
An Adaptive Hybrid Multiprocessor Technique for

Bioinformatics Sequence Alignment
Talal Bonny, M. Affan Zidan, and Khaled N. Salama

Abstract— Sequence alignment algorithms such as the Smith-
Waterman algorithm are among the most important applications in
the development of bioinformatics. Sequence alignment algorithms
must process large amounts of data which may take a long time.
Here, we introduce our Adaptive Hybrid Multiprocessor technique
to accelerate the implementation of the Smith-Waterman algorithm.
Our technique utilizes both the graphics processing unit (GPU) and
the central processing unit (CPU). It adapts to the implementation
according to the number of CPUs given as input by efficiently
distributing the workload between the processing units. Using
existing resources (GPU and CPU) in an efficient way is a novel
approach. The peak performance achieved for the platforms GPU
+ CPU, GPU + 2CPUs, and GPU + 3CPUs is 10.4 GCUPS, 13.7
GCUPS, and 18.6 GCUPS, respectively (with the query length of
511 amino acid).

I. INTRODUCTION

DNA and protein database sequence alignment are among

most important applications in bioinformatics. This application

needs to process large amount of data. Heuristic algorithms,

such as FASTA [2] and BLAST [3], are fast in finding

approximate solutions. These algorithms have the problem of

sensitivity since they trim the search and miss unexpected but

important homologies. On the other hand, Smith-Waterman

(SW) algorithm [4] is a well-known sequence alignment

algorithms used in bioinformatics research. This algorithm is

used to identify sequence alignments as well as sequence com-

parisons, sequence searches or even for plagiarism detection in

text [5]. The Smith-Waterman algorithm guarantees the return

of the optimal alignment of two sequences. The first one is

called the query and the second one is called the database. It

takes a long time to find the solution as the computing and

memory requirements grow quadratically with the size of the

database.

Previous attempts to accelerate the SW algorithm were im-

plemented using the central processing unit (CPU) or the

graphics processing unit (GPU). In the work reported here,

we accelerate the SW algorithm by using our novel Adaptive

Hybrid Multiprocessor technique, which uses both the GPU

and the CPU. No attention has been paid in the past to exploit

Talal Bonny is with the Electrical Engineering Program, King Abdullah

University of Science and Technology (KAUST), Thuwal, Kingdom of
Saudi Arabia (phone: +966-598382799, e-mail: talal.bonny@kaust.edu.sa,
web: http://sensors.kaust.edu.sa)

M. Affan Zidan is with the Electrical Engineering Program, King Abdullah
University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi
Arabia (e-mail: mohammed.zidan@kaust.edu.sa)

Khaled N. Salama is with the Electrical Engineering Program, King
Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom
of Saudi Arabia (e-mail: khaled.salama@kaust.edu.sa

this opportunity, i.e. to use the existing resources (both the

GPU and the CPU) in an efficient way. Furthermore, Our

technique adapts the implementation of the SW algorithm

depending on the number of CPUs given as the input to

the technique. It distributes the workload (database) between

the processing units (GPU and CPUs), such that each unit

works on a portion of the database sequences according to its

execution speed. This allows the resources available in the

platform to be used efficiently and explicitly improves the

execution performance.

II. THE SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm [4] is a dynamic program-

ming method for identifying similarity between nucleotide or

protein sequences. It compares segments of all possible lengths

between two sequences (query and database sequences) to

identify the best local alignment. The algorithm starts by

creating a similarity matrix, which computes scores for the

comparisons of the two sequences. A score is based on the

result of a comparison, which is either ‘match’ or ‘mismatch’.

The equations for computing the alignment scores are as

follows:

E(i, j) = max

{

E(i, j − 1)−Gext

H(i, j − 1)−Gopen
(1)

F (i, j) = max

{

F (i− 1, j)−Gext

H(i− 1, j)−Gopen
(2)

H(i, j) = max















0
E(i, j)
F (i, j)
H(i− 1, j − 1)−W (qi, dj)

(3)

such that E(i,j) and F(i,j) are the maxima of the following

two items: open a new gap and continue to extend an existing

gap, respectively.

W (qi, dj) stands for the score substitution matrix, which

differs depending on the type of sequences required to find

their alignment. In bioinformatics, there are two types of

sequences, either DNA or protein. In our implementation, we

do the alignment for protein sequences, and use two values

in the score substitution matrix, W (qi, dj), either +5 when qi
and di are matched, or -4 when qi and di are mismatched. To

open a new gap and extend an existing gap, we use the values

-2 and -10, respectively.

From the previous formulas, we can find that the score of

any cell H(i,j) in the matrix depends on the scores of the

Database Sequence

Q
u
er
y
S
eq
u
en
ce

Hi,j

j=1 j=nj=2 …….

i=1

i=m

i=2

Fig. 1. Similarity Matrix. The cells located on the same anti-diagonal
positions (have the same color) are computed together

three other elements (see Fig. 1): The left neighbor H(i,j-1),

the up neighbor H(i-1,j), and the up-left neighbor H(i-1,j-1).

That means that all cells located on the same anti-diagonal

positions (have the same color) may be computed together

using different threads because they are independent from each

other. To measure the performance of the Smith-Waterman

implementation, the Cell Updates per Second (CUPS) metric

is commonly used [10], which represents the time required to

complete the computation for one cell of the similarity matrix.

The total number of cell updates gives the implementation

performance of the sequence alignment algorithm:

Performance (CUPS) =
size(Query) x size(Database)

Time to complete the computation
(4)

Many previous attempts to accelerate the SW algorithm

were implemented using CPU or GPU. Farrar [6] proposed

a CPU-based SW implementation using Single Instructions

Multiple Data (SIMD). The implementation delivered a peak

performance of 3.0 GCUPS (giga cell update per second) on

a 2.0 GHz Core 2 Duo processor. In [9], Farrar achieved a

performance improvement of 11 GCUPS and 20 GCUPS by

using four and eight CPU cores, respectively.

Munekawa et al. [8] accelerated the SW using the GeForce

8800 GTX card. They used the on-chip shared memory to

reduce the amount of data being transferred between off-

chip memory and the processing elements in the GPU. They

achieved a peak performance of 5.65 GCUPS.

In [7], the authors used two GeForce 8800 GPU cards for

CUDA-based implementation of the Smith-Waterman Algo-

rithm. They compared their implementation with SSEARCH

and BLAST running on a 3 GHz Intel Pentium IV processor

and found that performed 2 to 30 times faster than other

previous attempts on commodity hardware. A performance of

3.5 GCUPS was achieved using their implementation.

We accelerate the SW algorithm by using our novel Adaptive

Hybrid Multiprocessor technique, which uses both the GPU

and the CPU (as explained in the next section).

III. OUR ADAPTIVE HYBRID MULTIPROCESSOR

TECHNIQUE

The Smith-Waterman algorithm utilizes dynamic

programming, which divides problem into sub-problems

and solves the sub-problems separately. Computing the

score of any cell can be considered as a sub-problem. Each

sub-problem can be run on a different thread in parallel with

another sub-problem running on another thread if there is no

data dependency between them.

Previous implementations of the Smith-Waterman algorithm

used platforms of homogeneous multiprocessor units (either

CPUs or GPUs) to compute the score of the matrix cells. The

available resources (CPU and GPU) in these platforms are

not fully utilized in the implementation, although most users

have ready access to PCs with modern graphics cards.

We introduce our Hybrid Multiprocessor Technique to im-

plement the Smith-Waterman algorithm more efficiently. Our

technique is based on using both the CPU and the GPU to

improve the implementation performance.

In implementing the Smith-Waterman algorithm using het-

erogeneous multiprocessor units (GPU and CPU), two impor-

tant issues need to be discussed: the type of workload (in

terms of the length of the database sequence) and the amount

of workload (in terms of the number of database sequences),

which must be assigned to each processing unit (GPU and

CPU). We have found that running the short sequences of the

database on the GPU will not be as efficient 1 as running the

long sequences on it. However, when long sequences of the

database are run on the GPU and small ones run on the CPU si-

multaneously, the speed of the Smith-Waterman algorithm will

increase explicitly. We sort the database sequences according

to their length (from the longest to the shortest sequences).

Then, our technique distributes the sequences between the

GPU and CPU, such that the long sequences are sent to the

GPU and the short sequences are sent to the CPU. The GPU

and CPU will compute the similarity matrix for its sequence

and will find the highest alignment score separately. The

highest alignment score will be the final result for aligning the

query sequence with the database sequences. To distribute the

database between the GPU and CPU, we use ‘Fixed Splitting’

and ‘Optimized Splitting’ algorithms. The ‘Fixed Splitting’

algorithm distributes the database between the processing units

equally. In the ‘Optimized Splitting’ algorithm, the number of

database sequences assigned to the GPU and CPU is based on

the speed of implementation for each one such that both of

them will work in parallel and finish their tasks at the same

time.

When the platform includes one GPU and a different

number of CPUs, our technique adapts the work automatically

based on the number of the CPUs given as input. Fig. 2 shows

a flowchart of our database ‘Optimized Splitting’ algorithm. In

the beginning, the algorithm finds the initial database splitter

based on the number of CPUs (N) given as input. Then, it

computes the ratio of the execution time (Tr) between the

GPU and CPU. If this ratio is smaller than 1, then the splitting

direction will be from the beginning of the database untill the

end. Otherwise, it will be in the reverse direction. For any

splitting direction, the algorithm splits the database between

the GPU and the CPU parts based on the parameters ‘Split’

1Efficiency means keeping the GPU cores as busy as possible in doing the
computation.

Start

Split = 100/(N+1)%

|Tr – 1| < P End

Direction = -1 Direction = 1

Yes

No

Enter the number of CPUs N

Enter the Splitting steps S

Enter the Splitting Precision P

Tr = GPU Execution Time / CPU Execution Time

Tr > 1
NoYes

Direction = Old_direction Split = Split/10 Old_direction = Direction

Split = Split x S x Direction

No

Yes

Fig. 2. Flowchart of splitting the database automatically between the GPU
and the CPUs based on the number of CPUs given in the input

and ‘S’ (splitting steps). The algorithm stops when it reaches

the precision (P), which is defined as input parameter. In the

end, the algorithm finds the optimal position for the database

splitter between the GPU and the CPU parts. When more than

one CPU is given in the input, the CPU part of the database

will be distributed equally between all of them.

IV. EXPERIMENTAL RESULTS

Our tests were conducted using an Intel Xeon X5550 CPU

(2.676 GHz), and an nVidia Quadro FX 4800 GPU with 602

MHz core frequency and 76 GB/Sec memory bandwidth.

The ”SWISS-PROT” database (release 15.12, December 15,

2009) [1] was used to evaluate our adaptive technique. The

query sequences were selected to cover different lengths (from

114 to 511 amino acid residues).

Our experimental results are presented in Figures 3 - 6 and

Tables I and II.

The bar labeled ‘Average’ in any figure shows the average

result for the full query sequence in that figure.

From the experimental results, we observe the following:

Figure 3 shows the performance results in giga cell update per

second (GCUPS) for aligning each query sequence with the

database using the implementation of Farrar [6] on a CPU,

our implementation on a GPU, and our implementation on a

hybrid GPU/CPU platform. The peak and average performance

for all queries using our hybrid technique were 10.4 GCUPS

and 8.5 GCUPS, respectively. Table I shows the Speed-

up in the performance of our hybrid platform over Farrar’s

implementation. Using the hybrid platform doubles the speed

of the performance in comparison to Farrar’s implementation

[6] which, was done on a CPU.

Our hybrid platform requires no additional costs to add the

GPU or the CPU because they are commodity components.

As noted above, most users have ready access to PCs with

0

2

4

6

8

10

12

P
e

rf
o

rm
a

n
ce

 in
 G

C
U

P
S

Query Sequence

CPU only GPU Only GPU+CPU

Fig. 3. performance results using CPU, GPU, and our hybrid GPU/CPU
platform.

TABLE I

SPEED-UP IN THE PERFORMANCE OF OUR HYBRID GPU/CPU OVER THE

IMPLEMENTATION OF FARRAR

Sequence length 114 189 246 286 300

Speed-up 2.6x 2.4x 2.3x 2.5x 2.4x

Sequence length 362 374 410 497 511

Speed-up 1.9x 2.0x 1.9x 1.8x 2.1x

modern graphics cards. For these users, our implementation

provides a zero-cost solution.

If the platform is equipped with a GPU and multiple CPUs,

the workload may be distributed between them to exploit the

available resources efficiently and to improve the execution

performance. Fig. 4 shows the performance results for three

types of hybrid platforms: ‘GPU + CPU’, ‘GPU + 2CPUs’, and

‘GPU + 3CPUs’, for different lengths of queries. The workload

(database) is distributed between the GPU and the CPUs in

each hybrid platform equally, i.e., using the ‘Fixed Splitting’

algorithm. For example, in the case of ‘GPU +3CPUs’ plat-

form, each processor unit works on 25% of the database only.

Fig. 4 shows (as expected) improved performance when the

number of the CPUs is increased in the hybrid platform. The

peak performance for the ‘GPU + CPU’, ‘GPU + 2CPUs’, and

‘GPU + 3CPUs’ platforms is 10.4 GCUPS, 13.7 GCUPS, and

18.6 GCUPS, respectively (which is achieved with the query

length of 511 amino acid residues).

Our Adaptive Multiprocessor Technique distributes the work-

load between the processor units using the ‘Optimized Split-

ting’ algorithm (shown in Fig. 2). The workload is distributed

between the GPU and the CPUs based on the number of CPUs

given as input to the technique and based on the execution

time of the processor units. Fig. 5 shows the percentage of the

database assigned to the GPU for the three hybrid platforms.

For example, in the ‘GPU + CPU’ platform and for the query

length of 114 amino acid residues, 65% of the database is

assigned to the GPU, while 35% is assigned to the CPU. But

in the case of the ‘GPU + 3CPUs’ platform and for the same

query length (i.e., 114), 40% of the database is assigned to

the GPU, while 60% is assigned to the 3 CPUs (i.e., 20% of

0

2

4

6

8

10

12

14

16

18

20
P

e
rf

o
rm

a
n

ce
 in

 G
C

U
P

S

Query Sequence

Fixed Splitting of the database

GPU + CPU GPU + 2CPUs GPU + 3CPUs

Fig. 4. Performance results for different types of hybrid platforms using the
‘Fixed Splitting’ Algorithm.

Query GPU + CPU GPU + 2CPUs GPU + 3CPUs

P0C0D4 (114) 65.00 49.73 40.38

P01111 (189) 63.00 44.33 37.26

P00762 (246) 57.40 41.53 32.80

P57305 (286) 56.20 41.41 33.33

P20505 (300) 55.00 41.50 31.20

P10318 (362) 52.35 36.93 29.00

P07327 (374) 52.60 37.53 30.12

P12031 (410) 52.20 38.76 29.85

P10635 (497) 51.10 35.33 29.00

 P08800 (511) 51.00 36.43 29.20

Percentage of Databse assigned for GPU (%)

Fig. 5. Percentage of the database assigned to the GPU for the different
hybrid platforms

the database is assigned to each CPU).

Using our ‘Optimized Splitting’ algorithm improves the per-

formance results explicitly in comparison to the performance

achieved by using the ‘Fixed Splitting’ algorithm. Fig. 6

shows the performance results after distributing the workload

between the processor units and is based on the number of

CPUs given as input to the technique. The peak performance

is improved to 10.6 GCUPS, 15.5 GCUPS, and 19.8 GCUPS

for the platforms ‘GPU + CPU’, ‘GPU + 2CPUs’, and ‘GPU

+ 3CPUs’, respectively.

The performance improvement from using the ‘Optimized

Splitting’ algorithm instead of the ‘Fixed Splitting’ algorithm

for the platform ‘GPU + 2CPUs’ is shown in Table II. In this

table, the maximum improvement achieved in the performance

is 40% (for the query sequence of 114 amino acid residues).

TABLE II

PERFORMANCE IMPROVEMENT OF THE ‘OPTIMIZED SPLITTING’ OVER

THE ‘FIXED SPLITTING’ FOR THE PLATFORM ‘GPU + 2CPUS’

Sequence length 114 189 246 286 300

Performance Improvement 40% 28% 20% 13% 15%

Sequence length 362 374 410 497 511

Performance Improvement 13% 11% 8% 19% 13%

0

5

10

15

20

25

P
e

rf
o

rm
a

n
ce

 in
 G

C
U

P
S

Query Sequence

Optimized Splitting of the database

GPU + CPU GPU + 2CPUs GPU + 3CPUs

Fig. 6. Performance results for different hybrid platforms using the
‘Optimized Splitting’ Algorithm.

V. CONCLUSION

We have presented a novel adaptive hybrid multiprocessor

technique based on the GPU and CPU to Speed-up the Smith-

Waterman sequence alignment algorithm. Our technique ex-

ploits the resources available in the platform efficiently to

accelerate the implementation of the algorithm. In addition,

our Speed-up technique using a hybrid GPU/CPU is not

limited to the Smith-Waterman algorithm. It can be used

generally with any sequence alignment algorithm. When our

technique is used, a peak performance of 10.4 GCUPS is

achieved, which is 2.6x faster than Farrar’s implementation

[6]. The code is available in our website:

http://sensors.kaust.edu.sa

REFERENCES

[1] The UniProt/Swiss-Prot Database, http://www.ebi.ac.uk/swissprot/
[2] European Bioinformatics Institute Home Page, FASTA searching pro-

gram, 2003. http://www.ebi.ac.uk/fasta33/.
[3] National Center for Biotechnology Information. NCBI BLAST home

page, 2003. http://www.ncbi.nlm.nih.gov/blast.
[4] T. F. Smith and M. S. Watermann. Identification of common molecular

subsequence. Journal of Molecular Biology, 147:196-197, 1981.
[5] Z. Su, B.-R. Ahn, K.-Y. Eom, M.-K. Kang, J.-P. Kim, and M.-K.

Kim, Plagiarism detection using the Levenshtein distance and Smith-
Waterman algorithm, in ICICIC 08, 2008, p. 569.

[6] M. Farrar, Striped Smith-Waterman speeds database searches six times
over other SIMD implementations, Bioinformatics, vol. 23, no. 2, pp.
156-161, Jan. 2007.

[7] S. A. Manavski and G. Valle, CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment, BMC
Bioinformatics, vol. 9, no. S10, Mar. 2008, 9 pages.

[8] Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation
of the Smith-Waterman Algorithm on the CUDA-Compatible GPU. 8th
IEEE International Conference on BioInformatics and BioEngineering,
pages 1-6, Oct. 2008.

[9] Michael S. Farrar. ”Optimizing smith-waterman for the cell
broadband engine”. http://sites.google.com/site/farrarmichael/smith-
watermanfortheibmcellbe

[10] Lukasz Ligowski and Witold Rudnicki. An efficient implementation of
Smith-Waterman algorithm on GPU using CUDA, for massively parallel
scanning of sequence databases. In IEEE International Workshop on
High Performance Computational Biology (HiCOMB 2009), 2009.

