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Abstract

In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the
unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has
been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder.
Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for
low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational
complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we
characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a
decoder as a function of the decoding parameter — the bias term. For the above channel, we derive the cut-off volume-to-noise
ratio that is required to achieve a good error performance with low decoding complexity.
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I. INTRODUCTION

THE theory of lattices — a mathematical approach for representing infinite discrete points in Euclidean space [1], has
become a powerful tool to analyze many point-to-point and multi-terminal digital and wireless communication systems,

particularly, communication systems that can be well described by the linear Gaussian vector channel model. This is mainly
due to the three facts about channel codes constructed using lattices: they have simple structure, their ability to achieve the
fundamental limits (the capacity) of the channel, and most importantly, they can be decoded using efficient decoders called
lattice decoders [2]. Many researchers have studied the information-theoretic limits of lattice coding and decoding schemes
for the linear Gaussian vector channel model [2]–[9].

Poltyrev [3] studied the problem of coding for the unconstrained additive white Gaussian noise (AWGN) channel where the
channel input is an infinite lattice. In his setting, the notion of capacity becomes meaningless as infinite rates of transmission
are possible. Therefore, another significant measurement was defined that characterizes the performance limits of such coding
scheme when decoded using lattice decoders — the normalized density of the lattice or equivalently the information density
rate of the lattice.

Based on a random lattice coding technique, Poltyrev showed that, using lattice decoding, the average probability of error
can be upper bounded as

Pe,av(µc) ≤ e−mEp(µc), (1)

where m is the dimension of the lattice code, and Ep(µc) is called the Poltyrev error exponent and is shown to be a non-zero,
monotonically increasing, positive function for all µc > 1. The parameter µc, which is called the volume-to-noise ratio, to be
defined in the sequel, is a quantity that is related to the density of the lattice. Hence, µc = 1 has the significance of capacity.

In [4], Loeliger proved that the above upper bound can be achieved using ensembles of linear lattices — constructed
using linear codes over the ring of p-prime integer numbers, i.e., Zp, which is usually referred to as Construction A [1]. An
important aspect of both Poltyrev’s and Loeliger’s proofs is based on an important theorem in number theory that is referred
to as Minkowski-Hlawka theorem [10], [11].

It is clear from the above bound that large lattice codes would be required to approach capacity and therefore more practical
decoding methods would be needed. It is well known that lattice decoders that are implemented using sphere decoding
algorithms1 can be considered as a search in a tree (see [12], [13] and references therein). Generally speaking, a sphere
decoding algorithm explores the tree of all possible lattice points and uses a path metric in order to discard paths corresponding
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multiple-input multiple-output wireless channels as an attempt to reduce the high computational complexity of the optimal maximum-likelihood decoder (see
[12]). The latter channel maybe described by the linear Gaussian vector channel model which allows the use of lattice coding, and lattice decoding to analyze
the performance limits of such systems.
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to points outside the search sphere. Unfortunately, sphere decoding suffers from high computational complexity for low-to-
moderate volume-to-noise ratios2 and for large signal dimensionality in which low error probability is expected [12]. As an
alternative to sphere decoding algorithms, sequential decoders comprise a set of efficient and powerful decoding techniques
able to perform the tree search. These decoders can achieve near-optimal performance without suffering the complexity of the
sphere decoder for coding rates not too close to capacity3 [14], [15].

The stack algorithm is a well known algorithm that is used to describe the operation of the sequential decoder [15].
The algorithm was originally constructed as an alternative approach to the maximum-likelihood (ML) decoder for detecting
convolutional codes transmitted via discrete memoryless channels. It has been shown in [14] that as long as we operate below
the cutoff rate, the decoder can achieve near-ML performance with low decoding complexity.

For the lattice coded/decoded linear Gaussian vector channel model, there is a small body of work that discusses the
performance and complexity tradeoff achieved by sequential decoding algorithms. Initial work on this topic was done by
Tarokh et. al. [17] where sequential decoding is used to decode lattice codes with finite trellis diagram. Shalvi et. al. in
[18] has considered the use of sequential decoders to decode convolutional lattice codes. These power-limited (finite) lattice
codes are generated using lattices combined with special lattice shaping techniques. The convolutional structure of such codes
allows the use of the sequential decoders to achieve high data rates with low decoding complexity (this was mainly shown
via simulation). However, all previous works lack a thorough theoretical analysis that can describe the systematic approach for
tradeoff performance, complexity, and rate (or lattice density) achieved by sequential decoding of infinite lattice codes.

This paper presents a complete performance analysis of the lattice sequential decoder in terms of the achievable error
exponent. Moreover, the computational complexity of the decoder is determined via its complexity tail distribution where a
new notion of the “cut-off” rate is defined. Both, the error performance and the decoder complexity, are derived as a function
of the decoding parameter – the bias term. In order to fully characterize the performance of the decoder, we determine for
the first time the error exponent achievable by lattice coding and sequential decoding applied to the unconstrained AWGN
channel. We derive the error exponent as a function of the bias term which is critical for controlling the amount of computations
required at the decoding stage. Achieving low decoding complexity requires increasing the value of the bias term. However,
this is done at the expense of increasing erroneous detection. In this work, we follow the footsteps of Poltyrev and use the
same definition of capacity for such a channel. We make use of lattice codes drawn from the ensemble of linear lattices, i.e.,
the Loeliger construction [4].

We analyze in details the computational complexity tail distribution of the lattice sequential decoder. We show that there
exists a cut-off volume-to-noise ratio that yields low decoding complexity which is also an increasing function of the bias term.
We show that achieving low decoding complexity with good error performance comes at the expense of increasing the cut-off
volume-to-noise ratio. Hence, lattice sequential decoders provide a systematic approach for tradeoff performance, complexity,
and lattice density.

In contrast to most work in sequential decoding algorithms where the bias term is usually optimized to achieve a good
performance-complexity tradeoff, we allow the bias term to vary freely and study the effect of this variation on the performance-
complexity tradeoffs achieved by such decoders.

Throughout the paper, we use the following notation. The superscript T denotes transpose. For a bounded region R ⊂
Rm, V (R) denotes the volume of R. We denote Sm(r) by the m-dimensional hypersphere of radius r with V (Sm(r)) =
(πr2)m/2/Γ(m/2 + 1), where Γ(m) =

∫∞
0
xm−1e−x dx, is the Gamma function. Vectors are represented by bold lowercase

letters, and matrices by bold uppercase letters where IIIm denotes the m × m identity matrix. The l2-norm of a vector aaa is
denoted by ‖aaa‖. The notation vvv ∼ N (µµµ,KKK) indicates that vvv is a real Gaussian random vector with mean µµµ and covariance
matrix KKK, and E{·} represents the statistical average.

II. CODING WITHOUT RESTRICTION FOR THE AWGN CHANNEL

A. Lattice Properties

A lattice is a discrete pointset Λ in a Euclidean space Rm that is closed under vector addition, i.e., any translate Λ +xxx by
a lattice point xxx ∈ Λ is just Λ again. Let {ggg1, ggg2, · · · , gggm} be a set of linearly independent vectors in Rm. The set Λ of all
linear combinations xxx = z1ggg1 + z2ggg2 + · · ·+ zmgggm with integer coefficients zi is a lattice, i.e.,

Λ = {xxx = GzGzGz : zzz ∈ Zm},
where GGG = [ggg1, ggg2, · · · , gggm] is an m × m full-rank generator matrix. Thus, any lattice Λ in Rm can be seen as a linear
transformation of the integer lattice Zm.

Some properties associated with the lattice Λ are of great importance for our analysis:

2The notion of “signal-to-noise ratio” is usually used for power-constrained channels where only a finite number of codewords or signals can be transmitted.
Here, for infinite lattice codes, the notion of volume-to-noise ratio is used instead which will be introduced in the sequel.

3The work in [16] considered the application of lattice sequential decoders to various systems that can be described by the linear Gaussian vector channel
model, such as the slowly-fading multiple-input multiple-output wireless channel, and the inter-symbol interference channel. In this work, it has been shown
that near-sphere decoding performance can be achieved without suffering the high decoding complexity of the sphere decoder.
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• The nearest neighbor quantizer Q(·) associated with Λ is defined by

QΛ(xxx) = arg min
λλλ∈Λ
‖λλλ− xxx‖.

• The Voronoi cell V(λλλ) that corresponds to the lattice point λλλ ∈ Λ is the set of points in Rm closest to xxx, i.e.,

V(λλλ) = {xxx ∈ Rm : QΛ(xxx) = λλλ}.
Voronoi cells associated with each lattice point λλλ ∈ Λ are congruent and therefore can be considered as a shift of V(000)
by λλλ.

• The volume of the Voronoi cell is given by

V (GGG) , Vol(V(000)) =
√

det (GGGTGGG),

with the property that V (aGGG) = amV (GGG) for any a > 0.
• The covering radius rcov(Λ) is the radius of the smallest sphere centered at the origin that contains V(000). The effective

radius reff(Λ) is the radius of the sphere with volume equal to V (GGG). The packing radius rpack(Λ) is the radius of the
largest sphere centered at the origin inside the Voronoi cell V(000) (see Fig. 1).

V(000)

rcov

reff

rpack

Fig. 1. The packing radius, the effective radius, and the covering radius of the hexagonal lattice.

• A sequence of lattices {Λm} of increasing dimension is good for covering [8] if rcov(Λm)→ reff(Λm).
• Minkowski-Hlawka Theorem [10]: Let f : Rm → R be a Riemann integrable function of bounded support (i.e., f(xxx) = 0

if ‖xxx‖ exceeds some bound). For any δ > 0, there exist ensembles ΛΛΛ = {Λ} of lattices with volume V (GGG) and dimension
m such that

EΛΛΛ
{∑
xxx∈Λ∗

f(xxx)

}
≤ (1 + δ)

1

V (GGG)

∫
Rm

f(xxx) dxxx, (2)

where the expectation EΛΛΛ is taken over the ensemble of random lattices, Λ∗ = Λ\{000}, and δ → 0 as m→∞. The above
important theorem is sometimes regarded as a pre-Shannon result in information theory. In fact, the Mikowski-Hlawka
theorem was originally used for packing lattices to solve the well known sphere-packing problem [11].

B. Poltyrev Error Exponent

Suppose that an m-dimensional lattice point xxx = GGGczzz ∈ Λc is to be transmitted through the unconstrained AWGN channel,
where Λc is an infinite lattice code with volume Vc

∆
= V (GGGc), that is drawn from the ensemble of linear lattices using the

Loeliger construction (see [4] for more details about the construction). The received vector (output of the channel) in this case
can be mathematically expressed as

yyy = xxx+www, (3)

where www ∼ N (000, σ2IIIm). Due to the unconstrained power condition on the lattice codewords (points), the optimum receiver
that minimizes the probability of decoding error can be expressed as

ẑzz = arg min
zzz∈Zm

‖yyy −GGGczzz‖2, (4)

which corresponds to searching over the whole lattice Λc to find the closest point to the received vector yyy. This is referred to
as lattice decoding.
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As mentioned in the introduction, Poltyrev studied the problem of coding for the unconstrained AWGN channel with the
input alphabet being the whole space Rm. Since infinite power is possible, the notion of capacity becomes meaningless. Instead,
the decoding error probability is measured against the normalized per dimension volume-to-noise ratio (VNR), µc, defined by

µc ,
V (GGGc)

2/m

2πeσ2
=
V

2/m
c

2πeσ2
, (5)

where (V
2/m
c /2πe) ·m represents the asymptotic (in dimension m) squared radius of a sphere of volume Vc.

Poltyrev showed that the average probability of error (averaged over the ensemble of linear lattice codes Λc) is upper bounded
by (1) where

Ep(µc) =


1
2 [(µc − 1)− logµc] , 1 < µc ≤ 2;
1
2 log

(eµc
4

)
, 2 ≤ µc ≤ 4;

µc/8, µc ≥ 4.

(6)

From the above analysis, one notices that µc can be interpreted as the ratio of the squared radius of a spherical Voronoi cell
to the variance of the noise. For small µc, i.e., µc < 1, the spherical Voronoi cell has radius less than the standard deviation
of the noise. In this case, reliable communication is not possible as error is highly likely to occur. As such, µc = 1 has the
significance of capacity.

Interestingly, Poltyrev showed that if only a finite number of lattice points are to be transmitted as codewords with finite
power constraint and transmission rate R, then rates R up to 1/2 log(SNR) are achievable, where SNR ≥ 0 here represents the
average signal-to-noise ratio of the channel4. For high SNRs (i.e., for SNR� 1), 1/2 log(SNR) represents the capacity of the
AWGN channel, denoted by C. Therefore, the same error probability bound given in (1) and (6) can be used (asymptotically) to
characterize the performance of the power-limited lattice coded/decoded AWGN channel by letting (at high SNR) µc = 22[C−R].

Unfortunately, lattice decoders (usually implemented using sphere decoding algorithms) suffer from high computational
complexity for low-to-moderate SNR and for large signal dimensionality in which low error probability is to be expected. As
an alternative to lattice decoders, lattice sequential decoders comprise a set of efficient and powerful decoding techniques that
can achieve near-optimal performance without suffering the complexity of the lattice decoder for coding rates not too close to
capacity C. In fact, it is well known that sequential decoders can work well (with low decoding complexity) for rates below
the cut-off rate R0 which is only a factor of 4/e (1.68 dB) away from capacity C at the high-SNR regime [20]. Therefore,
for the unconstrained AWGN channel, µc = 4/e has the significance of the cut-off rate. Here, we call this the cut-off VNR,
denoted by µ0.

III. THE STACK SEQUENTIAL DECODER

In this section, we briefly introduce the operation of the stack algorithm. This algorithm is an efficient tree search algorithm
that attempts to find a “best fit” with the received noisy signal. Before we proceed with the description of such an algorithm,
we shall discuss the metric measure for sequential decoding of lattice codes. It is basically based on the path metric defined
for conventional sequential decoders which is given by [16]

M(zzzk1) = log

(
Pr(H(zzzk1))f(yyyk1 |H(zzzk1))

f(yyyk1)

)
, (7)

where H(zzzk1) is the hypothesis that zzzk1 form the first k symbols of the transmitted information sequence, and f(·) is the usual
probability density function.

Recently, it has been shown that the search for the closest lattice point problem which corresponds to (4) can be efficiently
performed using sequential decoders based on the stack algorithm [16]. For our channel model, the path metric given by (7)
can be shown to be simplified to (see Appendix A in [16])

M(zzzk1) = bk − ‖yyy′k1 −RRRkkzzzk1‖2, (8)

where zzzk1 = [zk, · · · , z2, z1]T denotes the last k components of the integer vector zzz, RRRkk is the lower k × k matrix of RRR that
corresponds to the QR decomposition of the code matrix GGGc = QQQRRR, yyy′ = QQQTyyy, and b is the bias term.

As in the conventional stack decoder [15], to determine a best fit (path), a value is assigned to each node in the tree. This
value is called the metric which is given by (8). A flow chart for the operation of the stack decoder is shown in Fig. 2. As
the decoder searches nodes, an ordered list of previously examined paths of different lengths is kept in storage. Each stack
entry contains a path along with its metric. Each decoding step consists of extending the top (best) path in the stack. The

4This can be simply done by intersecting the lattice code Λc (possibly shifted by a vector uuu0) with a shaping region R (a sphere or a Voronoi cell of
another lattice), i.e., C = (Λc +uuu0)∩R. In this case, the transmission rate is given by R = 1

m
log2[V (R)/Vc], where V (R) is the volume of the shaping

region. If we define mPx = 1
|C|

∑
xxx∈C ‖xxx‖2 to be the average transmitted power, then one can show that V (R) is asymptotically (as m → ∞) given by

(2πePx)m/2. For reliable communication, we must have Vc > (2πeσ2)m/2. Therefore, rates R up to 1
2

log(Px/σ2) = 1
2

log(SNR) is achievable.
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determination of the best and next best nodes is simplified in the closest lattice point search problem by using the Schnnor-
Euchner enumeration [12] which generates nodes with metrics in ascending order given any node zzzk1 . The decoding algorithm
terminates when the top path in the stack reaches the end of the tree (refer to [15] for more details about the algorithm).

Assign k = 0
to root (initial

node in the stack)

Extend best path
to its successor and
compute metric

Reordered paths
according to
their metric

Has best
path

reached
end of the

tree?

stop

no

yes

Fig. 2. Flow chart for stack decoding.

The main role of the bias term b used in the algorithm is to control the amount of computations performed by the decoder. In
this work, we define the computational complexity of the lattice sequential decoder as the total number of nodes visited by the
decoder during the search. Also, the bias term is responsible for the excellent performance-rate-complexity tradeoff achieved
by such a decoding scheme. The role that the bias parameter plays will be discussed in detail in the subsequent sections.

IV. PERFORMANCE ANALYSIS: AN UPPER BOUND

As mentioned at the introduction, there has been no analysis devoted to sequential decoding applied to the lattice coded
unconstrained AWGN channel. In this section, we analyze the performance limits of the stack sequential decoder when lattice
coding is applied at the transmitter. We consider the unconstrained AWGN channel as defined by Poltyrev [3]. Finding the exact
error performance of such a decoder seems to be difficult. Therefore, we attempt to derive an upper bound on the sequential
decoding error probability.

Define Pe(b) as the probability that the sequential decoder makes an erroneous detection at a bias value b (defined in (8)).
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Now, due to lattice symmetry, one can assume that the all-zero lattice point 000 is transmitted. Then, we have that

Pe(b) = Pr

 ⋃
xxx∈Λ∗c

{000 was decoded as xxx}


(a)

≤ Pr

 ⋃
zzz∈Zm\{000}

{M(zzz) >Mmin}


(b)

≤ Pr

 ⋃
xxx∈Λ∗c

{‖xxx‖2 − 2xxxTwww < bm}


= Pr

 ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1− bm

‖xxx‖2
)} ,

(c)

≤ Pr

 ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1− bm

d2
min(Λc)

)} ,

(9)

where Λ∗c = Λc\{000}, (a) is due to the fact thatM(zzz) >Mmin is just a necessary condition for xxx = GGGczzz to be decoded by the
stack decoder, whereMmin = min{0, b−‖www1

1‖2, 2b−‖www2
1‖2, . . . , bm−‖wwwm1 ‖2} is the minimum metric that corresponds to the

transmitted path, (b) follows by noticing that −(Mmin +‖www‖2) ≤ 0, and (c) follows from the fact that ‖xxx‖ ≥ minxxx∈Λ∗c
‖xxx‖ ∆

=
dmin(Λc) — the minimum Euclidean distance of the lattice.

It is clear from the above bound that the performance of the lattice sequential decoder depends critically on the shortest
distance of the infinite lattice. Unfortunately, calculating the exact minimum distance of a lattice is NP-hard — a problem
that is referred to the shortest vector problem [7]. Moreover, finding the exact probability that appears in the RHS of (9) for
a particular lattice seems to be difficult. As such, we need to rely on a random technique to further upper bound the average
error performance of the decoder. Before doing so, we need to ensure that the lattices in the ensemble are reasonably good
for channel coding. In order to do this, we need to expurgate the lattice ensemble that appears in (2) appropriately such that
the remaining lattices in the expurgated ensemble satisfy a lower bound on the packing radius of the lattice rpack(Λc), or
equivalently on the minimum Euclidean distance dmin(Λc) = 2rpack(Λc).

We recall the result in [6, Lemma 1] which states that most lattices in the random ensemble ΛΛΛ that satisfies the Minkowski-
Hlawka theorem have good minimum Euclidean distance. In other words, for a lattice Λc that is drawn from the random
ensemble ΛΛΛ we have that for 0 ≤ ζ < 1

Pr(dmin(Λc) > ζreff(Λc)) > 1− ζm, (10)

where reft(Λc) is the effective radius of Λc. Let ΛΛΛexp be the expurgated lattice ensemble that satisfies (10), i.e.,

ΛΛΛexp(ζ) = {Λc ∈ ΛΛΛ : dmin(Λc) > ζreff(Λc), 0 ≤ ζ < 1}. (11)

In this case, it is straight forward to show that for a given lattice Λc ∈ ΛΛΛexp, the conditional error probability (9) can be
further upper bounded by

Pe(b|Λc) ≤

Pr

 ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1− bm

ζ2r2
eff(Λc)

)} ∣∣∣∣∣Λc
 .

(12)

Averaging (12) over the expurgated lattice ensemble, we get

Pe(b) ≤ EΛexpΛexpΛexp

{
Pr

( ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1−

bm

ζ2r2
eff(Λc)

)}∣∣∣∣∣Λc
)}

.

(13)

Now, in order to use the Minkowski-Hlawka theorem with expurgated ensemble we will need the following relation:

EΛexpΛexpΛexp
{XXX} ≤ 1

Pr(dmin(Λc) > ζreff(Λc))
EΛΛΛ {XXX} , (14)
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where EΛΛΛ{·} is the expectation with respect to the ensemble in (2), and XXX is a nonnegative random variable. Therefore, we
have that

Pe(b) ≤
1

1− ζm EΛΛΛ
{

Pr

( ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1−

bm

ζ2r2
eff(Λc)

)}∣∣∣∣Λc
)}

.

(15)

As m→∞ we have

r2
eff(Λc) =

Γ
(
m
2 + 1

)2/m
π

V 2/m
c ∼ V

2/m
c

2πe
·m = µcσ

2m,

where µc is the VNR, and σ2 is the noise variance. Note that, asymptotically, as m→∞, we may let ζ approaches 1 as close
as desired. Therefore, the average probability of decoding error can be asymptotically upper bounded by

Pe(b, µc) ≤ EΛΛΛ

Pr

 ⋃
xxx∈Λ∗c

{
2xxxTwww > ‖xxx‖2

(
1− b/σ2

µc

)}
= EΛΛΛ

Pr

 ⋃
xxx∈Λ∗c

{
2xxxTw̃ww > ‖xxx‖2

} ,

(16)

where

w̃ww =

(
1− bn

µc

)−1

www,

is a zero-mean Gaussian random vector with elements that are independent, identically, distributed random variables with
variance σ̃2 = (1− bn/µc)−2σ2, and bn = b/σ2 is defined as the normalized bias with respect to the noise variance. It must
be noted that the above bound is only valid for all values of bn such that 1 − bn/µc > 0, or equivalently for all values of
0 ≤ bn < µc.

Interestingly, the upper bound (16) corresponds to the probability of decoding error of a received signal yyy = xxx+ w̃ww decoded
using the conventional lattice decoder. Therefore, one may observe that the sub-optimality of the sequential decoder can be
viewed as a source of channel noise amplification.

Following the footsteps of Poltyrev, the average probability of error can be shown to be upper bounded by

Pe(b, µc) ≤ e−mEb(µc), (17)

where

Eb(µc) = Ep(µ̃c) =



0, µ̃c ≤ 1;
1
2 [(µ̃c − 1)− log µ̃c] , 1 < µ̃c ≤ 2;

1
2 log

(
eµ̃c
4

)
, 2 ≤ µ̃c ≤ 4;

µ̃c/8, µ̃c ≥ 4.

(18)

where

µ̃c ,
V (GGGc)

2/m/2πe

σ̃2
= µc

(
1− bn

µc

)2

. (19)

Hence, for sufficiently large m, there exists at least a lattice Λ′c in the expurgated code ensemble with error probability
satisfying

Pe(b, µc,Λ
′
c) ≤ e−mEb(µc). (20)

Now, the following important remarks can be made about the above result:
• Fixed Bias: In this case, the bias term b is fixed and chosen independent of the VNR µc. Note that as µc gets large

(µc � 1) , one may approximate µ̃c in (19) as

µ̃c = µc

(
1− bn

µc

)2

≈ µc
(

1− 2
bn
µc

)
= µc − 2bn. (21)

Therefore, the above analysis indicates that fixing the bias term causes a right-shift to the error probability curve (i.e., a
reduction in the coding gain). This can be realized from the value of the error exponent for large µc which is given by

Eb(µc) =
µ̃c
8

=
µc
8
− bn

4
= Ep(µc)−

bn
4
, (22)
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where Ep(µc) is the Poltyrev error exponent achieved by the lattice decoder which is defined in (6). Substituting (22)
into (20) we get

Pe(b, µc) ≤ e−mEb(µc) = e−m[Ep(µc)−bn/4]

= αe−mEp(µc),
(23)

where α = embn/4. The constant α describes the behavior of the error probability of the sequential decoder for a fixed
bias term. Increasing the bias term results in performance reduction compared to the one achieved by the lattice decoder.
This reduction is represented by a right-shift to the error probability curve5, as will be shown in the sequel.

• Variable Bias: Now, let the normalized bias bn to scale linearly with the VNR µc as bn = (1−
√
δ)µc where 0 < δ ≤ 1,

then the error exponent in this case can be expressed as

Eb(µc) =



0, µc ≤ 1/δ;
1
2 [(δµc − 1)− log δµc] , 1/δ < µc ≤ 2/δ;

1
2 log

(
eδµc

4

)
, 2/δ ≤ µc ≤ 4/δ;

δµc/8, µc ≥ 4/δ.

(24)

It is clear from the above analysis that if δ → 1 (or bn → 0) then the performance of the sequential decoder approaches
the performance of the lattice decoder. On the other extreme, if δ → 0 (or bn → µc) then reliable communication may not
be possible under lattice sequential decoding. Fig. 3 shows the error exponent achieved by the lattice sequential decoder
for the case of the variable bias term described above. It is clear from Fig. 3 that for high VNR µc, the effect of varying δ
occurs as a change in the slope of the error exponent curve, where at high VNR we have Eb(µc) = δµc/8. Moreover, the
maximum achievable VNR under sequential decoding with normalized bias bn = (1−

√
δ)µc is given by 1/δ. Therefore,

for δ 6= 1, reliable communication may not be possible at VNR close to capacity (µc = 1).
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Fig. 3. The achievable error exponent of the lattice sequential decoder when the normalized bias term bn = (1−
√
δ)µc for δ = 0.5, 0.75, and 1.

The main result that we draw from the above discussion is that, increasing the bias term lower the decoding error probability.
However, the loss in the error performance achieved by any sub-optimal decoder is usually compensated by some improvements
in the decoding complexity. This fact will be demonstrated next where we consider the computational complexity analysis of
the sequential decoder for the unconstrained AWGN channel.

V. THE “CUT-OFF” VOLUME-TO-NOISE RATIO: AN UPPER BOUND ON THE COMPLEXITY DISTRIBUTION

The main use of the sequential decoder is to achieve a low decoding complexity compared to the very complex lattice decoder.
As in conventional sequential decoder, one need to back-off from capacity to achieve such improvements. For convolutional
codes detected using sequential decoders, a cut-off rate has been defined for such decoding schemes. The cut-off rate R0 is
the rate for which the transmitter should not exceed if one needs to expect a low decoding complexity. If R > R0, then

5It must be noted that, although the bound (20) shows that the shift is α = embn/4, the exact amount of right-shift is less than α as will be shown by the
simulation results in Section VI.
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the complexity of the sequential decoder increases exponentially with the constraint length of the code [14]. For the power-
constrained AWGN channel, the cut-off rate R0 is 4/e (1.68 dB) away from capacity at high SNR [20]. In this section, we
study in details the complexity of the sequential decoder for the unconstrained AWGN channel.

Due to the random nature of the channel noise, the computational complexity of the lattice sequential decoder is also random.
Therefore, it would be more appropriate to study the complexity behavior of such a decoder via its complexity tail distribution
defined as Pr(N (Λc) ≥ L), where N (Λc) is defined as the total number of nodes in the tree that have been visited by the
decoder during the search for a given lattice Λc, and L is the distribution parameter.

Similar to the power-limited AWGN channel, we define a “cut-off” VNR µ0 for the unconstrained AWGN channel to be
the value of µc for which both low decoding complexity and low decoding error probability are possible.

To simplify the analysis, we start by bounding the total number of computations N (Λc) from above as follows. First, one
should note that all nodes in the tree that have been visited by the sequential decoder must have partial path metrics M(zzzk1)
that exceed the minimum metric Mmin which corresponds to the decoded path. Let φ(zzzk1) be the indicator function defined
by

φ(zzzk1) =

{
1, M(zzzk1) ≥Mmin;

0, otherwise,
(25)

Since M(zzzk1) ≥Mmin is a sufficient condition for the node to be visited by the decoder, then N (Λc) may be upper bounded
by

N (Λc) ≤
m∑
k=1

∑
zzzk1∈Zk

φ(zzzk1). (26)

Also, the complexity tail distribution can be upper bounded as

Pr(N (Λc) ≥ L) ≤Pr(N (Λc) ≥ L, ‖www‖2 ≤ σ2m)+

Pr(‖www‖2 > σ2m), (27)

where the above upper bound is derived using the well known separation of the typical noise events from the non-typical
ones [20]. Next, we would like to upper bound the first term in the RHS of (27).

Given ‖www‖2 ≤ σ2m, and by noticing that −(Mmin + ‖www‖2) ≤ 0, we obtain∑
zzzk1∈Zk

φ(zzzk1) ≤
∑
zzzk1∈Zk

φ
′
(zzzk1), (28)

where φ(zzzk1) is the indicator function defined in (25), and

φ
′
(zzzk1) =

{
1, if ‖www′k1 −RRRkkzzzk1‖2 ≤ bk + σ2m;
0, otherwise.

(29)

where www′k1 is the last k components of www′ = QQQTwww. Now, let

φ
′′

k(zzz) =

{
Sk, if ‖www′ −RRRzzz‖2 ≤ bm−Mmin;
0, otherwise,

where
Sk =

∑
zzzk1∈Zk

φ
′
(zzzk1), (30)

then it can be shown that

N (Λc) ≤
m∑
k=1

∑
zzz∈Zm

φ
′′

k(zzz) ≤
m∑
k=1

∑
xxx∈Λc

φ̃k(xxx),

where

φ̃k(xxx) =

{
Sk, if ‖xxx‖2 − 2(xxx)Twww ≤ bm;
0, otherwise.

Interestingly, the sum that appears in (30) represents the number of partial integer lattice points zzzk1 ∈ Zk that are located
inside a sphere of squared radius bk + σ2m centered at the received signal (yyy = www in our case). One can approximate Sk
by the ratio of the volume of the k-dimensional sphere of squared radius bk + σ2m to the volume of the Voronoi cell of the
lattice Λk that corresponds to RRRkk, denoted by V (RRRkk), (see [11] for more details), i.e.,

Sk ≈
Sk(
√
bk + σ2m)

V (RRRkk)
=

(π)
k/2

Γ(k/2 + 1)

[bk + σ2m]k/2

det(RRRT
kkRRRkk)1/2

. (31)
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For a given lattice Λc, we have

Pr(N (Λc) ≥ L, ‖www‖2 ≤ σ2m|Λc)
≤ Pr(Ñ (Λc) ≥ L−m, ‖www‖2 ≤ σ2m|Λc)

≤ Ewww{Ñ (Λc)|Λc, ‖www‖2 ≤ σ2m}
L−m , for L > m,

(32)

where the last inequality follows from using Markov inequality, and Ñ (Λc) is defined as

Ñ (Λc) =

m∑
k=1

∑
zzzk1∈Zk\{000}

φ(zzzk1),

since we have assumed that the all-zero lattice point was transmitted.
The conditional average of Ñ (Λc) with respect to the noise can be further upper bounded as

Ewww{Ñ (Λc)|Λc, ‖www‖2 ≤ σ2m}

≤
m∑
k=1

Sk
∑
xxx∈Λ∗c

Pr(‖xxx‖2 − 2(xxx)Twww < bm).
(33)

Therefore, we have

Pr(N (Λc) ≥ L, ‖www‖2 ≤ σ2m|Λc)

≤
∑m
k=1 Sk
L−m

∑
xxx∈Λ∗c

Pr(2(xxx)Twww > ‖xxx‖2 − bm). (34)

Now, for L = m+
∑m
k=1 Sk, we have that

Pr(N (Λc) ≥ L|Λc)
≤
∑
xxx∈Λ∗c

Pr(2(xxx)Twww > ‖xxx‖2 − bm) + Pr(‖www‖2 > σ2m)

≤
∑
xxx∈Λ∗c

Pr

(
2(xxx)Twww > ‖xxx‖2

(
1− bm

d2
min(Λc)

))
+ Pr(‖www‖2 > σ2m).

(35)

At this point, it is worth mentioning that the first term in the RHS of (35) represents the union bound of the sequential
decoding error probability in (9). Therefore, as will be shown in the sequel, there exists a minimum VNR µc, defined as
the cut-off VNR µ0, such that for all µc > µ0 low decoding error probability and low decoding complexity can be achieved
simultaneously.

Similar to the error probability analysis, assuming Λc is drawn from the expurgated lattice ensemble ΛΛΛexp defined in (11),
we have that

Pr

(
2(xxx)Twww > ‖xxx‖2

(
1− bm

d2
min(Λc)

))
≤ Pr

(
2(xxx)Twww > ‖xxx‖2

(
1− bm

ζ2r2
eff(Λc)

))
.

where 0 < ζ < 1. Using Chernoff bound, as m→∞

Pr

(
2(xxx)Twww > ‖xxx‖2

(
1− bm

ζ2r2
eff(Λc)

))
≤ e−‖xxx‖2/8σ̃2

,

where σ̃2 = (1 − bn/µc)−2µc, and bn = b/σ2. Therefore, one may asymptotically upper bound the first term in the RHS
of (35) as ∑

xxx∈Λ∗c

Pr(2(xxx)Twww > ‖xxx‖2 − bm) ≤
∑
xxx∈Λ∗c

e−‖xxx‖
2/8σ̃2

. (36)

Substituting (36) in (35), and taking the expectation of (35) over the ensemble of expurgated lattices, we obtain

Pr(N (Λc) ≥L) = EΛΛΛexp
{Pr(N (Λc) ≥ L|Λc)}

≤ 1

Vc

∫
Rm

e−‖xxx‖
2/8σ̃2

dxxx+ Pr(‖www‖2 > σ2m). (37)
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Evaluating the integral in the above upper bound we get

1

Vc

∫
Rm

e−‖xxx‖
2/8σ̃2

dxxx =
(8πσ̃2)m/2

Vc
=

(
4/e

µ̃c

)m
, (38)

where µ̃c = µc (1− bn/µc)2. Therefore, for large m, we can further upper bound (37) for all 0 ≤ bn ≤ µc as

Pr(N (Λc) ≥ L) ≤
(

4/e

µ̃c

)m
+ Pr(‖www‖2 > σ2m). (39)

Hence, for sufficiently large m, there exists at least a lattice Λ′c in the ensemble with complexity tail distribution satisfying (39)
for all values of L ≥ m +

∑m
k=1 Sk. It follows from standard typicality arguments that for any ε > 0 there exists m0 such

that for all m > m0

Pr(‖www‖2 > σ2m) < ε/2.

The first term in the upper bound (39) can be made smaller than ε/2 for sufficiently large m, i.e.,

Pr(N (Λ′c) ≥ L) ≤ ε, m→∞,
if µ̃c > 4/e. This result indicates that large computational complexity may be avoided, while maintaining good error
performance, at µc above the cut-off VNR µ0 which is given by the roots of the following equation

µ0

(
1− bn

µ0

)2

=
4

e
.

Note that when bn = 0 we have µ0 = 4/e. Under this constraint, solving the above equation for µ0 we get

µ0 =

(
bn +

2

e

[
1 +

√
bne+ 1

])
. (40)

It is interesting to note that as b → 0 (the value of the bias that achieves close to lattice decoding performance) we
have µ0 → 4/e, where 4/e represents the gap between the cut-off rate and the capacity of the power-constraint AWGN
channel [19], [20]. Since the union bound in (35) provides a good estimate to the decoding error probability at high VNR
(i.e., for µc greater than the cut-off VNR µ0) (see [19]), achieving a good error performance for large values of b, where low
decoding complexity is expected, comes at the expense of increasing the VNR (or equivalently reducing the coding rate for
the case of finite lattice codes).

The analysis above indicates that the total number of computations that is required by the decoder to decode a message
while achieving low error probability can be approximated by

L ≈ m+

m∑
k=1

(π)
k/2

Γ(k/2 + 1)

[bk + σ2m]k/2

(det(RRRT
kkRRRkk)1/2)

. (41)

In order to see how the complexity is affected by the channel and the decoder parameters, we express the unconstrained
AWGN channel by the vector model yyy =

√
µcxxx+www, where xxx is the transmitted lattice point that is selected randomly from a

lattice Λc with generator matrix GGGc = QRQRQR, µc is the VNR, and www ∼ N (000, III). The volume of the Voronoi cell of Λc is selected
such that the VNR at the output of the channel is µc. In this case we have Vc = (2πe)m/2. As a result, we may express L as

L ≈ m+

m∑
k=1

(π)
k/2

Γ(k/2 + 1)

[bnk +m]k/2

µ
k/2
c det(RRRT

kkRRRkk)1/2
. (42)

It is clear from the above equation that as µc → ∞, we have L → m. Therefore, regardless the value of the bias term
chosen at the decoding stage, the complexity of the decoder is approximately linear in the code dimension when the VNR is
very large. This fact is also verified experimentally as will be shown in the sequel.

In fact, as expected, the total number of computations performed by the decoder at any VNR µc beyond µ0 is bounded from
above. This can be seen by substituting (40) in (42). Then, one may upper bound the total number of computations performed
by the decoder as

L ≤ m+
m∑
k=1

(π)
k/2

Γ(k/2 + 1)

[bnk +m]k/2

µ
k/2
0 det(RRRT

kkRRRkk)1/2

≈ m+

m∑
k=1

(πk)
k/2

Γ(k/2 + 1) det(RRRT
kkRRRkk)1/2

, bn →∞.
(43)

It is clear from the above bound that as b increases (or as bn → ∞), the computational complexity scales almost linearly
with the code dimension m. The simulation results (introduced next) agree with the above analysis.
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In conclusion, lattice sequential decoders allow for a systematic approach for trading off performance, VNR, and complexity.
For a fixed VNR, increasing the bias term allows to achieve low decoding complexity but at the expense of poor performance.
In order to improve the performance without affecting the complexity, one need to increase the VNR µc or equivalently to
increase the lattice density, to recover the performance loss.

VI. SIMULATION RESULTS

In our simulation we consider the unconstrained AWGN channel with m channel uses that is described by the vector model
yyy =
√
µcxxx+www, where xxx is the transmitted lattice point that is selected randomly from a lattice Λc with generator matrix GGGc,

µc is the VNR, and www is an AWGN vector with elements that are independent identically distributed, zero-mean Gaussian
random variables with unit variance. We consider the Loeliger ensemble of mod-p lattices, where p is a prime. First, we
generate the set of all lattices given by Λc = κ(C + pZm), where κ is a scaling coefficient chosen such that the Voronoi cell
volume Vc = (2πe)m/2, Zp denotes the field of mod-p integers, and C ⊂ Zmp is a linear code over Zp with generator matrix
in systematic form [III PPPT]T, where PPP is the parity-check matrix. In the following, we select a lattice code at random with
p = 1001 and fix the code for all simulation results.

Fig. 4 and Fig. 5 demonstrate the great advantage of using the lattice sequential decoder as an alternative to the optimal
lattice sphere decoder. The performance and the complexity of both decoders are plotted for a lattice code of length m = 30.
As depicted in Fig. 5, there is a significant complexity reduction achieved by using the sequential decoder over the lattice
decoder, especially for low-to-moderate VNR, at the expense of very low error performance loss (a fraction of dB), for a bias
value b = 1 (see Fig. 4).

Fig. 6 and Fig. 7 show the effect of increasing the bias term on the average error probability for the case of fixed and variable
bias values, respectively. In Fig. 6, we choose fixed bias values (independent of µc) and plot the average error probability
versus the VNR µc in dB. We also plot the performance of the optimal lattice decoder implemented via the sphere decoder
algorithm [12] to measure the price of using the sequential decoder in terms of the performance loss. It is clear from the figure
that increasing the bias term causes a right-shift to the sequential decoder error probability curve, while maintaining the rate at
which the curve decays,6 particularly at high VNR values. This basically agrees with the derived theoretical results provided
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Fig. 4. Performance comparison between the sphere decoder and the sequential decoder with b = 1 for a lattice code of dimension m = 30.

in (22) and (23). On the other hand, if we let b to scale linearly with VNR as (1 −
√
δ)µc, where 0 ≤ δ ≤ 1 (see (24)),

then according to the error exponent analysis, we expect that the rate of decay (slope) of the error probability curve would
decrease7 as we decrease δ. This is depicted in Fig. 7, which also agrees with the derived theoretical results.

6The asymptotic rate of decay of the error probability curve maybe defined as

slope ∆
= lim
µc→∞

− loge Pe(µc)

loge µc
.

Now, for the case of fixed bias, using (23) we get

slope = lim
µc→∞

mµc

8 loge µc
− lim
µc→∞

bn

4 loge µc
= lim
µc→∞

mµc

8 loge µc
,

which indicates that the slope of the error probability is the same for any finite b.
7In this case, the rate of decay (slope) of the error probability curve can be shown to be equal to δ[mµc/8 loge µc] which depends on b via δ.
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Fig. 5. Average computational complexity comparison between the lattice sphere decoder and the sequential decoder with bias term b = 1 for a lattice code
of dimension m = 30.

2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

µ
c
 (dB)

A
v
e
ra

g
e
 E

rr
o
r 

P
ro

b
a
b
ili

ty

 

 

Lattice−Sequential Decoder (b=1000)

Lattice−Sequential Decoder (b=3)

Lattice−Sequential Decoder (b=2)

Lattice−Sequential Decoder (b=1)

Lattice−Sphere Decoder

Fig. 6. Comparison of the lattice sequential decoder’s performance for various values of (fixed) bias term.

2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

µ
c
 (dB)

A
v
e
ra

g
e
 E

rr
o
r 

P
ro

b
a
b
ili

ty

 

 

δ=0.1

δ=0.5

δ=0.9

Fig. 7. Comparison of the lattice sequential decoder’s performance when the bias term varies with the VNR as bn = (1−
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δ)µc for several values of δ.
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Finally, Fig. 8 shows the effect of increasing the bias term on the average computational complexity (defined as the total
number of visited nodes during the search). For comparison, we also include in Fig. 8 the average complexity of the sphere
decoder for the same lattice code. The average complexity is plotted versus the VNR in dB. It is clear that for all values of
b the sequential decoder has much lower complexity compared to the lattice (sphere) decoder, especially for low-to-moderate
VNRs. The reason for the bell-like shape of the average complexity that occurs at low-to-moderate VNRs is due to the fact
that with high-probability the received signal is close to the edge of the Voronoi cell. This basically requires the decoder to
visit more nodes in the tree before decoding the message. As the VNR decreases or increases, the received signal becomes
closer to a wrong lattice point or to the transmitted lattice point, respectively, which allows the decoder to decode the message
without visiting many nodes. This leads to the very low average complexity as depicted in Fig. 8. The result also shows that
as we increase the bias term, the average complexity significantly reduces, especially for low-to-moderate VNR values. As
b → ∞, the number of computations becomes equal to m (the signal dimension) for all VNR values. This agrees with the
derived theoretical results.

In conclusion, simulation results indicate that increasing the bias term in the decoding algorithm significantly reduces the
complexity but at the expense of losing performance.

VII. CONCLUSION

In this paper, we have analyzed the performance limits and the computational complexity of the lattice sequential decoder
applied to the unconstrained AWGN channel. The error probability has been analyzed following the footsteps of Poltyrev by
deriving the error exponent of the sequential decoder as a function of the VNR and the decoding parameter—the bias term.
The bias term is responsible for the performance-complexity tradeoff achieved by the decoder. It has been shown (analytically
and via simulation) that, if the bias term is fixed and independent of the VNR, then increasing the bias term causes only a
right-shift to the error probability curve (occurs as a loss in the coding gain). However, if the bias term is scaled linearly with
the VNR, the rate at which the error probability curve decays gets affected accordingly. It has also been shown that increasing
the bias term significantly reduces the average number of computations required by the decoder to decode a message. However,
the price of the complexity improvements comes at the expense of a loss in the performance. Hence, a fundamental trade-off
exists between the error performance, the decoding complexity, and the VNR.

By revealing the tradeoff between performance, complexity and lattice density, it introduces the concept of lattice density
into lattice decoding for the first time making it a promising area in lattice applications for digital and wireless communications.
An interesting venue for future work is to derive bounds on the moments of sequential decoding complexity. As shown in this
paper, since the decoding complexity is random, there exists a non-zero probability that the amount of computations performed
by the decoder may become excessive causing a buffer overflow which is considered an important metric for the design of a
sequential decoder. Therefore, studying these moments (e.g., the variance of the decoding complexity) is important to obtain
estimates on the probability of buffer overflow [21].
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