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A CNN Based Structured Light Communication
Scheme for Internet of Underwater Things

Applications
Abderrahmen Trichili*, Chaouki Ben Issaid*, Boon S. Ooi, and Mohamed-Slim Alouini

Abstract—Underwater optical wireless communication is an
emerging field that can provide reliable connectivity for future
generation internet of underwater things devices. In this paper,
we propose a communication system based on single and super-
position of Laguerre Gaussian modes to transfer information and
rely on a convolutional neural network for the mode identification
in an underwater environment. A 100% recovery fidelity is
reported at clear and turbid water. Beyond 90% of identification,
accuracy is achieved under different laboratory-emulated under-
water turbulence conditions. The practical implementation of the
proposed spatial-mode based communication scheme is further
discussed.

Index Terms—Underwater wireless optical communication,
spatially structured light, index modulation, convolutional neural
network, internet of underwater things

I. INTRODUCTION

NEARLY 71% of the planet’s surface is water-covered, and
a massive part of the water-occupied surface consists of

oceans and seas. So far, only 5% of the underwater world
has been explored. The remaining mysterious part has a
high impact on the climate, oxygen production, and carbon
absorption. The underwater world equally offers a wide variety
of opportunities for renewable energy generation, bio-ocean
farming, and food production. Underwater scientific activities
such as climate change tracking, pollution control, seismic sur-
veys, and marine life monitoring are also continuously grow-
ing, and in this regard, efficient underwater communication
systems are needed. Underwater communication is equally of
interest for several human activities, including surveillance and
protection, off-shore oil and mineral exploration, and aqua-
culture. Delivering information underwater can be performed
through three different waves, which are the acoustic, radio
frequency, and optical waves. For more than half a century,
acoustic communication has been a technology of choice to
communicate underwater. Acoustic waves are utilized to carry
information over multi-kilometer distances through sea and
ocean waters, typically for frequencies between 10 Hz and
1 MHz [1]. However, acoustic communication technology
suffers from low bandwidth [2], and because of the low
propagation speed of acoustic waves through the water, this
technology suffers from huge latencies. Furthermore, acoustic
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communication can increase noise pollution for marine life,
which can significantly affect different marine species [3].

RF waves offer an extremely higher velocity in the water
than the acoustic ones. However, RF signals are highly attenu-
ated in seawater and cannot reach long distances unless at the
super-low frequency band, i.e., from 30 to 300 Hz. Commu-
nicating over this frequency band requires sophisticated large
antennas that entail a large amount of transmit power, which
limits the practicability of such an approach [4].

Underwater wireless optical communication (UWOC) offers
a large unlicensed bandwidth that has led to the successful
transfer of data signals with rates beyond one Gbps over
short and moderate propagation distances [5], [6]. Due to
the high velocity of lightwaves in the water, UWOC can
securely carry information without latency. UWOC is also
seen as a new way to deliver power to the future internet
of underwater things (IoUT) devices by transferring power
along with the information to remote devices [7]. Considerable
progress has been made so far in the field of UWOC, and
different techniques have been introduced to increase the
reliability and transmission capacity of underwater links [8].

One way to increase UWOC data rates is to encode in-
formation signals over orthogonal spatial modes of light, as
demonstrated in [9]–[11]. The concept consists of using the
spatial structure of light as an extra degree of freedom for
communication systems. A particular mode of choice for
spatial multiplexing is the orbital angular momentum (OAM)
[12]. OAMs form a subset of the Laguerre Gaussian (LG)
mode family, which is detailed in section III-A. Several
approaches have been proposed in the literature to generate
and detect OAM and LG beams in general. The generation
can be mainly performed using computer-generated holograms
(CGHs) programmed on spatial light modulators (SLMs) [13]
or through spiral phase plates (SPPs) [14]. The detection of
LG modes can be performed via CGHs [15], [16] or using
mode sorters [17], [18]. These LG mode detection techniques
are bulky and require maintaining strict system alignment
to minimize intermodal crosstalk and recover the initially
encoded information on the carrier modes. However, UWOC
links can be subject to different kinds of turbulence related
to the underwater conditions, which can severely affect the
pointing between the transmitter and the receiver.

One potential solution to cope with the effects of turbulence
for underwater spatial mode links is to rely on adaptive optics
(AO) to correct distortions at the beam level, as suggested
in [19], and demonstrated in free space optics (FSO) [20].
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Also, similarly to FSO, using digital signal processing (DSP)
techniques, it is possible to undo the effect of turbulence
[21]. Although AO and DSP methods have shown to be
of high performance, implementing such techniques can be
costly or may lead to an increase in system complexity [12].
However, using the transverse patterns of spatially structured
light beams, such as the LG, as code-words can be a way to
deliver information in turbulent underwater channels without
the need to compensate for propagation effects through AO or
DSP techniques. The concept can be defined as a mode index
modulation method that involves the shapes of single modes
as well as combinations of modes to transfer information.
A particular approach to distinguish between the transverse
intensity patterns is to use a machine learning algorithm, and
a camera, instead of state-of-the-art alignment-sensitive mode
detection approaches. In this context, we propose the use
of LG mode patterns to communicate underwater and use a
convolutional neural network (CNN) to identify the modes
propagating through a turbulent channel. The construction
of the proposed CNN is based on the use of the transfer
learning technique [22], [23] of the pre-trained neural network
ResNet34 [24]. The use of transfer learning allows us to
accelerate the training process since the neural network is
trained using a certain prior knowledge rather than starting
the learning from scratch. The basic idea behind this technique
is to use the knowledge acquired by a neural network when
solving a problem in order to solve another more or less
similar, which corresponds to a transfer of knowledge, hence
the name.

The remainder of this paper is organized as follows. Sec-
tion II is dedicated to the related published work in the
literature. In Section III, preliminaries needed to understand
the presented contribution are provided. Section IV is devoted
to the experimental demonstrations where the different steps to
transmit information using spatially structured beams through
the water under different channel conditions are described.
Results of the identification of modes are presented and
discussed in Section V. A discussion on the practical im-
plementation and the potential applications of the proposed
communication technique is included in Section VI. Finally,
the paper concludes by proposing new research directions.

II. RELATED WORK

The concept of structured light beam detection using ma-
chine learning algorithms has been a topic of interest in free
space optics. Krenn et al. implemented an artificial neural
network to identify the intensity patterns of a Gaussian beam
profile and 15 petal-like beams (from ℓ = ±1 to ℓ = ±15) after
propagating for 3 kilometers through turbulent atmosphere
across the city of Vienna [25]. A similar approach was
used to recognize the transverse profiles of 4 OAM beams
and 4 OAM superpositions, with high identification accuracy
that exceeded 80%, over a propagation distance of 143 km
between two Canary islands [26]. A study by Knutson et al.
demonstrated the potential of machine learning algorithms for
the identification of high-charge OAMs [27]. Authors of [28]
demonstrated that a CNN-based algorithm allows differentiat-
ing with a precision rate of 99% between the combination of

OAM beams when propagating through laboratory-emulated
highly-turbulent free space links. Zhao et al. suggested the
use of a CNN-based approach for high-accuracy identification
of up to 10 superposition of OAM beams subject of tilting
and lateral displacements caused by atmospheric turbulence
effects simulated using the modified Kolmogorov turbulence
model [29]. In a theoretical study, Tian et al. proposed a
turbo-coded 16-OAM shift-keying (OAM-SK) communication
scheme for FSO systems subject to turbulence, which is
based on a CNN for mode identification [30]. In a recently
published survey [12], we reviewed the main contributions on
the potential of machine learning algorithms for the detection
of structured light modes, and we highlighted the potential of
these techniques to relieve the strict alignment requirement of
state-of-the-art detection techniques.

Here, we propose using the intensity patterns of a set of
single and superposition of LG beams as underwater informa-
tion carriers. A CNN-based method is implemented to recover
the initially transmitted modes instead of using previously
proposed alignment-sensitive projection techniques and bulky
mode sorters. Different underwater channel conditions are
considered, and the potential of our encoding and decoding
technique is assessed in each case.

III. PRELIMINARIES

In this section, we give an introduction to spatially struc-
tured light modes from the LG mode family. We equally
propose two encoding techniques that can be performed with
an SLM and used to transmit information using the LG mode
profiles as code-words. Then, we provide an overview of
underwater propagation and the different approaches to model
the propagation effects in particular for structured light. We
finally provide a detailed description of the convolutional
neural network that will be used for mode identification.

A. LG Modes

LG modes form a set of solutions to the paraxial Helmholtz
wave equation. Each mode is characterized by two degrees of
freedom ℓ and ?, known respectively, as the azimuthal and
radial indices. ℓ is responsible for the OAM and defining the
twist of the helical phasefront of the wave, and ? indicates the
radial components. In a cylindrical coordinate system, with a
position vector (d, q, I), the electric field of an LG mode is
expressed as follows [31]:

�!�(?,ℓ) (d, q, I) =
1

l(I)

√
2?!

c( | ℓ | +?)! exp (8(2?+ | ℓ | +1)Φ(I))

×
( √

2d
l(I)

) |ℓ |
!
|ℓ |
?

(
2d2

l(I)2

)
× exp

(
− 8: d

2

2'(I) −
−d2

l(I)2
+ 8ℓq

)
,

(1)

where l(I) = l0
√

1 + (I/I')2 is the beam spot size as
a function of I, the beam waist l0 and the Rayleigh size
I' = cl2

0/_ with _ being the optical wavelength. Φ(I) =
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arctan(I/I') denotes the Gouy phase, '(I) = I[1 + (I/I')2]
is the beam curvature and ! |ℓ |? (.) are the generalized Laguerre
polynomials. LG modes form a complete mode basis that
spans an infinite-dimensional Hilbert space. Two modes with
distinct ℓ or ? indices and having the same beam waist l0
are orthogonal to one another. The orthogonality is expressed
through the inner product operator < |> as follows:

�
Δ
= < �!�(?1 ,ℓ1) (d, q, I) | �

!�
(?2 ,ℓ2) (d, q, I) >

=

∫ ∫
�!�(?1 ,ℓ1) (d, q, I)�

!�∗
(?2 ,ℓ2) (d, q, I)d3d3q

= Xℓ1 ,ℓ2X?1 ?2

∫ ∫
| �!�(?1 ,ℓ1) (d, q, I) |

2 d3d3q,

(2)

where ∗ denotes the complex conjugate.
A linear combination * =

∑
=

2=�
!�
(?,ℓ) (d, q, I) of LG modes

is also orthogonal to single modes. The mode coefficients, 2=,
can be determined by an inner product of the optical field *
and the corresponding mode field distribution in the following
manner:

2= =
1
�
< * | �!�(?,ℓ) >, (3)

where � is the intensity of the �!�(?,ℓ) .
The phase and intensity profiles of a set of LG modes are

Fig. 1: (a1-a4) Phase profiles of LG0,0, LG0,4, LG2,2, LG4,0
modes, respectively, and (b1-b4) are the corresponding inten-
sity profiles.

shown in Fig. 1.

B. Concept of Mode Index Modulation

The principle idea is to encode information using the spatial
structure of the LG modes and detect the mode profiles using
a machine learning algorithm. Two encoding techniques are
proposed:

1) Single Mode Encoding: At the transmitter, the input data
is a < × = image with # levels of gray, each gray level
is assigned to a single or a superposition of LG modes as
illustrated in Fig. 2.
At the receiver, the modes are identified one by one through a
convolutional neural network algorithm, which will be detailed
in the next section.

Fig. 2: Concept of single mode information encoding.

Fig. 3: Concept of the multimode encoding technique.

2) Multimode Encoding: This approach consists of loading
a superposition of single transmission function 6< (A) on the
SLM screen, each is weighed with a particular spatial carrier
frequency :<:

)(!" (A) =
∑
"

6< (A) exp(8:<A), (4)

where " denotes the number of multiplexed mode structures.
The spatial frequencies :< act as spatial coordinates in the
Fourier plane. With a two dimensional image as an input,
" pixels can be simultaneously transmitted using spatially
separated modes as depicted in Fig. III-B2. At the receiver,
each mode is identified separately, and the initially transmitted
information is recovered.

C. Underwater Propagation

According to Beer’s law, the intensity, � (I), of a light beam
propagating through the water along the I direction decays
exponentially, as follows:

� (I, _) = �0 exp(−2(_)I), (5)

where 2(_) is a wavelength _-dependent attenuation coeffi-
cient. The attenuation coefficient is the contribution of an
attenuation coefficient U(_) and a scattering coefficient 1(_).
In addition to attenuation and scattering, a light beam can
also be affected by air-bubbles that can be potentially pro-
duced by the breaking of surface waves that infuse the air
from the atmosphere into the top layer of the water [32].
When propagating through bubbly water, laser beams get
partially or completely obstructed depending on the sizes of
the bubbles and the beam radius [33]. This could lead to a
deep fading in the received signal as observed in [33]. Tem-
perature and salinity in-homogeneity induce random changes
in the refractive index of the water and significantly affect
communication quality. A unified statistical model of fading
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induced by air-bubbles and a temperature gradient in fresh
and salty water is proposed in [34]. The model was mainly
developed for Gaussian-profile beams. Different experimental
studies on spatial modes considered underwater turbulence and
reported significant impacts on the mode purity over different
turbulence regimes [35]. The effect of turbulence has also
been theoretically investigated in recent reports [36], [37].
Still, the theoretical background for close-to-reality analytical
estimation of the impact of different kinds of turbulence
on spatially structured beams requires further efforts [12].
Nonetheless, it is possible to numerically estimate the impact
of underwater conditions on spatial modes utilizing random
turbulence phase screens. The idea is to assume that the effect
of turbulence on the propagating beam is an accumulation
of many perturbing planes; a phase screen represents each
plane. The turbulence phase screens can be generated using
models for the refractive index power spectrum density (PSD)
fluctuations. One particular model for oceanic turbulence was
proposed in [38], and the PSD of the refractive index, Φ= (^)
is given as follows:

Φ= (^) =0.388 × 10−8ε−1/3χ) ^
−11/3 [1 + 2.35([^)2/3]

×
(
l24−�) δ + l−24−�(δ) − 2l−14−�)(δ

)
,

(6)

where ^ =
√
^2
G + ^2

H is the wavenumber with (^2
G , ^

2
H) being

spatial frequencies in the ^ space. ε is the dissipation rate of
kinetic energy per unit mass of the fluid, which ranges from
10−1 and 10−10 m2/s3. χ) is the dissipation rate of mean-
squared temperature. [ mm is the inner scale of turbulence
(typically equals to 1 mm). �) = 1.896×10−2, �( = 1.9×10−4,
�) ( = 9.41 × 10−3, and δ = 8.284(:[)4/3 + 12.978(:[)2.
l is a unitless quantity that measures the relative strength
of temperature and salinity induced fluctuations and ranges
from -5 to 0 (-5 when the temperature is dominating and
0 when salinity is dominating). It is possible to simulate
the propagation through turbulent water using the split-step
Fourier method following [39].

D. Convolutional Neural Network

A neural network is a mathematical model whose design
is inspired by the functioning of biological neurons. It is
a system composed of neurons [40], generally divided into
several interconnected layers. A neuron performs a scalar
product between the input values and its parameters (weights)
and then applies a function to the result. Such a system is
used to solve various statistical problems. For the problem of
classification, the network computes from the inputs a vector
containing the probabilities of belonging to each class. The
class assigned to the input object corresponds to the class
with the highest probability. For image classification tasks,
convolutional neural networks are considered today to be the
best performing models for this type of application [41] [42].
CNNs have a methodology similar to traditional methods of
supervised learning. In fact, they receive inputs in the form
of images, detect the features of each of them, and then
train a classifier on them. However, the features are learned
automatically. CNNs do all the hard work of the extraction

and the description of the features. During the training phase,
the classification error is minimized in order to optimize the
parameters of the classifier and the features. In addition, the
specific architecture of the network can extract features of
different complexities, from the simplest to the most complex.
For instance, a 99.77% accuracy was obtained using CNN on
the handwritten digit MNIST dataset [43], a 97.47% correct
detection rate with the 3D object NORB dataset [44], and a
97.6% accuracy on face recognition task [45]. In comparison
to other detection algorithms, CNNs not only provide the
greatest performance but also exceed human capacity for cases
like the classification of objects into finer categories like dog
or bird species [46].

Each convolution kernel in one layer of the CNN produces
a different feature map so that the output neurons are different
for each kernel. The convolutional networks may also include
local or global “pooling” layers [47]. The combination of the
outputs may, for example, consist of taking the maximum or
the average value across the “pooled” area. The “pooling”
layers make it possible to reduce the size of the feature map
from one layer to another in the network while improving its
performance by making it more tolerant for small deformations
or translations in the input data. The values of the weights
of the layers are learned by backpropagation of the gradient
[48] [49]. In fact, for each layer, starting from the end of the
network, the parameters, which minimize the loss function, are
computed gradually, using gradient descent, for instance. The
last layer computes the final probabilities using the softmax
function as an activation function since the task at hand is a
multi-class classification problem. In fact, the softmax function
will return the output in the form of a vector having the same
size as the number of classes. Each element of the vector
indicates the probability for the input image to belong to a
class. For a vector G = [G1, G2, . . . , G# ], the softmax function
outputs the vector H = 5 (G) where each component of H is
defined as

H8 =
4G8

#∑
9=1
4G 9

(7)

As we have mentioned, the class assigned to the input will
be the one having the highest probability. A loss function is
associated with the final layer to calculate the classification
error. In our case, this loss function happens to be the
categorical cross-entropy defined as

L(H, Ĥ) = −1
=

=∑
8=1

<∑
9=1

H8 9 log( Ĥ8 9 ), (8)

where 8 denotes the observations and 9 indexes the classes,
and H is the sample label while Ĥ8 9 ∈ (0, 1) such that ∀8, we
have

∑<
9=1 Ĥ8 9 = 1 is the prediction for the 8Cℎ observation.

Since the task of image classification is a very complex task
that requires training the neural network for lengthy hours,
transfer learning technique can be seen as a practical solution
to this problem. In fact, by using knowledge of models already
trained on more or less similar tasks, transfer learning can
help reduce the amount of training considerably and achieve
excellent performance results.
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Fig. 4: (a) Experimental setup for LG mode encoding and detection. LD: Laser diode; HWP: half-wave plate; POL: linear
polarizer; LCD: liquid crystal display (of an SLM); CP: circulation pump; TC: temperature controllable chiller; BF: Bubble
Fountain; L: lens; CMOS: camera. (b) LG mode profiles forming the communication alphabet.

IV. EXPERIMENTAL IMPLEMENTATION

The experimental setup to encode information using LG
modes is depicted in Fig. 4 (a). The transmitter is composed
of a green light single-mode fiber pigtailed laser (Thorlabs
LP520-SF15) directed to a 1920 × 1080 liquid-crystal display
(LCD) of a phase-only SLM (PLUTO2 NIR-011, having a
pixel pitch of 8 `m). Since the used SLM is polarization
sensitive, in order to adjust the polarization of the emitted
light beam to be matched with the optimal polarization state
of the LCD, a _/2 plate and a linear polarizer are placed
after the laser. The produced LG beams are then propagated
through a 1.5 m water (from the tap) tank. At the reception,
we utilize a CMOS camera (DCC1645C by Thorlabs) to
receive the transmitted mode patterns.

The images are encoded pixel by pixel. Here we only
consider the single mode encoding case, and in each time,
a particular hologram is loaded onto the LCD of the SLM
to generate a particular pattern as previously explained in
sub-section III-B and illustrated in Fig. 2.

In our experimental demonstrations, we consider the
propagation through clear water, turbid water, water with
temperature in-homogeneity, and bubbly water. To emulate
turbidity in the water tank, we fixed a circulation pump,
on a position marked as CP in Fig. 4 (a), which creates a
sea-like water current that can be compared to the situation of

deepwater conditions. In order to create air-bubbles over the
propagation path, a bubbling fountain connected to a #2-gas
tube is placed in the middle of the water tank. A controllable
chiller is installed on the tank to create the temperature
in-homogeneity. Note that the temperature of the chiller is
continuously rising when it is operational, and the circulation
pump is also switched ‘on’ to create the uniformity of the
temperature inside the tank.

The patterns forming the communication alphabet are
depicted in Fig. 4. The modes are denoted as M# (M1:
LG0,1+LG0,−1, M2: LG0,2+LG0,−2, M3: LG0,3+LG0,−3,
M4: LG0,4+LG0,−4, M5: LG0,5+LG0,−5, M6: LG0,6+LG0,−6,
M7: LG0,7+LG0,−7, M8: LG0,2, M9: LG1,1+LG1,−1, M10:
LG1,2+LG1,−2, M11: LG1,3+LG1,−3, M12: LG1,4+LG1,−4, M13:
LG1,5+LG1,−5, M14: LG1,6+LG1,−6, M15: LG1,7+LG1,−7, M16:
LG12). The measured profiles of an LG12 beam propagating
through different kinds of underwater conditions are depicted
in Fig. 5. Figs. 5(a1-a4) show the intensity profile of an
LG1,2 at clear water, which corresponds to the situation when
no flow is applied. As can be seen in Figs. 5(b1-b2), due to
the effect of air-bubbles, the beam can be partially or almost
completely obstructed. Under a temperature in-homogeneity
regime, the beam shape is distorted and varies during the
time, as can be seen in Figs. 5(c1-c4). Turbidity in water
with homogeneous temperature and with no bubbles, does
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Fig. 5: Measured intensity transverse profiles of an LG12 mode
(a1-a4) in clear water, (b1-b4) under an air-bubbles regime,
(c1-c4) under temperature inhomogeneity, and (d1-d4) through
turbid water.

not seem to change the beam shape over time, as can be seen
in Figs. 5(d1-d4).

V. RESULTS AND DISCUSSION

Using the experimental setup shown in Fig. 4(a), we gener-
ate a dataset containing mode patterns captured under different
channel conditions: clear water, turbulent water, bubbly water,
and water with temperature inhomogeneity. The dataset con-
tains an equal number of images from each of the 16 modes
forming the encoding alphabet (Fig. 4(b)). The total number
of images is 400 × 16 = 6400 images split into 70% for the
training and 30% for the validation. The training set is used
to train a model, and the validation set is used to tune the
model hyperparameters and to give us an idea about the model
performance.

We have performed data augmentation for the training set
by applying geometrical deformations to the images, including
horizontal and vertical symmetry, rotation, and zooming, etc.
This allows our model to distinguish invariant characteristics
better and also to increase the number of images with the same
concepts for better learning results. All images are resized
to have a 224 × 224, the size of ImageNet dataset images
[50], which were used to train ResNet34. A batch size of 32
was used to update the weights of the neural network, and
the images were also normalized using the ImageNet dataset
statistics. This model is a CNN trained on the ImageNet
dataset, which contains 1.28 million images of 1000 different
categories. After a first layer consisting of one convolution and
a pooling step, the model has four blocks of layers. Each block
is formed by a set of 3 × 3 convoluted layers stacked on top
of each other with a fixed feature map dimension along with
applying batch normalization and a ReLU activation function
where its output is defined as the maximum between the
input value and zero. The feature map dimensions are 64,
128, 256, and 512, respectively, bypassing the input every two
convolutions. The number of layers in each block is 6, 8, 12,

and 6, respectively. Each of these layers focuses on a graphic
element to be identified, from the most general to the most
particular. Weights will be defined for each one, thus making
it possible to rank the combinations that will identify the most
approximate global form of the object to be found. After these
four blocks of layers, we find a global average pooling layer
and a fully connected layer containing 1000 nodes. This final
layer has as outputs the scores of the 1000 categories on the
ImageNet dataset. By applying the softmax activation function,
these scores are then transformed into probabilities for each
possible output. For the implementation of our network, we
have used Fastai [51], with PyTorch [52] under the hood.
Our choice is justified by the fact that Fastai allows for easy
construction and fast training of deep neural networks.

For the splitting of the dataset into training and validation,
we include all the different modes, corresponding to images
taken under different conditions, with the same proportion into
the training and the validation sets to ensure that we have a
balanced dataset and that the various conditions are taken into
consideration in both the training and the validation.
In addition to speeding up the training of the network, transfer
learning makes it possible to avoid overfitting. In fact, when
the dataset is small, it is strongly disadvised to train the
neural network from scratch, i.e., that is to say with a random
initialization, the number of parameters to learn to be much
higher than the number of images, the risk of overfitting is
huge in this case. In this work, we have used a total fine-tuning
strategy. We have replaced the fully-connected layer of the
pre-trained network by a fully connected layer containing 16
nodes, which corresponds to our mode classification problem.
All layers are then trained using the training dataset. As the
parameters of all the layers, except those of the last one, are
initially those of the pre-trained ResNet34, the learning phase
will be done more quickly than if the initialization had been
random.

To minimize the time needed to determine a good starting
learning rate experimentally without the need to re-train the
CNN many times, we used the idea of cyclical learning
rates [53]. We start by training the neural network for a few
iterations while changing the learning rate after each mini-
batch. We start by a very low learning rate, U = 10−7, until
we reach a high learning rate, U = 10 and we plot the curve
of loss (instead of the accuracy as explained in [53]) at each
iteration as a function of the learning rate, in log scale, as
shown in Fig. 6. The best optimal learning rate is chosen
approximately in the middle of the deepest descent slope.
This value corresponds to the point where the gradient is the
steepest. In our case, this corresponds to a value of learning
rate equal to U = 5.75 × 10−4. Using this value, we train the
model over four epochs using the one cycle policy [54]. This
means that the learning rate and the momentum during the
batch normalization process vary as follows:

• In the first step, we increase the learning rate from U
�

to U
and decrease the momentum from a maximum value to a
minimum value. Here, � is known as the division factor,
taken to be equal to 25 in our experiment. The maximum
(respectively minimum) value of the momentum is 0.95
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(respectively 0.85).
• In the second step, we decrease the learning rate from U

to U
�

, and increase the momentum from 0.85 to 0.95.

Fig. 6: Cyclical leaning rate: Loss as a function of the learning
rate.

In Fig. 7 (respectively Fig. 8), we show how the learning
rate (respectively the momentum) varies as a function of
the number of iteration. The idea is that we want to the
optimization algorithm to take fast steps (increase the learning
rate and decrease the momentum) towards the minimum in
the first phase, but as we approach the minimum value, we
want to take small steps instead (decrease the learning rate
and increase the momentum).

Fig. 7: Leaning rate as a function of the number of iterations
(one cycle policy).

The training and validation losses, as well as the validation
accuracy at the end of each epoch, are reported in Table I. The
loss of training and validation decreases with the number of
epochs, and this reflects that in each epoch, the model learns
more information. By increasing the number of epochs, we
are teaching the model more information; therefore, the loss
decreases. Similarly, the validation accuracy increases with the
number of epochs, and we reach 100% accuracy at the fourth
epoch.

Fig. 8: Moment as a function of the number of iterations (one
cycle policy).

TABLE I: Training and validation losses and validation accu-
racy per epoch.

Epoch Train Loss Validation Loss Validation Accuracy
1 0.47 0.58 0.87
2 0.17 0.03 0.9
3 0.05 2.3 × 10−4 0.99
4 7 × 10−3 2.3 × 10−5 1

Using the single-mode encoding technique, we transmitted
through different underwater conditions, the 77×75 grayscale
image depicted in Fig. 9(a). Four datasets are now formed,
each dataset contains 5775 mode profiles that correspond to
the total number of pixels of the ‘Einstein image’, taken each
under the same channel conditions. At clear water, the initially
sent image was perfectly reconstructed as seen in Fig. 9(b).
A 100% recovery fidelity is obtained in the case of turbid
water propagation, as shown in Fig. 9(c). The received image
through a bubbly channel is depicted in Fig. 9(d), and the error
rate is equal to 9.73%. A recovery fidelity of 99.03% under the
effect of temperature inhomogeneity is achieved, the recovered
image, in this case, can be seen in Fig. 9(e). Since the overall
accuracy of the model is pretty good for the clear and turbid
water, and in the presence of temperature inhomogeneity, we
turn our attention to the bubbly case where the accuracy is
90.27%. In fact, out of 5775 images in the bubbly test set, the
network misclassified 562 images. To emphasize the need for
CNN for the mode detection task, we plot in Fig. 10 examples
of modes that are challenging to be identified with the naked
eye, and were correctly predicted by the proposed CNN. To
have a better idea of the misclassified images, we plot in
Fig. 11 a set of these images where we indicate the predicted
and true mode of each image. As we can see, most of these
images are difficult to classify since some "petals" are missing.
Upon inspecting the images, we noticed that there exists up to
310 images (which accounts to 55% of misclassified modes on
the bubbly test set) that are totally obscure (similar to Fig. 12),
which may explain why the model accuracy for the bubbly
case is around 90% (compared to 96% on the test set excluding
these images).
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Fig. 9: (a) Original image. Recovered image after propagation
through (b) clear water, (c) turbid water, (d) a bubbly channel,
and (e) a channel with temperature in-homogeneity.

(a) Mode M6 (b) Mode M5

(c) Mode M4 (d) Mode M5

Fig. 10: Examples of correctly identified mode patterns in a
bubbly channel.

VI. PRACTICAL IMPLEMENTATION

One of the main limiting factors of our demonstrations is
the switching speed of the used liquid-crystal-based SLM,
which is limited to 60 Hz. A faster generation method is
possible using commercially available SLMs based on the
use of digital micro-mirror devices (DMDs) [55]. Using the
multimode encoding technique that we proposed in III-B2
can increase the transmission rate by having multiple spatially
separated patterns on the same detector instead of only one.
The use of an SLM to dynamically generate the modes
may not be practical for out-of lab experiments involving
many communicating terminals since it is bulky and a strict
alignment between the laser and the SLM must always be
maintained. Therefore, the practical implementation of such
a communication system for IoUT applications should be

(a) True: Mode M7,
Predicted: Mode M6

(b) True: Mode M15,
Predicted: Mode M14

(c) True: Mode M4,
Predicted: Mode M2

(d) True: Mode M11,
Predicted: Mode M10

Fig. 11: Examples misclassified mode patterns in a bubbly
channel.

Fig. 12: Obscure pattern recorded by the camera under a
bubbly channel.

performed using compact generation devices such as lasers
with customized light outputs. 3-D microscale spiral phase
plates can also be useful for the design of a mode index
modulation-based transmitter [14], [56]. The small foot-print
of such nearly-lossless components allows the integration in
fast laser switches that could generate high purity modes. A
rapid-frame rate camera is also needed to capture the beams
in a quick manner and increase the detection bandwidth.
High-speed cameras are existing in the market and, if used,
can significantly increase the communication rate. The
detection sensitivity of the camera can also extend the range
of communication.

Instead of only using experimental beam profiles to train
the CNN, it is also possible to rely on numerically generated
beams that can be obtained when implementing the numerical
model that we described in III-C.

We note that the proposed technique can also serve as a
tool for light detection and ranging (LIDAR) applications.
The idea is to train the CNN with different beam shapes
at different distances, which help to localize users in harsh
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underwater environments. Another potential application of
our proposed communication scheme is the quantum key
distribution (QKD), which has recently attracted considerable
attention [57].

VII. CONCLUSION

In this work, we demonstrated a versatile technique to
encode information using the spatial structure of imposed LG
modes incorporating the azimuthal and radial indices through
an underwater channel. The detection of the LG modes was
performed using a convolutional neural network through
different kinds of underwater turbulence. The deep learning
algorithm was trained using the mode profiles under different
channel conditions. Future research directions will involve
encoding data over a more significant number of spatial
modes from different basis including the Ince-Gaussian and
Hermite-Gaussian mode families.
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