “Highly scalable ab initio genomic motif
identification,” in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis on - 3# ȭυυ, 2011, p. 1.

62

[28] B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, C. Gunter, and M. Snyder, “An
integrated encyclopedia of DNA elements in the human genome.,” Nature, vol. 489,
no. 7414, pp. 57–74, Sep. 2012.

[29] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,
R. M. Myers, M. Brown, W. Li, and X. S. Liu, “Model-based analysis of ChIP-Seq
(MACS).,” Genome Biol., vol. 9, no. 9, p. R137, Jan. 2008.

[30] “ChIPDragon.” [Online]. Available: http://www.cbrc.kaust.edu.sa/chipdragon.
[Accessed: 04-May-2014].

