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ABSTRACT

Energy Efficient Smartphones: Minimizing the Energy

Consumption of Smartphone GPUs using DVFS Governors

Enas Ahmad

Modern smartphones are being designed with increasing processing power, memory

capacity, network communication, and graphics performance. Although all of these

features are enriching and expanding the experience of a smartphone user, they are

significantly adding an overhead on the limited energy of the battery. This thesis aims

at enhancing the energy efficiency of modern smartphones and increasing their bat-

tery life by minimizing the energy consumption of smartphones Graphical Processing

Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated,

which implies relying on the GPU power for rendering all application graphics. In ad-

dition, the GPUs installed in smartphones are becoming more and more powerful by

the day. This raises an energy consumption concern. We present a novel implemen-

tation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS)

scheme implemented in the Android kernel to dynamically scale the GPU. The scheme

includes four main governors: Performance, Powersave, Ondmand, and Conservative.

Unlike previous studies which looked into the power efficiency of mobile GPUs only

through simulation and power estimations, we have implemented our approach on a

real modern smartphone GPU, and acquired actual energy measurements using an

external power monitor. Our results show that the energy consumption of smart-
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phones can be reduced up to 15% using the Conservative governor in 2D rendering

mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.



6

ACKNOWLEDGEMENTS

First and foremost, I would like thank my adviser Dr. Basem Shihada, for his

indispensable guidance, and for his continuous help and rich feedback through out

my thesis. Also, for his trust, light spirit and sense of humor.

I would also like to thank Dr. Markus Hadwiger, and Dr. Mohamed-Slim Alouini

for being part my committee, and for all their time.

A special thanks goes to Ola and Hessa, for all the nights we spent, the tea we

drank, and the conversations we shared. Could not have pulled through without your

amazing company.

And finally, to my wonderful family. Everything I am, I owe to them.

”And my success is not but through Allah. Upon him I have relied, and to Him I

return. -Hud(88).



7

TABLE OF CONTENTS

Examination Committee Approval 2

Copyright 3

Abstract 4

Acknowledgements 6

List of Figures 9

List of Tables 10

1 Introduction 11

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Selected Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background and State of the Art 15

2.1 Energy Efficiency in Smartphone Applications . . . . . . . . . . . . . 15

2.1.1 Always-On Applications . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 location-Based Applications . . . . . . . . . . . . . . . . . . . 16

2.1.3 Detecting Energy-Greedy Bugs and Malware . . . . . . . . . . 17

2.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 24

3.1 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Android Architecture . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Mali-400 GPU Driver . . . . . . . . . . . . . . . . . . . . . . . 26



8

3.1.3 Linux CPUFreq Governors . . . . . . . . . . . . . . . . . . . . 28

3.1.4 GPU DVFS Governors . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Power Measurement . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results and Discussion 39

4.1 Energy Saving Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Concluding Remarks 47

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Future Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Contributing to the Android Community . . . . . . . . . . . . . . . . 48

References 49



9

LIST OF FIGURES

3.1 Android architecture [37] . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Mali device driver stack [40] . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 CPUFreq governors control flow [12] . . . . . . . . . . . . . . . . . . . 28

3.4 Stock algorithm scaling in AnTuTu 2D test . . . . . . . . . . . . . . . 31

3.5 Stock algorithm scaling in AnTuTu 3D test . . . . . . . . . . . . . . . 32

3.6 Ondemand governor scaling in AnTuTu 2D test . . . . . . . . . . . . 33

3.7 Ondemand governor scaling in AnTuTu 3D test . . . . . . . . . . . . 33

3.8 Conservative governor scaling in AnTuTu 2D test . . . . . . . . . . . 34

3.9 Conservative governor scaling in AnTuTu 3D test . . . . . . . . . . . 35

3.10 The three scaling algorithms in AnTuTu 2D test . . . . . . . . . . . . 36

3.11 The three scaling algorithms in AnTuTu 3D test . . . . . . . . . . . . 37

3.12 Experimental setup: Monsoon Power Monitor . . . . . . . . . . . . . 38

4.1 Relation between the GPU frequency and the instantaneous power . . 39

4.2 Comparison of energy consumption (3D benchmark tests) . . . . . . . 40

4.3 Comparison of energy consumption (2D benchmark tests) . . . . . . . 42

4.4 Comparison of energy consumption (idle state) . . . . . . . . . . . . . 43

4.5 Total energy saving percentages . . . . . . . . . . . . . . . . . . . . . 44



10

LIST OF TABLES

3.1 Smasung Galaxy S2 GT-I9100 Specifications . . . . . . . . . . . . . 28

3.2 Stock Algorithm Frequencies and Voltages . . . . . . . . . . . . . . . 31

3.3 GPU Governors Frequencies and Voltages . . . . . . . . . . . . . . . 31

4.1 Total Energy Savings in 3D Benchmark Test . . . . . . . . . . . . . . 41

4.2 Total Energy Savings in 2D Benchmark Test . . . . . . . . . . . . . 42

4.3 Total Energy Savings in Idle State . . . . . . . . . . . . . . . . . . . 43

4.4 Benchmark Performance Results . . . . . . . . . . . . . . . . . . . . 45

4.5 Performance Loss Percentages . . . . . . . . . . . . . . . . . . . . . . 46



11

Chapter 1

Introduction

1.1 Overview

In 1992 IBM announced ”Simon”, the first smartphone in the world [1]. What was

phenomenal about ”Simon” was that it added capabilities other than making phones

calls to mobile devices. Some of these capabilities were: a calendar, storing contacts,

creating task lists, and the ability to use third party applications. Although it might

sound very trivial compared with today’s phones, at that time it was considered a

breakthrough in the mobile industry, and therefore ”Simon” was labeled as ”Smart”.

Years later, smartphones have been emerging into our world in a rapid rate. According

to Gartner [2], sales of smartphones witnessed an increase of 96% in the third quarter

of 2010, which amounted to more than 81 million units sold in less than 3 months.

However, smartphones have come a long way since 1992; modern smartphones are

being designed with increasing features and capabilities. It is common today to

see smartphones having Dual and even Quad core processors, their speed as fast

as 1.7 GHz, and with up to 2 GB of RAM. Smartphones are also being equipped

with a variation of network interfaces, such as WiFi, 3G, 4G, EDGE and Bluetooth.

Moreover, high resolution screens and powerful GPUs are being installed in most

smartphone devices.
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Although all of these features are enriching and expanding the experience of a

smartphone user, but they are significantly adding an overhead on the limited energy

of the battery. Few years back, a mobile phone would last three to four days without

a recharge, however, today’s users are complaining of the fast drainage of their phones

batteries and the need to recharge them on a daily basis if not more than once in a

single day. According to a study done by [3], 80% of mobile phone users are searching

for various measures to increase their battery lifetime. This shows that the short

lifetime of the phone battery is becoming a serious concern for users. Thus, designing

energy efficient smartphones while keeping up with these newer capabilities is now

becoming vital.

1.2 Problem Statement

Due to the growing importance of this issue, researchers have been showing increasing

interest in designing energy efficient smartphones. The first step to accomplish that

would be to establish an in-depth characterization and analysis of the energy con-

sumption of the different components of the smartphone. This analysis would help

in understanding the main sources of energy drainage under different usage scenar-

ios. Several work such as [4–9] have aimed to achieve this. The main components

under measurement were: GSM, CPU, RAM, Wifi, 3G, GPS, and screen. The en-

ergy consumed by each of these components is calculated separately while keeping

the others constant. Furthermore, some researchers have targeted the second step,

which is to minimize and optimize the energy consumption of smartphones. Such

work will be discussed in detail in the State of the Art section. Although these stud-

ies have proposed practical and employable solutions for almost every component in

the smartphone including CPU, networks, GPS, and application-level efficiency, they

have failed to do so for one of the main components of any modern smartphone, which
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is the GPU. Recall, GPUs are known for high computational and processing power.

In smartphones, GPUs are located on the same chipset as rest of the processing

cores, which is referred to as SoC (System-on-a-Chip) architecture [10]. The addi-

tion of the GPUs to the SoC have provided a big leap in the graphical experience.

Applications and user interface components in modern smartphones use very rich

and high-quality graphics. Therefore, smartphone vendors are increasing the com-

putational capabilities of their GPUs accordingly, to ensure the smoothness of the

graphics rendering. The resolution of the smartphone displays has also been increas-

ing steadily over the recent years. The resolution can range from 120 x 160 pixels,

and up to 768 x 1280 pixels found in the Black Berry Z10. But higher display resolu-

tion means heavier load for the GPU in the rendering process. Moreover, operating

systems such as Android are designed with full support of hardware acceleration [11].

The drawing operations and the rendering of both 2D and 3D graphics are all carried

out by the GPU. All these significant advancements in the smartphone graphics raise

a concern of the energy consumption of the GPU, which has not yet been practically

investigated. Some few primary work have aimed to enhance the power efficiency of

mobile GPUs, as it will be discussed later on. However, the problem of all these stud-

ies is that they are simulation-based and not tested or implemented on real mobile

GPUs. Moreover, the power measurements in these studies are only approxima-

tions derived from theoretical energy models. We believe that simulating smartphone

GPUs is not sufficient to reflect the variations, characteristics, and constraints of a

real smartphone environment.

1.3 Selected Approach

Smartphone applications can vary from simple 2D web browsers or text based editors

to high resolution 3D gaming. This variation encourages using dynamic scaling tech-
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niques for the GPU based on its real time utilization, similar to the ones used for the

CPU. Energy can be saved by dynamically adjusting the GPU frequency and voltage

to the current usage, instead of running it at its highest performance the entire time.

Linux Kernel, which is used by the Android OS, defines what is famously known as

”CPUFreq Scaling Governors” [12]. Each of these governors provides a different scal-

ing algorithm for the CPU that give a trade-off between performance and power. The

main governors are: Performance, Powersave, Userspace, Ondemand, and Conserva-

tive. These CPU governors were the inspiration behind this study. We have adapted

the same model of the CPUFreq governors to dynamically scale the smartphone GPU.

The motivation is to enhance the power efficiency of the GPU, and provide it similar

variation and flexibility that is offered to the CPU by those governors

Therefore, this work specifically addresses the energy consumption of the smart-

phone GPU, and proposes the novel implementation of the GPU Scaling Governors

similar to the Linux-based CPUFreq Governors, in order to minimize the total en-

ergy consumption of the GPU in smartphones. Unlike previous work in this area, we

have implemented and tested our approach on a real modern smartphone GPU, and

acquired actual energy measurements using an external power monitor.

1.4 Road Map

The thesis is organized as follows. First, the background and state of the art is

presented in Chapter 2. Chapter 3 describes the methodology used in the study.

Following that, Chapter 4 presents the result and the discussion of the new approach.

And finally, the conclusion and future work are discussed in Chapter 5.
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Chapter 2

Background and State of the Art

There has been a significant improvement in the lithium-ion batteries that are used

in most smartphones nowadays [13]. Never the less, this improvement is obviously

unable to keep up with the rapid evolution of the smartphone capabilities. Therefore,

researchers are trying to enhance the usage of the components in a smartphone in

order to make them more energy efficient. The following sections discuss some state

of the art energy efficient methodologies in the smartphone applications, networks,

memory, CPU, and GPU.

2.1 Energy Efficiency in Smartphone Applications

Smartphone operating systems give user-space applications wide freedom to use the

different capabilities of the phone, such as GPS, Wifi, 3G, sensors, and camera. How-

ever, most application developers neglect the energy consequences of their applica-

tions, aiming only to provide more impressive features. The following sections present

some state of the art techniques used to optimize the energy consumption of Always-on

applications, Location-based applications, and finally methods for detecting energy-

hungry bugs and malware in smartphones.
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2.1.1 Always-On Applications

Many smartphone applications have online features and perform periodic updates of

their status over remote network servers. A very common example of such application

is the email. In most cases, a timer is associated with these kind of applications,

and once it goes off a network connection is established. If several of ”always-on”

applications are running on the same device, and each with a timer going off at a

different time, it will cause a high energy consumption and prevent the smartphone

of going into a deep-sleep state. A novel solution for this problem is proposed by

the authors of [14]. Their idea is to align those different timers in such a way they

go off at almost the same time. This timer alignment will cause a parallel network

access, which is proven to consume less energy than multiple separate accesses. They

have implemented two different alignment algorithms: Array Based Alignment, and

Statistical Clustering Based Alignment. Their experimental results show that energy

consumption can be reduced by up to 60% with their experimented application set

using timer alignment algorithms.

2.1.2 location-Based Applications

The ability to provide realtime positioning information might be one of the most sig-

nificant features added to modern smartphones. This information is provided through

multiple interfaces, such as: GPS, GSM and Wifi. Currently, a variety of applications

and services are being based on this feature. But continuously fetching the current

location might be one of the main reason behind absorbing the power of the phone

battery. Therefore, many studies have been conducted in order to make the usage of

location-based applications more energy efficient.

GPS is considered the most accurate positioning system compared with its al-

ternatives, nerveless, it is the most power-hungry. Hence, a study in [15] proposed

an enhancement to GPS-based positioning in smartphones, which is to make it rate-
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adaptive. The main idea of their design is to turn on GPS only as often as necessary

without effecting the achieved accuracy. The decision to when to turn on GPS is

cleverly made based on several techniques such as, Location-time history logs of the

user, the estimation of user’s movement using an accelerometer, communicating with

neighboring devices via Bluetooth to reduce position uncertainty, and turning off GPS

when it is unavailable (such as indoors) by using celltower-RSS blacklisting.

A similar approach is used by the authors in [16]. Their framework suggests to

always use the most energy efficient positioning method (which is cellular network

positioning) as a default approach, and only switch to the higher energy consuming

methods such as Wifi or GPS when the accuracy of the previous reading is insufficient.

2.1.3 Detecting Energy-Greedy Bugs and Malware

With the wide spread of battery-powered devices, a new class of bugs have emerged

called ”Energy Bugs”. Authors of [17] define the energy bugs or ebugs as any system

error that causes a high or unexpected energy consumption of the system as a whole.

They characterized the different type of energy bugs by mining 39k posts collected

from 4 online forums and mobile bug repositories. After filtering the unrelated posts,

they cluster the remaining into groups using k-mean. The clustering resulted in

defining 4 main groups of ebugs. The first group is the hardware ebugs, such as

faulty batteries, damage in the exterior hardware, or scratches and cuts on the SIM or

SDcard. The second type is the software ebugs, classified in either OS or application-

level related. The third group is bugs that result from external conditions, such as a

weak wireless signal, or a very frequent wireless handover. And finally, the last group

is the unknown bugs which came form posts that reported energy drainage problems,

but the reasons behind them were still undiscovered.
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Moreover, the work in [18] have focused specifically on one type of application-level

bugs, and that is No-Sleep energy bugs. Most of smartphone platforms or operating

systems employ a strict sleeping policy. The sleeping policy sets the phone compo-

nents in a low-power state while being idle. But on the other hand, applications

are given some control over keeping these components awake to serve their needs. A

No-Sleep bug would acquire what is referred to as a ”wakelock” over one or more com-

ponents, and then would not release this ”wakelock” properly to let the component go

back to a sleeping state. The authors propose a compile-time tool for automatically

detecting such bugs. Their tool is based on the classic reaching definitions dataflow

analysis problem, which detects the code path of a No-Sleep bug statically at compile

time. The evaluation results show that their tool successfully detects all reported

No-Sleep bugs, and around 30 new instances of unreported bugs.

In addition to energy bugs, some malicious softwares are also being written to

target the battery of smartphones. Such softwares would run dummy intensive CPU

operations or network transmissions in the background in order to drain the battery.

A study in [19] proposed a detection framework for such energy-greedy anomalies

using power signature matching. Their framework consists of two stages: a Power

Monitor and a Data Analyzer. The power monitor’s main job is to detect any ab-

normal power consumption, and then send these power samples to the data analyzer.

Following that, the data analyzer, which can be placed on the same handheld or on

a remote server, creates a power signature out of these samples and tries to match it

with known malwares stored in the database. However, their work is unfortunately

limited by the small number of publicly available worm samples for research purposes.
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2.2 Networks

Data usage via mobile devices have dramatically increased in the last few years.

Modern smartphones are being equipped with multiple radio interfaces for sending

and receiving data. Moreover, the lower prices of such transmissions have encouraged

the replacement of traditional voice calling and SMS with Voice over IP (VoIP) and

wireless messengers. However, these continuous connections are made at the price

of the limited battery power. Multiple studies have worked on reducing the power

consumption of network communication in smartphones. The work in [20] proposed

a framework to reduce the idle-listening (IL) power in Wifi communications, which

according to them accounts to 60% of the total consumed energy of Wifi. Their

framework E-MiLi minimizes the Wifi power by down-clocking the radio during IL,

and restore it to the full clock rate only before transmission or after detecting a

incoming packet. E-MiLi uses sampling rate invariant detection algorithm to ensure

the ability of detecting packets accurately with a down-clocked radio. Moreover, it

uses opportunistic down-clocking mechanism to balance the overhead of switching

back and forth between clock rates, and to maintain the compatibility between the

previous MAC and sleep protocols. Their evaluation shows that E-MiLi reduces the

energy consumption up to 44% of 92% users of real wirless networks, with close to

100% accuracy in packet detection.

Authors in [21] focused on minimizing the high tail energy when connecting via

GSM or 3G. They targeted two types of network applications: Delay-Tolerant, and

Delay-Intolerant. To minimize the tail energy of delay-tolerant applications such as

email or RSS feeds, a scheduling algorithm for transmissions is employed, which saves

the total energy consumption while maintaining the applications’ strict deadlines. As

for the delay-intolerant applications such as web search, an aggressive pre-fetching of

data is used after analyzing the statistics of the user behavior.
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Finally, authors of [22] presented a protocol to reduce the energy consumption of

VoIP using wireless wake-ups. The concept behind their prototype protocol Cell2Notify

is to only turn on Wifi when the user is making a VoIP call, or if there is an incoming

VoIP call for that user to receive. A wake-up signal is sent to the user from the

Cell2Notify server using the cellular interface to notify them of an incoming VoIP

call. The Cell2Notify client installed on the mobile phone would then turn on Wifi to

receive the call. Cell2Notify saves energy by using the cellular network that is rarely

turned off by the user, and consumes significantly less energy than Wifi when it is

not used.

2.3 Memory

Although energy efficiency in smartphone memories is one of the least tackled fields

in the literature, there are some interesting work that have been done in this area by

the authors of [23]. They studied the applicability of memory energy optimization

methods used in computer systems, such as Power Aware Virtual Memory and Onde-

mand Mechanisms, on a simulated smartphone memory. They started by collecting

memory traces of some of the most famous smartphone applications and simulated

two types of memories: Mobile Memory and Phase Change Memory. Following that,

they applied the previously mentioned two mechanisms on their simulations. After

studying the efficiency and performance of each of them, they proposed a hybrid

approach that takes advantage of both types of memories, and according to their

results can save up to 98% of memory energy when compared with the traditional

smartphone memory technologies.
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2.4 CPU

Smartphone CPUs are catching up with its fellow desktop and laptop processors, in

terms of speed, power, and number of processing cores. But the limited energy of

the phone battery creates a heavy burden upon this fast evolution. A research group

at the university of California (UC) San Diego is working on a new smartphone

processor prototype they call GreenDroid [24]. The novel idea of GreenDroid, is to

employ the unused dark silicon found on chips and turn it into Conservation cores (c-

cores). C-cores are application-specific, energy efficient processing cores. GreenDroid

would combine the use of general-purpose processors with application-specific and

very efficient co-processors for energy saving. They proved that their design would

reduce the energy consumption up to 91% of the code that is targeted by the c-cores.

In addition, many researchers have been working on finding the most optimal

dynamic voltage and frequency scaling (DVFS) framework for the CPU in terms

of energy saving. The researchers in [25] noticed that running CPUs at the lowest

frequency possible does not always save energy. This is because decreasing the CPU

frequency increases the total execution time, which also effects the active time of the

memory. Therefore, they based their DVFS algorithm on predicting the critical speed

of the CPU, at which it will save the most energy. Predicting this speed is done at

the execution time using a correlation equation between the memory access rate and

the CPU frequency.

On the other hand, the work in [26] suggests a new CPUFreq governor, which takes

into account the foreground applications in addition to the CPU instantaneous uti-

lization. They found that by considering the running foreground applications some

unnecessary jumps for high frequencies can be avoided. After implementing their

proposed governor appspace, they test it against the Ondemand Linux based gover-

nor. Their results show that appspace saves more energy than the Ondemand, while

maintaining the smoothness of the user experience.
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2.5 GPU

The introduction of GPUs to mobile and handheld devices have enabled rendering

and displaying high quality graphics. But the design of such GPUs should consider

the energy consumption as a priority factor even before the performance [27]. Some

recent studies have targeted the energy efficiency of GPUs in mobile devices. The

work in [28] analysis the trade off between energy and arithmetic precision of mobile

graphics processor, by focusing on the vertex transformation stage in the graphics

pipeline. The goal is to measure the energy savings that can be achieved by lowering

the accuracy of the arithmetic operation to an acceptable level. Their energy model

is based on approximating the energy usage of the number of signal transitions per

operation. Using the ATTILA GPU simulation framework [29], their results show that

around 23% of the energy can be saved by lowering the precision of the arithmetic

operations, while maintaining the quality of the rendered image.

Moreover, since dynamic voltage and frequency scaling (DVFS) is one of the tradi-

tional power optimization techniques for general processors, researchers investigated

the applicability of this method on GPUs as well. A primary study in [30] shows

that 3D interactive gaming is amendable to DVFS. They use the open source Quake

II game engine [31] for calculating their measurements, which proved that 3D games

have variations in their frames processing workload. Such variation enables the use

of DVFS, which according to them could save significant amount of energy.

Authors of [32] built their approach upon this conclusion. They present a quan-

titative study of the power consumption of mobile 3D games using three embedded

processors to simulate the different stages of a mobile graphics pipeline. For mea-

suring the power consumption, they employ an instruction-level energy model, which

is based on actual measurements of the current drawn by a commercial processor.

The trace-driven simulation approach they used is implemented by modifying the

OpenGL\ES library to generate trace triggers. Their measurements confirms the
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existence of an imbalance of workload between different graphics stages and applica-

tions. They test 6 DVFS schemes each with a diffident workload prediction algorithm.

Their results show that applying DVFS to graphics pipeline could to saves up to 50%

of energy. However, their energy model is derived from a general processor rather

than a graphics processor, which differ in their architecture and complexity, thus

their power consumption.

Similar work in [33] focuses on enhancing the workload prediction for tile-base

architecture GPUs. Tile rendering architecture splits the task of rendering a frame

into a grid of tiles which the frame is composed of. They propose two DVFS schemes,

the first based on tile-history prediction, and the second based on tile-rank prediction.

To evaluate the efficiency of the two approaches, they modify the ATTILA GPU

simulation framework emulating a tile-based mobile graphics architecture. Their

results show that both schemes save around 58% of energy consumption, with higher

quality achieved by the tile-rank prediction. But unlike the previously mentioned

studies, the method for driving their power model measurements was not clearly

stated.

In conclusion, all the previous work in the area of energy efficiency of GPUs of

handhelds and mobile devices have been limited to simulation-base and not tested

on real mobile GPUs. Furthermore, the power measurements of these studies are

only estimations derived from theoretical energy models. Therefor, and to the best

of our knowledge, the work we are presenting is the first to propose the DVFS GPU

governors implemented and tested on a real modern smartphone, with the energy

consumption accurately measured using an external power monitor device.
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Chapter 3

Methodology

3.1 Design and Implementation

Dynamic voltage and frequency scaling (DVFS) is one of the commonly-used tech-

niques for power saving in electronic devices. The power consumed by any CMOS

(Complementary Metal-Oxide-Semiconductor) component is proportional to the volt-

age and frequency [34], as shown by

Power ∝ V oltage2 × Frequency (3.1)

Therefore, when the frequency is lowered, the consumed power is proportionally low-

ered. While lowering the voltage, will make the power drop quadratically [35]. DVFS

takes the advantage of a very common feature of computer applications, which is that

their average computational throughput is often much less than the computational

peek capacity of the processor [36]. Therefore, a significant amount of power can be

saved by scaling the frequency and voltage of the processor according to the real-time

load of the running applications. This power reduction will in its turn reduce the

heat emission in large scale supercomputers and save battery in low-scale embedded

processors. As mentioned previously, in addition to CPUs many studies have shown

the applicability of this method in GPUs as well. These findings encourages us to
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study the effectiveness of different DVFS schemes on real smartphone GPUs.

The behavior of any hardware component is defined by its device driver. Therefor,

in order to implement the GPU DVFS governors, we had to rewrite parts of the GPU

driver at the kernel level of the Android operating system. The following subsection

will give more details about the architecture of the Android OS. Then we will talk

more specifically about the Mali-400 device driver, the GPU chosen for this study.

And finally, before presenting the implementation of our approach, we will introduce

the Linux CPUFreq governors that form the base of our design.

3.1.1 Android Architecture

Android is a Linux-based operating system created by Google and Open Handset

Alliance for touchscreen mobile devices, such as PDAs and smartphones. Android

is an open source project, the code of the android platform and kernel is resealed

publicly under the Apache license. This gives chance for manufactures, developers,

and researchers to freely modify any part of Android and redistribute it. Figure 3.1

displays the Android architecture [37].

At the topmost of the Android software stack is the applications layer. Andorid

applications are written in JAVA, and could have limitless access to the phone features

and services as long as the user allows them. Following that is the Application

Framework layer, which offers APIs to enable the reuse of components. Then we

have a set of C/C++ libraries used by developers through the application framework

APIs, and the Android Runtime environment consisting of core libraries and the

Dalvik virtual machine.

The final and lowest layer of the Android architecture is the kernel. The Android

kernel relies on the Linux version 2.6. The main core system service of Android such

as process management, network stack, and security are all Linux-based. In addition,

the Linux kernel provides Android with its driver model. Linux acts as an abstraction
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Figure 3.1: Android architecture [37]

layer between the software and the hardware components. The Android Open Source

Project [38] publishes the source code of multiple kernel versions, each corresponds

to a specific chipset. After downloading the correct source code, the ”gcc” prebuilt

tool-chain is used to build the kernel, and the output ”zImage” can be then ”flashed”

into the target device.

3.1.2 Mali-400 GPU Driver

The GPU selected for this study is the ARM Mali-400 MP [39]. Mali-400 is one of the

most powerful GPUs installed in smartphones. It support both 2D and 3D graphics,

and its throughput can achieve 30M triangles/s and up to 1.1G pixels/s at 275MHz.

Figure 3.2 shows the Mali GPU device driver stack.
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Figure 3.2: Mali device driver stack [40]

The Mali-400 is installed in the Samsung Galaxy S2 GT-I9100 which was used in

our experiments. The full specification of Samsung Galaxy S2 is described in table

3.1. Samsung releases its specific Android kernel source code that gave us access to

the implementation of the Mali-400 GPU device driver of the kernel space. We based

our implementation on the eighth update of the Samsung Galaxy S2 GT-I9100 ICS

(Ice-Cream Sandwich) and kernel, which is the latest release for that particular device

published in the Samsung Open Source Release Center [41].

The Mali-400 GPU accepts scaling of its frequency and voltage in realtime. The

original ”stock” kernel driver offers a basic 2-step DVFS algorithm, which will be

described in detail later on. Our goal of implementing the GPU scaling governors is to

find more optimal DVFS algorithms in terms of energy efficiency, with minimal effect

on the performance. Moreover, having multiple governors will give wider options for

users to choose from based on their usage behavior and personal preference. Users can

vary from a simple user who is mainly concerned about the phone battery life time,

to a user who demands playing 3D-games and care about the high responsiveness of

the system.
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Table 3.1: Smasung Galaxy S2 GT-I9100 Specifications

Chipset Exynos 4210
CPU Dual-core 1.2 GHz Cortex-A9
GPU Mali-400MP
Network HSPA+ 21Mbps/ HSUPA 5.76Mbps

EDGE/ GPRS Class 12
Quad band GSM 850/900/1800/1900
Quad band UMTS 850/900/1900/2100

Display 4.3” WVGA SUPER AMOLED Plus
Memory 16/32 GB storage, 1 GB RAM
Battery 1650mAh

3.1.3 Linux CPUFreq Governors

Most CPU frequency drivers offer the CPU to be set to only one frequency. Therefore,

Linux added the additional layer of CPUFreq Governors to tell these drivers what

frequency to apply at runtime [12]. Therefor, the CPUFreq governors allow the

implementation of dynamic frequency scaling of the CPU. Since Android is based on

Linux, it inherited these governors as well. Figure 3.3 explains the exact flow of the

CPUFreq governors control.

Figure 3.3: CPUFreq governors control flow [12]
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Currently, there are five main governors in the Linux kernel:

• Performance: The Performance governor sets the frequency statically to the

highest within the min and max limits of the frequency policy. The goal of

this governor is to provide the maximum performance, regardless of the bat-

tery consumption. The Performance governor is often used for benchmarking

purposes.

• Powersave: The Powersave governor is the opposite of the Performance gover-

nor, since it sets the frequency statically to the lowest within the min and max

limits of the frequency policy. The aim of this governor is to achieve the lowest

energy consumption possible.

• Usersapce: The Userspace governor allows a root user or any user-space appli-

cation with root privileges to set the value of the CPU frequency. This can be

achievable by making the sysfs file ”scaling setspeed” available and accessible

in the user-space.

• Ondemand: The Ondemand governor sets the CPU frequency dynamically

based on the current utilization of the CPU. The utilization value is read pe-

riodically according to a ”sampling-rate”. An ”up-threshold” value is set to

decide the average CPU utilization between two sample readings, at which the

kernel needs to change the CPU frequency. What is unique about the Onde-

mand governor, is that it switches to the highest frequency once any load on

the CPU is detected. This ensures the high responsiveness of the system. But

after that, it gradually reduces the frequency if it detects a decrease in the

CPU load. This governor is the default in most Android stock kernels, since

it provides a good balance between performance and power. But the fact that

the Ondemand jumps to the highest frequency each time an increase is needed,

might consume extra amount of power that can be avoided .
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• Conservative: The Conservative governor like the Ondemand, sets the frequency

dynamically based on the current utilization. But it differs form the Ondemand,

that it does not jump to the max frequency on every increase. It rather grace-

fully increases the frequency according to a ”freq step” value. The ”freq step”

defines the percentage step at which the CPU frequency will be smoothly in-

creased or decreased by. For example, if it is set to 5%, the frequency will

be increased at 5% chunks of the maximum frequency each time. Setting the

”freq step” to 100 will theoretically make it behave like the Ondemand. The

Conservative governor is more battery-friendly since it avoids jumping to the

maximum frequency unless needed.

3.1.4 GPU DVFS Governors

In this work we have adapted the same model of the CPUFreq governors to dynam-

ically scale the smartphone GPU. We implemented the two main scaling governors:

Ondemand and Conservative. In addition to the two constant governors, Performance

and Powersave. First we will describe the original stock algorithm of the Mali-400

driver, and then our implementation of the four GPU governors.

Stock Algorithm

The original stock algorithm of the Mali-400 orion-m400 platform driver scales be-

tween two frequency values based on the realtime utilization of the GPU. The two

values are 160 MHz and the maximum frequency for that platform, which is 267

MHz, as shown in table 3.2. The scaling is done step-wise according to an up and

down threshold limits for each step. It can be therefore concluded that the lowest

frequency the stock algorithm uses is 160 MHz, even if the running application does

not require this high level of frequency. In addition, the scaling is limited to only two

performance levels, where one of them being the highest.
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Table 3.2: Stock Algorithm Frequen-
cies and Voltages

Frequency (MHz) Voltage (µV)
160 950000
267 1000000

Table 3.3: GPU Governors Frequen-
cies and Voltages

Frequency (MHz) Voltage (µV)
50 825000
62 825000
73 825000
80 825000
89 875000
100 875000
133 900000
160 950000
200 950000
267 970000

We have implemented an Android logging application, which loges some of the

realtime values of the system, including the frequency and voltage of the GPU. Figures

3.4 and 3.5 show the frequency scaling of the stock algorithm when running the 2D

and 3D tests of the AnTuTu benchmark application. The figures show how the stock

algorithm only switches between 160 MHz and 267 MHz.

Figure 3.4: Stock algorithm scaling in AnTuTu 2D test
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Figure 3.5: Stock algorithm scaling in AnTuTu 3D test

Ondemand Governor

The Ondemand governor provides high responsiveness since it scales up to the highest

frequency whenever the load is increased. However, it also scales down gradually until

reaching the minimum frequency that is considered sufficient by the current load.

We rewrote the DVFS model of the kernel Mali-400 driver to make it resemble

the structure of the CPUFreq driver. Four main ”tweakable” parameters were added:

sampling rate, up threshold, sampling down factor, and freq step. Instead of the two

frequencies used in the stock algorithm, we extended them to ten frequency levels

to have more granular scaling, as shown in table 3.3. Figures 3.6 and 3.7 show

the scaling of the Ondeamnd governor when running the 2D and 3D tests of the

AnTuTu benchmark application. It can be clearly seen how the Ondemand jumps to

the highest frequency when needed and then gradually decreases the frequency to a

suitable level.
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Figure 3.6: Ondemand governor scaling in AnTuTu 2D test

Figure 3.7: Ondemand governor scaling in AnTuTu 3D test
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Conservative Governor

The Conservative governor is recommended for battery-based devices, since it scales

gradually and smoothly between frequency levels. As mentioned before, the Conser-

vative increases and decreases the frequency based on the freq step value. We have

kept the default value of the freq step which is 5%. This implies that when the GPU

utilization value increases over the up threshold percentage, the frequency increases

an additional 5% chunk of the maximum frequency. The GPU driver is responsible

to find the valid frequency closest to the requested one. This ensures a gradual, but

much more energy efficient scaling. The Conservative governor uses the same list of

valid frequencies and corresponding voltages as the Ondemand mentioned in table

3.3. Figures 3.8 and 3.9 show the scaling of the Conservative governor when run-

ning the 2D and 3D tests of the AnTuTu benchmark application. The figures show

how the Conservative governor scales up and down between the frequency levels very

smoothly.

Figure 3.8: Conservative governor scaling in AnTuTu 2D test
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Figure 3.9: Conservative governor scaling in AnTuTu 3D test

Performance Governor

To implement the Performance governor, we disabled the DVFS of the GPU and set

the frequency statically to 267 MHz which is the highest. This governor is intended for

users who require the maximum graphical performance out of their devices, in order

to enjoy 3D graphics and games without any lagging. In addition, this governor can

be used for ranking and benchmarking purposes to test the performance level of a

certain GPU.

Powersave Governor

The Powersave governor is the most power efficient, since it sets the frequency stat-

ically to the lowest value. However, we found that setting the GPU frequency to 50

MHz is not very practical since it slows down the rendering of some interface com-

ponents, and it also failed to run some of the high resolution 3D games. Therefore,
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through experimental testing, we have decided to choose a more reasonable frequency

for the Powersave governor, and that it 80 MHz. This governor is suitable for users

who do not use their smartphones for displaying 3D graphics or playing 3D games.

However, it is worth mentioning that setting the frequency at 80 MHz does not ef-

fect regular 2D graphic rending, such as in web browsing or using regular mobile

applications.

Figures 3.10 3.11 display a comparison of the scaling behavior of the Ondemand

and Conservative governors against the stock algorithm in both 2D and 3D modes.

Figure 3.10: The three scaling algorithms in AnTuTu 2D test



37

Figure 3.11: The three scaling algorithms in AnTuTu 3D test

3.2 Experimental Setup

3.2.1 Benchmarks

In order to test the power efficiency of each of the governors, we used three of the most

well known graphics benchmark applications: AnTuTu, Passmark, and TechBench.

A total of 7 different benchmark tests were conducted, which cover both 2D and

3D modes. The tests were: AnTuTu 2D, AnTuTu 3D, Passmark Image Rendering,

Passmark Image Filtering, Passmark 3D Simple, Passmark 3D Complex, and finally

Techbench 3D Cube. Each test was repeated three times and the average of the re-

sulted measurements was taken. In addition, the energy consumption of the idle state

was measured for 30 seconds for each of the governor with the screen on.
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3.2.2 Power Measurement

We have measured the total consumed energy using the Monsoon Power Monitor [42],

with a sampling rate of 5kHz . The experimental setup of both software and hardware

is shown in figure 3.12.

Figure 3.12: Experimental setup: Monsoon Power Monitor

In order to eliminate any variations in power consumption of the testing environ-

ment, the following measures were taken:

• SIM card removed (GSM is off)

• Flight mode activated

• Bluetooth, Wifi, and 3G off.

• No running applications in the background

• Lowest brightness of the display, with screen timeout disabled
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Chapter 4

Results and Discussion

This section will present the evaluation of the GPU DVFS governors in terms of en-

ergy savings and performance. But first, in order to fully understand the mechanism

of the DVFS, figure 4.1 shows the effect of varying the GPU frequency on the in-

stantaneous power. The data was sampled while running the AnTuTu 2D using the

Conservative governor. It can be seen how the gradual increase of the frequency using

the Conservative governor reflects on the power, which increases gradually as well.

The CPU jumps from 200 MHz to 1200 MHz at around the 11th second and goes

back to 200 MHz, which we suspect caused the sharp spike in the power as seen in

the figure around that period.

Figure 4.1: Relation between the GPU frequency and the instantaneous power
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4.1 Energy Saving Evaluation

Figure 4.2: Comparison of energy consumption (3D benchmark tests)

To evaluate the energy efficiency of the GPU governors, we measured the total con-

sumed energy for each of them running the different benchmark tests. We repeated

each test three times, and then took the average value of the three readings. Figure

4.2 displays the total energy consumption results of the 3D benchmark tests. It can

be clearly seen that the Powersave governor is the most power efficient consuming

the least energy of the remaining governors. It saves up to 50.5% of energy compared

with the stock algorithm running the AnTuTu 3D, and 45.8% running the Pass-

mark 3D Complex. The Performance governor however is the least power efficient,

consuming 14.5% more energy than the stock algorithm running TechBench 3D Cube,

and a minimum of 0.83% more energy when running the AnTuTu 3D.

The Conservative governor saves between 9.2% of energy when running the Pass-

mark 3D Simple and a minimum of 7.5% running the Passmark 3D Complex. But

interestingly, the Conservative governor saves around 7.7% energy when running the

TechBench 3D Cube, which is more than the Powersave governor, that save only

4.1%. This is due to the fact that the frequency levels of the Conservative can
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Table 4.1: Total Energy Savings in 3D Benchmark Test

Powersave Conservative Ondemand Perfromance
AnTuTu 3D 50.5% 9.1% 6.9% -0.83%

Passmark 3D Complex 26.3% 7.5% 0.02% -2.8%
Passmark 3D Simple 45.8% 9.2% 0.03% -3.2%
TechBench 3D Cube 4.1% 7.7% 5.1% -14.5%

be as low as 50 MHz, while the Powersave is statically set to 80 MHz. Therefore

using the frequencies that are lower than 80 MHz can in some cases make the Con-

servative governor more power efficient than the Powersave. As for the Ondemand

governor, it behaves almost the same as the stock algorithm when running the Pass-

mark 3D Complex and Passmark 3D Simple. However, it saves 6.9% and 5.1% in

AnTuTu 3D and TechBench 3D Cube in that order. Table 4.1 displays the detailed

energy savings in 3D mode.

As for the 2D benchmark tests, figure 4.3 displays the total energy consumption

results in 2D mode. The Conservative governor saves a significant amount of 15% in

the AnTuTu 2D, 4.8% savings for the Ondemand, and the highest of them all 31.7%

for the Powersave. The Performance governor consumes 4.0% more energy for the

same benchmark test. As for the image rendering, the Conservative and Ondamned

outperform the Powersave in terms of energy saving. This can be explained by the

same reason of the lower frequency levels mentioned previously. And finally, not

much difference was recorded in the energy consumption for the image filters test

between the Performance, Ondemand, Powersave, and the stock algorithm. While

around 5.2% is saved using the Conservative governor. Table 4.2 displays the detailed

energy savings in 2D mode.
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Figure 4.3: Comparison of energy consumption (2D benchmark tests)

Table 4.2: Total Energy Savings in 2D Benchmark Test

Powersave Conservative Ondemand Perfromance
AnTuTu 2D 31.7% 15.0% 4.8% -4.0%

Passmark Image Render 1.3% 4.5% 4.3% -1.9%
Passmark Image Filter 1.7% 5.2% 0.37% -1.31%

The energy consumption was recorded for 30 seconds for the five different algo-

rithms in the idle sate and the screen on, as shown in figure 4.4 . Since smartphones

spend a lot of their time being idle, any percentage of idle energy saving can be con-

sidered significant. The Ondemand governor does not show any significant energy

saving in the idle state, while the Powersave saves around 1.4% and the Conservative

saves a significant amount of 3.7%. The Performance governor consumes 28.3% more

energy, which can easily drain the battery. Table 4.3 displays the total energy saving

of the idle state.
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Figure 4.4: Comparison of energy consumption (idle state)

Table 4.3: Total Energy Savings in Idle State

Powersave Conservative Ondemand Perfromance
Idle 1.4% 3.75% 0.37% -28.3%

Figure 4.5 summarizes the percentages of energy saving for all of the benchmark

tests.
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4.2 Performance Evaluation

Since we are using off-the-shelf benchmark applications, the only performance metric

we can provide at this stage are the scores and measurements that are given by those

tests. Table 4.4 displays the performance results.

Table 4.4: Benchmark Performance Results
Stock Powersave Conservative Ondemand Performance

AnTuTu 2D 1023 474 895 1024 1094
AnTuTu 3D 4008 1231 3828 3939 4014

Passmark Image Render(Images/s) 1075 994 1002 1004 1230
Passmark Image Filters (Filters/s) 71.7 72.9 72.9 74 74.1
Passmark 3D Simple (Frames/sec) 59.8 25.3 56.6 59.8 59.8
Passmark 3D Complex (Frames/s) 17.3 5.34 16.4 17 17.6
TechBench 3D Cube (Frames/s) 59.8 59.6 59.6 59.6 60.04

The AnTuTu results are not standardized, but are rather ranking scores given by

that benchmark application, therefore we mention them only for referencing purpose.

Table 4.5 shows the performance loss percentage for the remaining benchmarks.

The Ondemand governor achieves almost the same level of performance as the stock

algorithm. While the performance difference for the Conservative governor for all

the benchmark tests do not exceed 7%. The Powersave governor fails in the 3D

Passmark tests having more then 50% performance loss. This confirms that the

Powersave governor is not suitable for running 3D graphics or playing 3D games.

On the other hand, its performance in 2D benchmark is considered very acceptable.

The Performance governor shows around 22.5% performance enhancement in image

rendering, while not much noticeable difference was witnessed in the other tests. This

is due to the fact that the Ondemand and Conservative governors can scale to the

highest frequency level used by the Performance governor when needed, which is why

they are able to compete in terms of performance.
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Table 4.5: Performance Loss Percentages

Powersave Conservative Ondemand Performance
Passmark Image Render -0.99% -0.19% 0% 22.5%
Passmark Image Filters -1.49% -1.49% 0% 0.14%

Passmark 3D Simple -57.69% -5.35% 0% 0.14%
Passmark 3D Complex -69.13% -5.20% -1.73% 1.73%
TechBench 3D Cube -0.33% -0.33% -0.33% 0.40%

In conclusion, the above results prove that by dynamically scaling the frequency

and voltage of the GPU using the governors has a major effect on the battery life

time. In addition, the governors offer wide range of options for the users to choose

from according to their personal preferences. Using the Ondemand governor will

maintain the same level of performance and high responsiveness, while saving up to

7% of energy in 3D mode, and up to 5% of energy in 2D mode. Moreover, using the

Conservative governor saves energy up to 15% in 2D mode, and 9% in 3D mode with

less than 7% effect on the performance. And finally, if the user is only interested in

2D rendering then using the Powersave governor would save up to 31% of energy,

with maintaining an acceptable level of performance.
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Chapter 5

Concluding Remarks

5.1 Conclusion

Smartphone GPUs are advancing in their computational and processing power. How-

ever, like almost all the other components of modern smartphones, users are not using

them to their full capacity the entire time. But unfortunately they are paying the price

of such improvements in terms of battery power. Therefore, users should be given the

ability to scale the capabilities of the different components of their phones according

to their usage behavior and personal preference. In this study we have proposed

the novel implementation of the GPU DVFS governors, similar to the linux-based

CPUFreq governors, to dynamically scale the smartphone GPU. To the best of our

knowledge our work is the first to present a quantitative analysis of the effectiveness

of different DVFS algorithms tested on a real smartphone GPU, with the energy con-

sumption accurately measured using an external power monitor device. Our results

show that the energy efficiency of the GPU can be enhanced up to 15% in 2D mode,

and 9% in 3D mode with less than 7% effect on the performance using the Conser-

vative governor. Moreover, using the Powersave governor would save up to 31% of

energy in 2D mode, while maintaining an acceptable level of image rendering.
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5.2 Future Research Work

In this work we have only implemented the four main governors of the original Linux

CPUFreq layer. Never the less, there could be numerous enhancements on these

basic algorithms in order to find the most optimal energy efficient GPU governor.

Moreover, instead of using off-the-shelf benchmark test applications, we plan to use

our own Android OpenGL API test code, which could give more in depth analysis

and accurate profiling of the GPU. In addition, to get a more general view of the total

energy efficiency of the smartphone, the association between different GPU and CPU

governors can be evaluated, and then the most optimal combination can be proposed.

5.3 Contributing to the Android Community

Since Android is an open source project, it welcomes contributions to their source

code from institutions or individuals. Theretofore, we are studying the possibility

of proposing our implementation of the GPU governors to be added to the Android

platform. However, the main challenge is that the GPU drivers are very device

specific. We have used the Mali-400 GPU to prove the effectiveness of our approach,

but we are looking in to ways of making the GPU governors scheme more general

and independent of any specific device driver. We believe that by doing so, the GPU

DVFS governors would make a very significant contribution to the Android platform

in terms of energy efficiency.
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